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Abstract

In mathematical epidemiology, a well-known formula describes the impact of heterogeneity on the 

basic reproductive number, R0, for situations in which transmission is separable and for which 

there is one source of variation in susceptibility and one source of variation in infectiousness. This 

formula is written in terms of the magnitudes of the heterogeneities, as quantified by their 

coefficients of variation, and the correlation between them. A natural question to ask is whether 

analogous results apply when there are multiple sources of variation in susceptibility and/or 

infectiousness. In this paper we demonstrate that with three or more coupled heterogeneities, R0 

under separable transmission depends on details of the distribution of the heterogeneities in a way 

that is not seen in the well-known simpler situation. We provide explicit formulae for the cases of 

multivariate normal and multivariate log-normal distributions, showing that R0 can again be 

expressed in terms of the magnitudes of the heterogeneities and the pairwise correlations between 

them. The formulae, however, differ between the two multivariate distributions, demonstrating that 

no formula of this type applies generally when there are three or more coupled heterogeneities. We 

see that the results of the formulae are approximately equal when heterogeneities are relatively 

small and show that an earlier result in the literature (Koella, 1991) should be viewed in this light. 

We provide numerical illustrations of our results and discuss a setting in which coupled 

heterogeneities are likely to have a major impact on the value of R0. We also describe a rather 

surprising result: in a system with three heterogeneities, R0 can exhibit non-monotonic behavior 

with increasing levels of heterogeneity, in marked contrast to the familiar two heterogeneity setting 

in which R0 either increases or decreases with increasing heterogeneity.
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1. Introduction

The basic reproductive number, R0, plays a crucial role in determining both whether a 

pathogen is able to spread and the strength of control measures needed to halt its spread. The 

simplest descriptions of R0 assume simple transmission scenarios, such as perfect mixing of 

a population and homogeneity of the individuals in the population, e.g. in terms of their 

susceptibility and infectiousness. The inadequacies of such descriptions have long been 

realized and much attention has been directed towards understanding the impact of 

heterogeneities in transmission on the basic reproductive number. Early efforts included 

accounting for differing activity levels amongst the population and various mixing patterns 

of the population (e.g. proportionate/random mixing, assortative and disassortative mixing). 

Much of this work was prompted by the heterogeneities known to exist for the spread of 

sexually transmitted infections, notably gonorrhea and HIV (Nold (1980); Hethcote and 

Yorke (1984); Anderson et al. (1986); May and Anderson (1987); Jacquez et al. (1988); 

Gupta et al. (1989)). In the context of vector-borne diseases, it has long been realized that 

vectors’ bites are not distributed uniformly across hosts; instead, there is a heterogeneity in 

hosts’ attractiveness to vectors, with some individuals being disproportionately favored to 

receive bites (Carnevale et al. (1978); Dye and Hasibeder (1986); Woolhouse et al. (1997); 

De Benedicitis et al. (2003); Liebman et al. (2014); Cooper et al. (2019)).

The simplest theoretical framework for exploring the impact of heterogeneities is the multi-

type model (Diekmann and Heesterbeek (2000); Diekmann et al. (2012)), in which a 

population is taken to consist of n types (i.e. epidemiologically relevant categories or 

groups) of individuals. A now standard argument shows that the basic reproductive number 

for a multi-type transmission system can be calculated as the dominant eigenvalue of the 

next generation matrix (Diekmann and Heesterbeek (2000); Diekmann et al. (2012)). The 

entries kij of this n by n non-negative matrix give the average number of secondary 

infections of type i caused by a type j individual in an otherwise entirely susceptible 

population.

Much attention has been directed towards those special cases of heterogeneous transmission 

that lead to next generation matrices whose dominant eigenvalue is analytically tractable and 

hence for which the basic reproductive number can be calculated explicitly. In the context of 

spatial heterogeneity, these include symmetric spatial configurations such as equally-sized 

patches with all-to-all or nearest neighbor contacts (see, for example Lloyd and May 

(1996)).

More generally, a commonly-studied situation involves separable transmission (Diekmann 

and Heesterbeek (2000); Diekmann et al. (2012)), where the entries of the next generation 

matrix have the form kij = p(i)a(i)b(j) Here, the a(i) reflect the susceptibility of type i 
individuals, the b(j) the infectivity of type j individuals and the p(i) give the probabilities that 

a randomly chosen individual in the population will be of type i. The quantities 
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p i a i /∑k p k a k  give the probabilities that an infection caused by a type j individual is of 

type i. By definition for separable transmission, these quantities do not depend on j. In this 

case, the next generation matrix is of rank one and has dominant eigenvalue

R0 = ∑
i = 1

n
p i a i b i . (1)

(Note that we chose to write the p(i) explicitly, whereas most authors’ notation leaves them 

as a component of the a(i). One reason for us doing this is that it emphasizes that R0 does 

not increase simply as a consequence of there being more groups: increasing the number of 

groups typically reduces the p(i) accordingly.)

This expression for R0 is seen to be an average or expectation taken over the different 

groups, accounting for the probabilities p(i), and can be written as

R0 = ab + Cov a, b . (2)

Here, a and b denote the average values of a(i) and b(i), and Cov(a, b) their covariance. 

Using the result

E XY = E X E Y + Cov X, Y (3)

for the expectation of a product of random variables, eqn (1) can be rearranged into the 

following well-known formula (Dietz, 1980; Dye and Hasibeder, 1986) that sheds insight 

into the impact of heterogeneity on R0 in this separable setting:

R0 = ab 1 + rabCVaCVb
= R0

hom 1 + rabCVaCVb . (4)

Here, rab denotes the Pearson product-moment correlation coefficient between the a(i) and 

b(i),

rab = Cov a, b
Var a Var b , (5)

(i.e. the ratio of their covariance to the product of their standard deviations). CVa and CVb 

denote the coefficients of variation (i.e. standard deviation divided by the mean) of a(i) and 

b(i) and R0
hom denotes the value of R0 that would be predicted if the heterogeneity was 

ignored, i.e. the average values of a(i) and b(i) were used. We emphasize that these results 

are exact, holding for arbitrary distributions of the a(i), b(i) and p(i).

Heterogeneity can either inflate or deflate the value of R0, depending on whether there is 

positive or negative correlation between susceptibility and infectivity across the groups 

(Dietz, 1980). In the special case where susceptibility and infectivity are proportional, e.g. 
for a situation such as differing activity levels or mosquito biting preferences where the 

heterogeneity impacts both susceptibility and infectiousness in the same way, the formula 

reduces to
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R0 = R0
hom 1 + CVa

2

= R0
hom 1 + Var a

a2 . (6)

This formula has appeared in the literature numerous times in a number of different settings 

and guises (Dietz, 1980; Dye and Hasibeder, 1986; May and Anderson, 1987).

Although discussion of the impact of heterogeneity on R0 is most commonly framed in 

terms of the multi-type model, similar theory and results can be developed for continuously-

distributed heterogeneities (Diekmann et al., 1990; Diekmann and Heesterbeek, 2000; 

Diekmann et al., 2012). The normal distribution is often used as a first model to describe 

biological variation and so is a natural description for epidemiological heterogeneity 

(Sartwell, 1950). However, when variation is moderate or large, i.e. when the coefficient of 

variation is not small compared to one, a normal distribution will have substantial weight at 

negative values. For non-negative quantities, a log-normal distribution can be a more natural 

choice (Sartwell, 1950; Lessler et al., 2009) that provides a more satisfactory description 

when variation is not small. Another commonly-used choice is the negative binomial 

distribution (Lloyd-Smith et al., 2005), with its overdispersion parameter, k, allowing it to 

describe a wide variety of levels of variation from the Poisson through to highly 

overdispersed. Other descriptions used in models include gamma (Cooper et al., 2019) and 

power-law distributions. As is usual in mathematical modeling, distributional choices reflect 

a balance between biological plausibility and mathematical tractability. For the purposes of 

this study, the continuous formulation is attractive from a mathematical viewpoint because 

of analytic results that are available for distributions such as the normal and lognormal.

Particularly with the increasing realization that many systems are subject to multiple, often 

coupled, heterogeneities (Paull et al., 2012; Vazquez-Prokopec et al., 2016), an important 

question is whether results such as eqns. (4) and (6) generalize to situations in which there 

are more than two heterogeneities. In this paper, we show that the answer to this question is 

no: the effect of multiple interacting heterogeneities on the basic reproductive number 

depends on the details of the distributions of the heterogeneities, in contrast to what occurs 

in the two-heterogeneity setting. We provide results for both multivariate normal (MVN) and 

multivariate log-normal (MVLN) distributions of heterogeneities and demonstrate that the 

two settings can give markedly different results. Furthermore, we show that R0 can have a 

non-monotonic relationship with the magnitude of a heterogeneity in a way that does not 

happen in the two-heterogeneity setting.

2. The Model

2.1. Discrete Heterogeneities: Multi-type Model

We assume that there are n types of individuals, resulting from N different heterogeneities, 

N1 of which impact susceptibility and N2 of which impact infectiousness. We write the 

components of susceptibility as ax and those of infectivity as by. An individual’s type can be 

specified either by their vector of traits, a1, ⋯, aN1, b1, ⋯, bN2 , in a N = N1 + N2-
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dimensional trait space, or, because we are in an n-type group setting, by the index i that 

specifies their group (and hence locates their position within trait space).

We further assume that transmission is separable and that the various heterogeneities impact 

the susceptibility and infectivity of an individual in a multiplicative fashion. Thus, we 

assume that the susceptibility of a type i individual can be written as the product 

a1 i a2 i ⋯aNi i , taken over the heterogeneities that impact susceptibility, that the infectivity 

of a type j individual can similarly be written as b1 j ⋯bN2 j , and that the probability that a 

randomly chosen individual from the population is of type i is p(i).

The entries of the next generation matrix will have the form

p i a1 i a2 i …aN1 i b1 j ⋯bN2 j .

This matrix is of rank one and has dominant eigenvalue given by

R0 = ∑
i = 1

n
p i a1 i ⋯aN1 i b1 i ⋯bN2 i . (7)

This formula for R0 can be again be viewed as an expected value, this time of the N-way 

product of the various ax and by. Noting that we do not need to distinguish whether a given 

heterogeneity arises from susceptibility or infectivity when we calculate R0, we choose to 

drop the notational distinction between the ax and the by, instead referring to a common set 

xz, where z runs from 1 to N = N1 + N2. This allows us to write common formulae that cover 

cases where there are a given total number, N, of heterogeneities, rather than separate 

formulae for different combinations of numbers of susceptibilities and infectivities that sum 

to N.

2.2. Continuous Heterogeneities

As described above, an analogous model can be formulated for continuously-distributed 

heterogeneities. A general model for continuous trait space settings is described in 

(Diekmann et al., 1990; Diekmann and Heesterbeek, 2000; Diekmann et al., 2012). The 

central component of the model is the kernel function, k(ξ, η), that gives the average number 

(per unit volume of trait space) of infections with trait ξ that are caused by one individual of 

trait η over their entire period of infectiousness. A map from one generation to the next is 

given in terms of a next generation operator, which involves integrals over trait space 

weighted by the kernel. For separable transmission, the kernel can be decomposed as k(ξ, η) 

= p(ξ)a(ξ)b(η) and the basic reproductive number can be found as the following integral

R0 = ∫
Ω

a η b η p η dη, (8)

taken over the trait space, Ω. As observed by Diekmann et al., while there are some 

technicalities, in essence—and for our purposes here—moving from the multi-type model to 
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the continuous trait space model involves replacing the discrete sums described in the 

previous section by integrals.

An individual is specified by their vector of traits a1, ⋯, aN1, b1, ⋯, bN2  in the N = N1 + N2-

dimensional trait space. In an analogous way to the discrete model, we assume that 

transmission is separable and that heterogeneities impact susceptibility and infectivity in a 

multiplicative fashion. This means that the kernel k can be written as 

k ξ, η = p ξ a1 ξ ⋯aN1 ξ b1 η ⋯bN2 η  and that R0 is given by the integral

R0 = ∫
Ω

p η a1 η ⋯aN1 η b1 η ⋯bN2 η dη . (9)

Again, the basic reproductive number can be viewed as the expected value of the product 

a1⋯aN1 b1⋯bN2. As before we can drop the distinction between the ax and by when 

performing this calculation: the formula for R0 reduces to computing the expectation of an 

N-way product of random variables.

3. Analysis

The well-known result (eqn 4), as explained above, arises from seeing the formula for the 

basic reproductive number under separable transmission (eqn 1) as an expectation of the 

product of a pair of random variables and the ability to express this in terms of the pair’s two 

expectations and covariance (eqn 3), and hence ultimately in terms of coefficients of 

variation and the correlation coefficient (eqn 4).

Answering our main question—whether the result can be extended to the case of three or 

more heterogeneities—requires corresponding manipulations of expectations of products of 

three or more random variables—the so-called product moments of the joint distribution. We 

remind ourselves that a crucial part of the standard analysis in the two heterogeneity case 

was the generality of the formula for the expected value of a product of a pair of random 

variables, which held for arbitrary distributions.

3.1. Product Moments of Random Variables; Main Analytic Results

Closed-form formulae for product moments of multivariate distributions are not generally 

available. As a result, our analytic results are limited to certain distributions for which such 

formulae are available. These include the multivariate normal (MVN) and multivariate log-

normal (MVLN) distributions, both of which are continuous distributions. To our 

knowledge, formulae for product moments are not available for widely-used discrete 

multivariate distributions. Hence, our analytic results focus on continuously-distributed 

heterogeneities.

In the case of a set of random variables whose joint distribution is multivariate normal, 

numerous authors have obtained results for product moments (see, for example, Isserlis 

(1918), Bendat and Piersol (1966), Bär and Dittrich (1971) and Song and Lee (2015)). The 

general formula for an N-dimensional multivariate normal distribution is, however, 
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unwieldy, so we do not present it here. In the four dimensional case, with (X1, X2, X3, X4) 

distributed according to a 4-dimensional multivariate normal distribution, we have (Bendat 

and Piersol (1966) and Bär and Dittrich (1971))

E X1X2X3X4 = E X1X2 E X3X4 + E X1X3 E X2X4 +
E X1X4 E X2X3 − 2E X1 E X2 E X3 E X4 .

Each expectation of a pairwise product in this equation can be rewritten in the way described 

above (first using eqn (3) to write in terms of the product of a pair of expectations and their 

covariance, and then using eqn (5) to rewrite the covariance in terms of coefficients of 

variation and correlation coefficients) to give

E X1X2X3X4 = E X1 E X2 E X3 E X4 ×
1 + rX1, X2CVX1CVX2 1 + rX3, X4CVX3CVX4 +
1 + rX1, X3CVX1CVX3 1 + rX2, X4CVX2CVX4 +
1 + rX1, X4CVX1CVX4 1 + rX2, X3CVX2CVX3 −

2 .

(10)

The case of three random variables can be obtained by setting X4 = 1. In this case, CVX4 is 

equal to zero, and so the three parenthetic terms 1 + rXi, X4CVXiCVX4  each equal one, 

leaving

E X1X2X3 = E X1 E X2 E X3 1 + rX1, X2CVX1CVX2 +
rX1, X3CVX1CVX3 + rX2, X3CVX2CVX3 . (11)

For a set of N multivariate lognormally distributed random variables, product moments are 

given by the formula (Kotz et al., 2000)

E ∏
j = 1

N
Xj

rj = exp rTξ + 1
2rTV r ,

where ξ and V are the mean and variance of the corresponding multivariate normal 

distribution. In the four dimensional case, some simple manipulation leads to

E X1X2X3X4 = E X1 E X2 E X3 E X4 ×
1 + rX1, X2CVX1CVX2 1 + rX1, X3CVX1CVX3 ×
1 + rX1, X4CVX1CVX4 1 + rX2, X3CVX2CVX3 ×
1 + rX2, X4CVX2CVX4 1 + rX3, X4CVX3CVX4 .

(12)

For the case of three random variables, setting X4 = 1 gives

E X1X2X3 = E X1 E X2 E X3 1 + rX1, X2CVX1CVX2 ×
1 + rX1, X3CVX1CVX3 1 + rX2, X3CVX2CVX3 . (13)
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We see that different expressions are obtained for the expectation of a product of four 

random variables between the multivariate normal (eqn 10) and multivariate lognormal (eqn 

12) distributions—for instance, terms in the former involve products of at most two 

correlation coefficients, whereas the latter includes a term in which all six correlation 

coefficients are multiplied. Differences are similarly seen for the expectation of a product of 

three random variables for these two distributions (eqns (11) and (13)).

The observation that eqns (10) and (12) differ, and that their reduced forms when X4 = 1 also 

differ, shows that that there is no general formula of this type for the basic reproductive 

number when there are three or more coupled heterogeneities. This answers the main 

question posed in this paper. We do notice, however, that the two formulae give 

approximately equal results in the limit of small coefficients of variation, i.e. when one can 

ignore terms involving products of more than two pairs of coefficients of variation (these are 

terms that involve products of two or more correlation coefficients). In this case, both eqns 

(10) and (12) give

E X1X2X3X4 ≈ E X1 E X2 E X3 E X4 ×
1 + rX1, X2CVX1CVX2 + rX1, X3CVX1CVX3
+ rX1, X4CVX1CVX4 + rX2, X3CVX2CVX3
+ rX2, X4CVX2CVX4 + rX3, X4CVX3CVX4 .

(14)

For the case of three random variables, we see that the small coefficient of variation 

approximation of the three-way MLVN formula (eqn 13) is precisely the formula obtained 

from the MVN (eqn 11).

3.2. Comparison to Previous Results

The majority of papers in the literature that provide analytic results for the basic 

reproductive number under heterogeneity focus on at most two coupled heterogeneities. One 

notable exception is the work of Koella (1991), which considers a vector-borne pathogen 

subject to heterogeneities in mosquito biting rate, a, human susceptibility, b2, and duration of 

human infection, ρ. In a homogeneous setting, the basic reproductive number (strictly 

speaking, the type reproductive number (Heesterbeek and Roberts, 2007) that considers the 

complete two-step transmission cycle of the infection) is given by

R0
hom = ma2b1b2e−μTρ

μ . (15)

Here, m is the ratio of adult female mosquitoes to humans, b1 is the per-bite transmission 

probability from human to mosquito, b2 is the per-bite transmission probability from 

mosquito to human, μ is the mosquito death rate (so that 1/μ is the average lifespan of an 

adult female mosquito) and T is the duration of the extrinsic incubation period (i.e. the latent 

period for the infection within the mosquito). Note that the biting rate a appears as a squared 

term, reflecting that the transmission cycle involves two bites by the vector.

Koella provides—without proof or qualification for its applicability—the following formula 

for the basic reproductive number when a, b2 and ρ exhibit heterogeneity:
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R0 = R0
hom 1 + Var a

a2 + 2Cov a, b2
ab2

+ 2Cov a, ρ
aρ + Cov ρ, b2

ρb2
. (16)

Note that the single biological heterogeneity in biting rate impacts both infectiousness and 

susceptibility, resulting in it being treated as two perfectly correlated heterogeneities. (The 

version of eqn (16) given in Koella (1991) appears to have minor but important 

typographical errors, which are corrected here. In each of the denominators of Koella’s eqn 

3, an overbar appears over the entire denominator, whereas overbars should appear 

separately over individual terms.)

In our notation, we write X1 = X2 = a, X3 = b2 and X4 = mb1e−μT /μ ρ. Here X1 and X3 

impact susceptibility, while X2 and X4 impact infectiousness. (We choose to write all of the 

constant factors within X4 purely for notational convenience.) We note that eqn (16) has no 

terms that involve products of pairs of covariances (or, in the language of the earlier 

formulae, correlation coefficients). Rewriting Koella’s formula in our notation, we see that it 

follows the approximate formula eqn (14) and so should be seen as an approximation that is 

likely most accurate when coefficients of variation are small (i.e. the heterogeneities are 

relatively minor). We remark that the Koella formula does agree with the exact result for the 

multivariate normal distribution, eqn (10), if the coefficient of variation describing either 

human susceptibility or the duration of human infection is equal to zero (i.e. in the case of 

three coupled heterogeneities).

4. Results

4.1. Results from Analytic Formulae

We present numerical results obtained from the analytic formulae, allowing us to explore the 

differences between predictions made using the formulae for the two distributions and also 

using the formula in the small coefficient of variation limit. For concreteness, we place these 

simulations within the vector-host setting described above, based on Koella (1991), but for 

simplicity we hold one of the factors constant. Specifically, mosquitoes differ in their biting 

rate, which impacts both infectivity and susceptibility and thus is treated as two perfectly 

correlated heterogeneities, X1 and X2, and hosts differ in their duration of infectiousness, 

X3. Setting X4 = 1 and taking X2 = X1, we obtain the following two formulae:

R0 = E X1
2E X3 1 + CVX1

2 + 2rX1, X3CVX1CVX3 (17)

for multivariate normally (MVN) distributed heterogeneities, and

R0 = E X1
2E X3 1 + CVX1

2 1 + rX1, X3CVX1CVX3
2

(18)

for multivariate lognormally (MVLN) distributed heterogeneities. As discussed above, in 

this reduced setting of X4 = 1, the MVN formula is the same as the the small coefficient of 

variation limit of the MVLN formula and agrees with the Koella formula. Furthermore, we 
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see that when the correlation coefficient, rX1, X3, between the two heterogeneities is zero, the 

two formulae are identical.

Figure (1) compares the R0 values for heterogeneities distributed according to MVN (solid 

line, from eqn 17) and MVLN (dashed line, from eqn 18) distributions, across varying levels 

of correlation between the heterogeneities. We see that the two distributions do indeed lead 

to identical R0 values when the correlation coefficient is zero. For positive values of the 

correlation coefficient, the MVLN distribution leads to a larger value of R0 than the MVN, 

while the opposite is true for negative values of the correlation coefficient.

Figure (2) depicts how R0 values for heterogeneities distributed according to MVN (solid 

lines) and MVLN (dashed lines) distributions differ across varying levels of correlation 

between the heterogeneities, for three different levels of heterogeneity in the human duration 

of infection, X3. Heterogeneity in X3 is smallest for the blue lines (Var(X3) = 1), greatest for 

the red lines (Var(X3) = 10), with an intermediate level for the black lines (Var(X3) = 4: note 

that these black lines are identical to those in Figure 1). We see that larger levels of 

heterogeneity lead both to larger deviations in R0 (increases or decreases, respectively, for 

positive or negative values of the correlation coefficient rX1, X3) from the value seen when 

the two heterogeneities are uncorrelated, and larger differences between the values of R0 that 

result from use of the two different distributions.

Figure (3) depicts how R0 values for heterogeneities distributed according to MVN (solid 

lines) and MVLN (dashed lines) distributions differ across varying levels of the 

heterogeneity in biting rate, X1, for two different levels of correlation between the 

heterogeneities. Figure (3a) depicts results under a positive correlation, rX1, X3 = 0.5, while 

Figure (3b) shows results for a negative correlation, rX1, X3 = − 0.4. For positive values of 

the correlation, we see that increasing levels of heterogeneity in biting rate lead to larger 

values of R0, with larger values seen under the MVLN than the MVN, in agreement with 

observations made in earlier figures. Both distributions give the same value of R0 when there 

is no variation in biting rate; this equals R0
hom obtained using the average values. Note that 

R0 varies nonlinearly with the level of variation in biting rate, reflecting the biting rate’s 

quadratic influence on R0.

Figure (3b) provides a very surprising result: when the correlation coefficient is negative, the 

basic reproductive number can exhibit non-monotonicity as the level of heterogeneity 

increases. This result, which does not occur in the two heterogeneity setting, arises from R0 

increasing in a quadratic manner on the heterogeneous biting rate but decreasing in a linear 

fashion on the interaction between heterogeneities in biting rate and duration of infection. 

Non-monotonicity will always occur as the magnitude of a heterogeneity is varied if that 

heterogeneity impacts both susceptibility and infectivity and is also negatively correlated 

with another heterogeneity.

Figure (3c) shows that for the MVLN distribution, non-monotonicity can be more severe 

than depicted in Figure (3b). For this distribution, R0 depends in a quartic manner on the 

Lloyd et al. Page 10

Math Biosci. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



magnitude, CVX1, of the heterogeneity X1, and so there can be multiple local minima. 

Looking over the larger range of values for CVX1 shown in this panel (except for this, all 

other details are as in panel b), one sees a local maximum in R0 when CVX1 ≈ 3.0 and a 

second local minimum when CVX1 = − 1/ CVX3rX1, X3 = 6.25. This second local minimum, 

at which R0 is equal to zero, arises when the term in braces that gets squared in eqn (18) 

equals zero.

In the four heterogeneity formulae, setting X1 = X2 gives R0 as a quadratic function of CVX1
in the MVN case and a sixth degree polynomial in the MVLN case.

4.2. Multi-Type Model Results

We conclude with a numerical example in a multi-type setting, based on real-world data 

from Cooper et al. (2019) on heterogeneity in mosquito biting rates across groups in a study 

in Uganda. Cooper et al. fit gamma distributions to the relative numbers of bites received by 

different groups (for them, households) for a number of locations. The degree of 

heterogeneity was found to vary across location and time; we use the gamma distribution 

fitted to relative bite count data from Jinja District, for which the standard deviation was 

0.985 and, by definition, the mean was 1. Note that the coefficient of variation here is large 

compared to values depicted in Figures (3a and b).

We employ a thousand group model, with an equal number of individuals (people) in each. 

We assume that groups differ in their attractiveness to mosquitoes and in the average 

duration of human infection. By definition in this multi-group model, all members of a 

group are taken to have identical attributes. We write the relative attractiveness and duration 

of human infection of group i as zi and ρi, respectively. As in the Cooper et al. study, we take 

the zi to have mean one, so that the per-mosquito biting rate on group i, ai, is given by the 

product of the average biting rate and the relative attractiveness: ai = azi. Finally, we assume 

some level of correlation, ra,ρ, between the zi (or, equivalently, the ai) and ρi. Because of the 

lack of data on multiple coupled heterogeneities, we will explore the impact of different 

levels and signs of correlation between the two variables.

We base our parameter values on those used by Chitnis et al. (2008) in a modeling study of 

malaria transmission, using their high intensity transmission scenario. We take the average 

mosquito biting rate, a, to be 0.5 per day, the ratio of vectors to hosts, m, to be 9.27, the per-

bite transmission probabilities b1 and b2 to equal 0.022 and 0.48, respectively, the average 

mosquito lifespan, 1/μ, to be 10 days, and the extrinsic incubation period, T, to be 11 days. 

We assume the duration of human infection is lognormally distributed, with mean 290 days 

(corresponding to the 9.5 month average duration described by Chitnis et al.) and coefficient 

of variation 0.4.

For each group, we draw the relative biting attractiveness, zi, and duration of human 

infection, ρi, from a bivariate distribution with gamma and lognormal marginals as described 

above. These numbers are obtained using the NORTA algorithm (Cario and Nelson, 1997, 

1998), as implemented by the NORTARA package (Su, 2014) in R (R Core Team, 2019). 
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This algorithm allows generation of random numbers from multivariate distributions with 

specified marginal distributions and correlation structure.

The next generation matrix (considering the complete transmission cycle from human to 

human, via mosquito) has entries ki j, where

kij = maiajb1b2ρjexp −μT /μ .

We see that this next generation matrix is separable and involves the product of three group-

dependent quantities (ai, aj and ρj).

If there was no heterogeneity, the value of the basic reproductive number would equal 

R0
hom = ma2b1b2ρexp −μT /μ, and take the value 23.63 given the parameters employed here. 

If the only heterogeneity was in mosquito biting preference, the basic reproductive number 

would be inflated by the factor 1 + Var(zi) = 1.97, giving an R0 of 46.58. (The attentive 

reader might notice that our values of R0 appear quite different to those of Chitnis et al. 

(2008) even in the homogeneous setting. The major difference arises because we calculate 

values on a per transmission cycle basis rather than the per transmission event basis 

employed by Chitnis et al. (2008): their R0 formula is essentially the square root of the one 

used here. Beyond this, there are some minor differences in model formulations, such as our 

use of a fixed duration of latency.)

For a given set of values of ai and ρj, the value of R0 for this model with its coupled 

heterogeneities can be calculated exactly using eqn (7). We would like to be able to relate 

this to the moments of the individual heterogeneities, but we do not have a closed form 

expression for the product moments of the multivariate distribution employed in this 

example. As we are in a three heterogeneity setting, we could use the formulae derived using 

the multivariate normal (eqn 17) or multivariate lognormal (eqn 18) distribution. Both will 

be approximations because they were derived using distributions different to the one 

employed in this example. Recall that in this three heterogeneity setting, the MVN formula 

is identical to the small coefficient of variation limit of the MVLN formula and to the Koella 

formula. (It should be kept in mind, however, that coefficients of variation are large in this 

numerical example, meaning that we are not in the weak heterogeneity limit.) Finally, when 

using the MVN and MVLN formulae, we can either use means and coefficients of variation 

calculated based on the set of values of ai and ρj, or those of the underlying distribution from 

which these values were drawn. Because we are using a sampled set of values, moments 

calculated from the sample will generally differ from those of the underlying distribution.

We remark that the relevant product moment of the continuous multivariate gamma/

lognormal distribution that underlies this example (i.e. the distribution from which the 

groups’ attributes are sampled) could be obtained numerically using Monte Carlo numerical 

integration. Indeed, we see that the value of R0 obtained from eqn (7) can be viewed in just 

this way as an (admittedly crude) Monte Carlo estimate. One approach to obtain a better 

approximation would be to repeat the group attribute sampling process, evaluating R0 each 

time, and averaging the resulting collection of estimates. Alternatively, one could obtain a 
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more representative sample of the underlying distribution by simply increasing the number 

of groups.

Results are shown in Table (1), and are as anticipated from the discussion of the analytic 

results. As mentioned above, heterogeneity in biting alone inflates the value of R0 to 46.58, 

above the value of R0
hom = 23.63 that would be predicted if each group’s attributes were 

simply equal to the average of the underlying distribution. Exact results obtained from the 

1000 group model (the column labeled “Numerical (Exact)”), show that positive correlation 

between the biting attractiveness and duration of infectiousness further increases R0, with a 

greater increase when the correlation is stronger. Negative correlation decreases the value of 

R0. Note that the exact value obtained when the correlation is zero differs from the 46.58 

stated above: sampling variation (when drawing the 1000 sets of attributes) means that the 

averages of the ai and ρj for the 1000 groups differ from those of the underlying distribution.

Values obtained from the single realization of the 1000 group model are consistent with the 

Monte Carlo estimates of the basic reproductive number that would pertain if the 

heterogeneity exactly followed the underlying continuous multivariate distribution. Some 

variation from these values is observed: this is a consequence of the attributes in the 1000 

group model being a not so large sample drawn from a distribution with marked variation 

and skewness. We see that the MVLN formula provides a closer approximation to the exact 

value of the reproductive number than does the MVN formula (which we recall is identical 

to both the small heterogeneity and Koella’s formula). The MVLN formula does tend to 

overestimate the impact of the coupled heterogeneity, in each case moving it further away 

(either in a positive or negative direction, depending on whether ra,ρ is positive or negative) 

from the value obtained with zero correlation, compared to the Monte Carlo estimate.

To emphasize the difference between settings involving three or more heterogeneities and 

the more familiar two heterogeneity setting, we remind the reader that equation (4) for R0 is 

exact in the two heterogeneity case, regardless of the details of the distributions of the 

heterogeneities. Values in the three “Sample” columns of a corresponding table in the two 

heterogeneity case would be equal, as would be the values in the two MVN and MVLN 

“Underlying Distribution” columns.

5. Discussion

In this paper we have shown that the well-known result for the impact of two coupled 

heterogeneities on the basic reproductive number of an epidemiological system under 

separable transmission does not have a general counterpart when there are three or more 

coupled heterogeneities. In the more general setting, the formula for the basic reproductive 

number depends on details of the joint distribution of the heterogeneities in a way that is 

quite different than in the setting with two heterogeneities. We were able to derive formulae 

that related the basic reproductive number to the magnitudes of the heterogeneities and their 

pairwise correlations for the special cases of multivariate normal and multivariate lognormal 

distributions of heterogeneities. Under particular limiting cases (typically in the limit of low 

levels of heterogeneity), the two formulae give similar predictions. We showed that an 

earlier result in the literature (Koella, 1991) should be viewed as an approximate result, 
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although we noted that in appropriate limiting cases, the result agrees with our formula for 

the multivariate normal distribution.

The R0 formulae obtained here were derived for continuous multivariate distributions and 

thus can only provide an approximation for discrete multi-group settings such as our 

numerical example. (Furthermore, our numerical example used an underlying distribution 

that differed from the ones for which we derived our formulae.) This approximation would 

improve as the number of groups increased and the multi-group model more closely 

approximated a setting in which heterogeneities could be treated as being continuously 

distributed. This again is in contrast to the two heterogeneity setting, in which the well-

known result is exact, applyng to all distributions.

It is only possible to obtain analytic formulae for the basic reproductive number in multi-

type models whose structure permits evaluation of the dominant eigenvalue of the next 

generation matrix. Although separable transmission provides one class of models for which 

this is the case, and has thus received much attention in the theoretical literature, it should be 

realized that most real-world transmission settings that involve structure do not fall in this 

class. Spatial models will almost invariably lead to non-separable transmission: interactions 

are more likely with nearby than distant individuals, so numbers of encounters depend on 

the relative locations of both individuals, rather than separately on their two locations. 

Another example is provided by age structure, commonly discussed in the context of 

childhood infections. Here, individuals are more likely to interact with individuals of a 

similar age than those of a different age. In models for the spread of sexually transmitted 

infections, it is often the case that individuals are more likely to interact with ones who are 

similar to themselves (e.g. highly sexually active people are more likely to have such a 

partner). Each of these departures results from some form of assortative mixing, a 

commonly-observed property in real-world social networks Newman (2003). While 

separable transmission might not be reflective of all real-world settings, that it allows us the 

ability to gain analytic insights into the impact of heterogeneity means that it remains a 

useful situation to study, although the limitations of its applicability must be borne in mind.

Although theoretical attention has typically focused on the two heterogeneity case, and this 

has provided much insight, heterogeneous transmission in the real world typically involves 

more than two factors (Paull et al., 2012; Vazquez-Prokopec et al., 2016). Vector borne 

diseases provide striking examples of systems impacted by multiple, coupled heterogeneities 

(Koella, 1991; Smith et al., 2014; Vazquez-Prokopec et al., 2016; Irvine et al., 2018). Both 

host and vector populations themselves exhibit epidemiological heterogeneities, such as host 

movement patterns (Stoddard et al., 2013), duration and severity of host infectiousness 

(Nguyet et al., 2013) and vector density (LaCon et al., 2014), as well as having significant 

heterogeneity in their interactions, for instance due to host biting preference and spatial co-

location between hosts and vectors (Liebman et al., 2014; Cooper et al., 2019). As such, 

epidemiological systems such as the human/Aedes aegypti/dengue virus or human/

Anopheles/malaria systems represent prime examples for the application of results such as 

those discussed here. Our ability to apply these results at present is, however, hindered by 

the lack of datasets in which multiple heterogeneities have been simultaneously 

characterized.
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When transmission is heterogeneous, control measures that account for the heterogeneity are 

much more effective than ones that do not (Dye and Hasibeder, 1986; Anderson and May, 

1991; Woolhouse et al., 1997; Lloyd-Smith et al., 2005; Cooper et al., 2019), an observation 

that has driven much of the research into heterogeneity in transmission. The most striking 

result of this study is the observation that R0 can have a non-monotonic dependence on the 

magnitude of a heterogeneity when there are three or more coupled heterogeneities—in 

marked contrast to the behavior seen in the two heterogeneity case. Indeed, in the case of a 

multivariate lognormal distribution, there is the potential for multiple local minima and 

maxima in the basic reproductive number to occur as the level of heterogeneity is changed. 

Non-monotonicity could have important implications for the impact of targeted controls, 

which typically lead to a reduction in the degree of heterogeneity across the population. In 

such cases, non-monotonicity could conceivably and perversely lead to an increase in the 

reproductive number for some levels of control. We comment that the example in which we 

demonstrated non-monotonicity involved varying the level of heterogeneity while keeping 

the mean transmission potential constant, while control would involve decreasing both mean 

and variation. As such, the potential for this phenomenon to cause perverse outcomes of 

targeted control is not immediate; we defer exploration of this to a later study.

The results of this paper demonstrate the importance of gaining understanding of how 

multiple coupled heterogeneities impact transmission. Even with the addition of just one 

additional heterogeneity, our analysis reveals that surprising behavior can be observed 

beyond what has previously been seen in the setting of two heterogeneities. While providing 

a theoretical step in this direction, this study highlights the limitations of general results that 

can be obtained in more realistic settings. It aims to guide more detailed studies that involve 

numerical exploration of specific situations, yielding further insights into the 

epidemiological role of individual variability. We argue for the need to move beyond 

quantification of single heterogeneities, to simultaneous measurement of multiple 

heterogeneities and their covariation, in order to better understand the impact of individual 

variability on transmission dynamics of infectious diseases.
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Highlights

• This work explores whether the well-known mean/variance formula for the 

basic reproductive number in multi-type/group disease models with separable 

transmission and two coupled heterogeneities generalizes to settings in which 

there are more than two coupled heterogeneities. We derive formulae that 

apply when the distributions of the heterogeneities across groups follow 

multivariate normal or multivariate lognormal distributions. These formulae 

are shown to differ, demonstrating that there is no general formula that applies 

for more than two coupled heterogeneities.

• We illustrate our results using numerical simulation and use them to reassess 

a formula that appears in a paper by Koella (1991) that describes 

heterogeneous transmission in a mosquito-borne disease setting.

• Finally, we demonstrate that changing the magnitude of heterogeneity can 

have a non-monotonic impact on the basic reproductive number. To our 

knowledge, this surprising result has no counterpart in the existing literature.
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Figure 1: 
Comparison of R0 values calculated for multivariate normally-distributed (solid line) and 

log-normally-distributed (dashed line) heterogeneities for differing values of the correlation 

coefficient, rX1, X3, between the biting rate, X1, and average duration of human infection, 

X3. X1 and X3 are taken to have means equal to 1 and 5, respectively, and variances Var(X1) 

= 0.2 and Var(X3) = 4. The value of the susceptibility parameter was fixed at 1 for the entire 

population. Lines are obtained using the MVN and MVLN formulae (eqns 17 and 18, 

respectively). The horizontal dashed line denotes the value of R0 if there was no 

heterogeneity, i.e. obtained using the average values, R0
hom. Note that the basic reproductive 

number is the same for both distributions when the correlation coefficient is equal to zero, 

and that this is greater than the value R0
hom obtained using the average values because of 

heterogeneity in the biting rate.
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Figure 2: 
Comparison of R0 values calculated for multivariate normally-distributed (solid line) and 

log-normally-distributed (dashed line) heterogeneities for differing values of the correlation 

coefficient, rX1, X3, between the biting rate, X1, and average duration of human infection, 

X3. Results are presented for three different levels of the heterogeneity in the average 

duration of human infection: black lines have Var(X3) = 4 (these are the lines that appear in 

Figure (1); blue lines have Var(X3) = 1, while red lines have Var(X3) = 10. As in Figure (1), 

X1 and X3 are taken to have means equal to 1 and 5, respectively, and Var(X1) = 0.2. The 

value of the susceptibility parameter was fixed at 1 for the entire population. The horizontal 

dashed line denotes the value of R0 if there was no heterogeneity, i.e. obtained using the 

average value, R0
hom.
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Figure 3: 
Comparison of R0 values calculated for multivariate normally-distributed (solid line) and 

log-normally-distributed (dashed line) heterogeneities for differing levels of heterogeneity in 

the biting rate, X1. Panel (a): positive correlation coefficient, rX1, X3, between the biting rate 

and average duration of human infection, X3, equal to 0.5. Panel (b): negative correlation 

coefficient, with rX1, X3 = − 0.4. Panel (c): as panel (b), but with a larger range of values of 

CV(X1) on the horizontal axis. Other parameter values are as in Figure 1, with X1 and X3 

taken to have means equal to 1 and 5, respectively, and Var(X3) = 4. The value of the 

susceptibility parameter was fixed at 1 for the entire population. The horizontal dashed lines 

denote the value of R0 if there was no heterogeneity, i.e. obtained using the average value, 

R0
hom. Note the surprising non-monotonic impact of heterogeneity in panels (b) and (c), 

behavior that does not occur in the well-studied case of two coupled heterogeneities.
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Table 1:

R0 values for the multi-group host-vector transmission model. As described in the text, the groups differ in 

terms of the mosquito biting rate (a) and the duration of human infection (ρ), with different levels and 

directions of correlation between the two heterogeneities (raρ). The “Numerical (exact)” column gives (exact) 

numerical results obtained from a 1000 group model, with group attributes sampled from a bivariate 

distribution with relative biting attractivenesses of the groups given by a gamma distribution with mean 1 and 

standard deviation 0.985 (Cooper et al., 2019) and durations of human infection lognormally distributed with 

mean 290 days and standard deviation 116 days. Other parameters are given in the text and lead to a value of 

R0
hom of 23.63. MVN and MVLN formulae refer to results obtained using analytical formulae (eqns 17 and 

18), either using means and coefficients of variation obtained from the set of attributes in the 1000 group 

model, or by using the corresponding quantities from the underlying continuous distribution from which group 

attributes are sampled. Monte Carlo refers to results obtained using numerically estimated product moments of 

the underlying continuous distribution from which group attributes are sampled. Monte Carlo estimates were 

obtained by averaging over 4000 sets of results for the 1000 group model. Both the standard error (quoted as ± 
value) of this estimate and the standard deviation across the 4000 sets of results (value in parentheses) are 

given. The standard error, which describes the uncertainty in the Monte Carlo estimate, is obtained by dividing 

the standard deviation by 4000. The standard deviation describes the dispersion of R0 values obtained from 

single realizations of the 1000 group model about the underlying mean.

ra,ρ
Sample Underlying Distribution

Numerical (Exact) MVN formula MVLN formula Monte Carlo MVN formula MVLN formula

0.8 75.89 65.56 84.17 73.58 ±0.12 (7.54) 61.48 80.58

0.5 54.62 50.66 58.54 62.90 ± 0.09 (5.81) 55.89 66.74

0.0 49.15 48.47 49.14 46.60 ± 0.06 (3.56) 46.58 46.58

−0.5 38.15 45.27 35.49 32.49 ± 0.03 (1.88) 37.26 30.03
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