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IDH glioma radiogenomics in the era of deep learning
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Genomic information has become increasingly vital to the eval-
uation of infiltrating gliomas, both as part of establishing an in-
tegrated diagnosis and for prognosis. Perhaps most important is
isocitrate dehydrogenase (IDH) mutation status, as this is a key
event that occurs early in gliomagenesis and a defining char
acteristic for classification with broad implications for patient
prognosis and potential targeted therapies. Investigators have
embarked on many different imaging strategies to determine
IDH-mutant status, including 2HG spectroscopy, pH-sensitive
chemical exchange saturation transfer (CEST), and diffusion
imaging.® The simplest strategy—which requires only visual
inspection of standard-of-care images—is recognition of the
T2-fluid attenuated inversion recovery mismatch sign. The mis-
match (T2 hyperintense signal and FLAIR hypointense signal
aside from a hyperintense peripheral rim) is reproducible and
highly specific for IDH-mutant astrocytoma with perfect or near-
perfect specificity and positive predictive value.? Nevertheless,
the limited sensitivity at 51% leaves much room for improvement.

Accelerating advances in machine learning continue to re-
shape our society, both overtly (eg, emerging self-driving cars)
and more subtly (eg, web searches, social media, and targeted
advertising).* There is great promise for machine learning to
transform the practice of medicine, particularly by potentially
increasing the speed and accuracy of diagnosis in radiologic
and pathologic images. Image classification, detection, and
segmentation have historically been difficult computer vision
tasks. Following the initial success of AlexNet on the ImageNet
image classification challenge in 20125 however, improve-
ments in deep convolutional neural networks (CNNs) have
been able to overcome previously very difficult challenges by
learning high-dimensional representations of imaging data.
These improvements in machine learning models and tech-
niques can be applied to elucidate the distinctive imaging
phenotypes of IDH-mutant and wild-type gliomas.

In this issue, Choi et al. created fully automatic segmentation
and classification models that incorporated raw imaging data
using a residual deep CNN as well as demographic informa-
tion and radiomic features extracted from automatic tumor

segmentation.® Examining n = 1166 patients with gliomas
(n = 353 IDH-mutant, n = 813 IDH wild-type) from Severance
Hospital (n = 856), Seoul National University Hospital (n = 107),
and The Cancer Imaging Archive (n = 203), their models were
applied to n = 727 internal development (n = 596 training and
n =131 tuning), and n =439 internal and external validation sets.
They examined T2-weighted, FLAIR, and contrast T1-weighted
2D images and extracted radiomic 3D shape (n = 13) and loci
(n = 6) features. In addition to performing well on their internal
dataset (area under the receiver operating characteristics curve
[AUROC] 0.96 for per patient diagnosis), their model performed
well on the two external test datasets (AUROC 0.94 and 0.86,
respectively). By selectively evaluating each part of their model
separately (also known as an “ablation study”), they demon-
strated that each component of their model contributed to the
overall model performance, with patient age contributing the
least. In addition, they performed saliency mapping on their
CNN—a way of visualizing which voxels were contributing the
most to the classification in the neural network—that confirmed
the model was weighing the enhancing and non-enhancing
tumor voxels and immediate surrounding parenchyma most
heavily in choosing a genotype, much like a human radiologist
would. In combination, these results are a promising advance
toward further generalizability and interpretability of machine
learning for prediction of infiltrating glioma IDH mutation status.

Although they can be very powerful, deep CNN models are vul-
nerable to overfitting to their given training dataset. Without testing
against additional external holdout datasets, the generalizability of
the models can remain dubious. Multicenter studies like the one
reported by Choi et al. in this issue® are essential to overcome these
limitations by testing against both internal and external data.Their
work builds upon prior articles in Neuro-Oncology. Earlier this year,
Bangalore Yogananda et al. reported their own fully automated
MRI-based deep learning technique to predict IDH mutation status.”
Examining n =214 patients with gliomas (n =94 IDH-mutant, n=120
IDH wild-type) from The Cancer Imaging Archive, they trained
T2-net (T2-weighted images only) and TS-net (T2-weighted +
FLAIR + contrast T1-weighted images) networks using 3D
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Dense-UNets for voxel-wise dual-class segmentation of the
whole tumor. The T2-net and the TS-net achieved comparable
mean cross-validation accuracy of 97%, specificity 97%-98%,
and sensitivity 97%-98%, indicating that deep learning of FLAIR
and contrast T1-weighted images did not improve perfor-
mance over using just theT2-weighted images. Last year, Choi
et al. applied an explainable recurrent neural network (RNN)
to dynamic susceptibility contrast (DSC) perfusion images
from n = 463 patients with gliomas (125 IDH-mutant, 338 IDH
wild-type), divided into n = 18 test, n = 395 training, and n = 50
validation cohorts.2 The (R)-2HG oncometabolite produced
by IDH-mutant gliomas leads to decreased hypoxia-inducible
factor 1-a, which is a potent driver of hypoxia-induced tumor
angiogenesis and provides the impetus for perfusion imaging.
The RNN is a deep learning model that can learn sequential
patterns or temporal dependencies in dynamic time-series
data and model the effects of tumor perfusion and permea-
bility. The bidirectional convolutional long short-term memory
(LSTM) network with attention mechanism RNN analysis of
raw DSC data obviated the traditional extended Tofts-based
DSC postprocessing that is dependent on arterial input func-
tion and leakage correction algorithms. They achieved 92.8%
accuracy, 93.1% specificity, and 92.6% sensitivity.

Novel, fully automated postprocessing analyses of
standard and advanced MR images are clearly rapidly ap-
proaching. These fully automated analyses are especially
appealing because they provide unbiased evaluations inde-
pendent of local operator training or experience. Thorough
understanding of the principles of deep and machine learning
is necessary, however, to best develop and then apply these
techniques to clinical practice while wary of potential pitfalls.
Although unlikely to replace tissue sampling in the near fu-
ture, the continued improvement in model performance and
consistency across diverse imaging datasets brings us closer
to a “virtual biopsy.” Perhaps in the not-too-distant future,
when tumor genomic analysis is not feasible or available,
these methods may offer prognostic considerations or addi-
tional therapeutic options for our patients without surgery.
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