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Sexually dimorphic radiogenomic models identify 
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Abstract
Background.  Recent epidemiological studies have suggested that sexual dimorphism influences treatment re-
sponse and prognostic outcome in glioblastoma (GBM). To this end, we sought to (i) identify distinct sex-specific 
radiomic phenotypes—from tumor subcompartments (peritumoral edema, enhancing tumor, and necrotic 
core) using pretreatment MRI scans—that are prognostic of overall survival (OS) in GBMs, and (ii) investigate 
radiogenomic associations of the MRI-based phenotypes with corresponding transcriptomic data, to identify the 
signaling pathways that drive sex-specific tumor biology and treatment response in GBM.
Methods.  In a retrospective setting, 313 GBM patients (male = 196, female = 117) were curated from multiple in-
stitutions for radiomic analysis, where 130 were used for training and independently validated on a cohort of 183 
patients. For the radiogenomic analysis, 147 GBM patients (male = 94, female = 53) were used, with 125 patients in 
training and 22 cases for independent validation.
Results.  Cox regression models of radiomic features from gadolinium T1-weighted MRI allowed for developing 
more precise prognostic models, when trained separately on male and female cohorts. Our radiogenomic analysis 
revealed higher expression of Laws energy features that capture spots and ripple-like patterns (representative of 
increased heterogeneity) from the enhancing tumor region, as well as aggressive biological processes of cell adhe-
sion and angiogenesis to be more enriched in the “high-risk” group of poor OS in the male population. In contrast, 
higher expressions of Laws energy features (which detect levels and edges) from the necrotic core with significant 
involvement of immune related signaling pathways was observed in the “low-risk” group of the female population.
Conclusions.  Sexually dimorphic radiogenomic models could help risk-stratify GBM patients for personalized 
treatment decisions.

Key Points

1. We developed “sex-controlled” prognostic MRI-based radiomic models for GBM patients.

2. � “Sex-specific” prognostic radiogenomic models provide cross-scale understanding of 
tumor biology differences.
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Patient sex is recognized as an important biological deter-
minant that affects the risk, drug response, and prognosis 
across multiple cancer types.1,2 For instance, in glioblastoma 
(GBM) patients, the mortality rate differs between males 
and females, with females exhibiting longer overall survival 
(OS) and a survival advantage over males.3 These sex differ-
ences in GBM are known to be driven by hormonal, meta-
bolic, and immune variances that result in poor prognosis.4,5 
Further investigation of GBM at a molecular level has eluci-
dated that the sexually dimorphic expression of genes also 
plays a significant role and influences treatment response 
and prognosis.1 In particular, the molecular subtypes of 
GBM, proneural, neural, and mesenchymal, have been 
found to be more prominent in males than females (2:1).6 
Male-specific GBM astrocytes are known to undergo greater 
tumorigenesis and higher proliferation rates compared with 
female GBM astrocytes, and this has been linked to poten-
tially unfavorable response to the conventional treatment in 
male GBM patients.6

In spite of the differences in treatment outcomes and 
responses, the standard of care for GBM (also known as 
the Stupp protocol) is consistent across both sexes, com-
prising maximal safe tumor resection, radiation therapy, 
and concomitant chemotherapy. Further, some of the cur-
rent preclinical GBM studies, which attempt to elucidate 
the mechanism of glioma oncogenesis toward developing 
drug therapies, also do not account for the underlying 
sexual dimorphism.7,8

Recent advances in computational processing power 
and high-throughput algorithmic development have led 
to the development of novel quantitative image analysis 
methods, such as radiomics, which leverages routine 
pretreatment imaging (ie, MRI scans) to interrogate the 
tumor and the seemingly normal parenchyma around the 
tumor boundaries to predict patient prognosis as well as 
to evaluate treatment response in oncology.9 Similarly, 
radiogenomic models allow for studying significant as-
sociations between radiomic signatures and biological 
pathways for improved understanding of tumor biology 
for disease characterization. However, to our knowledge, 
none of the existing radiogenomic-based approaches have 
attempted to account for sex differences in creating prog-
nostic models of OS in GBM tumors.10,11 There is hence an 
opportunity to create “sex-controlled” prognostic radiomic 
models using routinely acquired MRI scans that account 
for treatment variability across sexes and improve clin-
ical stratification and treatment management of GBM 

patients. Further, by leveraging radiogenomic associations 
of radiomic models with transcriptomic data, these “sex-
specific” prognostic models could be used to provide a 
detailed cross-scale molecular understanding of differ-
ences across males and females, with clinical implications 
in building comprehensive and patient-centric treatment 
plans in GBM patients.

In this work, we first aim to create sexually dimorphic 
radiomic risk score (RRS) models that are prognostic of 
OS in GBM patients using radiomic features from different 
GBM tumor subcompartments (necrosis, enhancing tumor, 
edema) on pretreatment MRI (gadolinium [Gd] T1-weighted 
[T1w], T2w, and T2w‒fluid attenuated inversion recovery 
[FLAIR]). Our first objective is based on the hypothesis 
that if there exist differences in overall prognosis across 
males and females, creating sex-specific radiomic models 
will allow for improved prediction of OS in GBM tumors. 
Secondly, we seek to obtain statistically significant associ-
ations of “sex-controlled” prognostic radiomic descriptors, 
with distinct signaling pathways that drive GBM tumor 
biology, treatment response, and prognosis. Establishing 
such associations may allow for providing a biological un-
derpinning of the radiomic features that drive the prog-
nosis of OS in GBM patients, and may ultimately impact 
clinical treatment decisions in GBM patients.

Materials and Methods

Dataset Description

Pretreatment, multiparametric (Gd-T1w, T2w, and T2w-
FLAIR) MRI protocols were retrospectively collected from 
4 cohorts. Of these datasets, 3 were curated from pub-
licly available sources—The Cancer Imaging Archive 
(TCIA),12 Ivy Glioblastoma Atlas Project (Ivy GAP),13 and the 
National Cancer Institute Clinical Proteomic Tumor Analysis 
Consortium (CPTAC) GBM Discovery Cohort.14 And lastly, 
the fourth dataset was curated from a Health Insurance 
Portability and Accountability Act (HIPAA) compliant and 
institution review board (IRB) approved participating insti-
tution—Cleveland Clinic Foundation (CCF), where the need 
for an informed consent from all patients was waived. 
Between December 1, 2011 and May 1, 2018, radiology 
image archives of CCF were consecutively searched to 
identify 200 histopathology-confirmed GBM patients.

Importance of the Study

Recent epidemiological studies suggest that sexual di-
morphism influences the prognostic outcome of GBM, 
and may have implications in designing targeted ther-
apies. Using a large multi-institutional cohort, in this 
work, we present the first attempt at developed “sex-
controlled” prognostic radiomic models using routinely 
acquired MRI scans that account for treatment variability 
across sexes, and thus may improve clinical stratification 

and treatment management of GBM patients. Further, 
by leveraging radiogenomic associations of radiomic 
models with transcriptomic data, we demonstrate that 
these “sex-specific” prognostic models may be used to 
provide a detailed cross-scale molecular understanding 
of transcriptomic differences across males and females, 
with clinical implications in building comprehensive and 
patient-centric treatment plans in GBM patients.
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These 541 collected GBM cases from these 3 sites were 
further triaged using inclusion criteria that involved the 
availability of (i) routine MRI sequences (Gd-T1w, T2w 
and/or T2w-FLAIR) for treatment-naive patients with di-
agnostic image quality, (ii) OS information for all individ-
uals, and (iii) gene expression data. A patient enrollment 
flowchart is shown in Figure 1. Further details regarding 
data curation, patient characteristics, and the MRI ac-
quisition for CCF site can be found in Supplementary 
Sections 1 and 2.

Thus, a total of 313 preoperative Gd-T1w MRI (1.5T/3T 
scans, multicenter) of GBM (196 males and 117 females) 
from TCIA (n = 130), Ivy GAP (n = 30), CPTAC (n = 22), and 
participating institution (n = 131), along with corresponding 
transcriptomic data (when available) were considered. 
Multisite data distribution is reported in Supplementary 
Table 1A. Complete information (when available) regarding 
age, OS, extent of resection, molecular status (MGMT, IDH) 
of individual patients across these 4 cohorts has been pro-
vided in Supplementary Sheet 1. The complete radiomic 
workflow can be found in Figure 2.

Further details about the preprocessing, tumor seg-
mentation, and features extraction can be found in 
Supplementary Sections 3 and 4, respectively.

Development of Sexually Dimorphic Radiomic 
Risk Scores

For our training cohort, we developed 3 RRS from every 
MRI protocol (Gd-T1w, T2w, T2w-FLAIR): (i) male-specific 

RRS (m-RRS) using the male cohort, (ii) female-specific 
RRS (f-RRS) using the female cohort, and (iii) an “all-
comers” RRS (all-RRS) consisting of both male and female 
cohorts. m-RRS and f-RRS were validated separately on 
the male and female test cohort respectively. For compar-
ison purposes, all-RRS was similarly validated individually 
across the male and female test cohort.

Obtained were 2850 radiomic features from each of the 
3 MRI protocols for every study, and due to the high di-
mensionality of our extracted features, feature selection 
was performed to avoid overfitting using univariate Cox re-
gression method (P-value < 0.05). Next, using the training 
cohort, least absolute shrinkage and selection operator 
(LASSO) Cox regression models were developed, to create 
two groups of “low-risk” and “high-risk” based on pa-
tient prognosis of OS risk. Features selected by the LASSO 
models were then summed in a linear combination after 
multiplying with their respective coefficients to construct 
sex-specific RRS:

α RRS =
n∑
i=1

βi τ

where α represents either male (m), female (f), or all-
comers RRS, n is the number of features selected by 
LASSO for a given MRI protocol, β is the weighted coeffi-
cient of the selected feature, and τ is the selected radiomic 
feature.

Finally, survival outcome of these 2 risk groups, 
within the training and test cohorts, was evaluated 
using Kaplan–Meier (KM) estimates and log-rank test 
(P < 0.05 was considered significant). The 3 RRS models 
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Fig. 1  Patient enrollment and distribution. Flowchart of patient enrollment, inclusion and exclusion criteria for the radiomic and radiogenomic 
analysis in our study.
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for: (i) male (n = 83) cohort, (ii) female cohort (n = 47) 
and (iii) all-comers cohort (n = 130) were individually 
created and validated on 3 independent test cohorts 
(m = 113, f = 70, all-comers = 183) using multivariate 
Cox regression. Further details regarding the survival 
analysis can be found in Supplementary Section 5.

Radiogenomic Analysis

To investigate the possible underlying biological pro-
cesses of the m-RRS and f-RRS, within the training 
and CPTAC test cohort, transformed and normalized 
gene expression data was curated for 147 patients 
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Fig. 2  Experimental design. 1. MRI protocol (Gd-T1w, T2w, and/or T2w-FLAIR) image acquisition and registration to SRI24 atlas. 2. Region of in-
terest (ROI) was identified and annotated. 3. Images were skull stripped, de-noised, and intensity-standardized. 4. 3D radiomic and shape features 
were extracted from every tumor sub-compartment. 5. Sex- specific radiomic risk scores were constructed using LASSO models. 6. Survival anal-
ysis using KM curves was investigated in sex-specific cohorts. 7. Radiogenomic analysis in sex-specific cohorts consisted of 3 main steps—A. 
Identification of sex-specific differentially expressing genes. B. Identification of biological processes implicated using Gene Ontology and imple-
mentation of single-sample Gene Set Enrichment Analysis (ssGSEA).
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(Supplementary Table 1A, male = 94 patients, female = 53 
patients). Further information regarding cross-plat-
form normalization of RNA expression data can be 
found in Supplementary Section 6. For each sex within 
the training cohort, the most differentially expressing 
genes (DEGs) of the RRS were selected using Wilcoxon 
rank sum test, and the P-values were adjusted using 
Benjamini‒Hochberg false discovery rate (FDR) estimate.

These DEGs were then used to identify distinct 
Gene Ontology (GO) based biological processes (FDR 
P-value < 0.05).15,16 GO highlights the most overrepresented 
genes and finds the systematic linkages between those 
genes and biological processes. To further gain insight 
into the GO based biological processes and their associ-
ation with the individual radiomic features from different 
subcompartments that were used to create the Gd-T1w 
RRS, we performed single-sample gene-set enrichment 
analysis (ssGSEA) on the training and CPTAC test cohort. 
For a predefined set of genes, ssGSEA captures the signif-
icantly enriched or depleted biological processes and cal-
culates an enrichment score for every patient in the cohort. 
These predefined set of genes for the GO based biological 

processes were acquired from the Molecular Signatures 
Database platform. Thus, ssGSEA score was calculated for 
147 GBM patients, and then a Spearman’s rank correlation 
coefficient (ρ) matrix was constructed to identify the contri-
bution of the individual Gd-T1w radiomic features (which 
were used to create the RRS, 8 features for Male-RRS and 
6 features for female-RRS) within the training cohort and 
confirm their association with the GO biological processes 
on the CPTAC test cohort.

Results

Sexually dimorphic radiomic risk scores are prognostic 
of OS on an independent test set compared with an “all-
comers” survival model.

Male-Specific Gd-T1w Radiomic Risk Score 

Obtained were 105 prognostic radiomic features from 
2850 Gd-T1w radiomic features after feature pruning 
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Fig. 3  Sex-specific radiomic models and survival analysis. Forest plot of beta coefficients of the 8 and 6 radiomic features selected in the 
radiomic risk score for male (A) and female (B) respectively from Gd-T1w MRI. (C) Kaplan–Meier curves for male and female combined “all-
comers” patients stratified into low-risk and high-risk groups according to the radiomic risk score in the training cohort and independent valida-
tion set respectively. (D) Kaplan–Meier curves for male and female patients stratified into low-risk and high-risk groups according to the radiomic 
risk score (male cutoff = 0.0322, female cutoff = 0.0221) in the sex-specific training cohort and independent validation set respectively. X-axis 
represents overall survival days, and Y-axis represents the estimated survival function.
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa231#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa231#supplementary-data
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from univariable Cox regression. For the Gd-T1w pro-
tocol, LASSO Cox regression model selected 8 radiomic 
features. Details of the features selected and their co-
efficients have been listed in Figure  3A. Complete 
male Gd-T1w radiomic risk score (m-RRS) formula-
tion can be found in Supplementary Section 7. Of the 8 
Gd-T1w radiomic features from m-RSS, 3 were from the 
peritumoral edema region, 2 from the enhancing region, 
and the remaining 3 were from the necrotic core of GBM. 
The low-risk and high-risk groups of males were strati-
fied based on the median m-RRS (cutoff = 0.0322). The 
differential expression of these 8 Gd-T1w radiomic fea-
tures between the low-risk and high-risk groups of m-
RRS has been illustrated in Supplementary Section 8 
using violin plots (Supplementary Figure 1). It was ob-
served that Laws energy features (capturing spots and 
ripples-like patterns) from the enhancing tumor and 
peritumoral edema region was elevated in the “high-
risk” group of poor OS in the male population when com-
pared with the low-risk group (p enhancing-tumor = 0.02 and 
p edema = 8.39 × 10−8 respectively). The m-RRS for every 
male patient in training and testing cohort is provided in 
Supplementary Sheet 1.

In Cox analysis, m-RRS built on the training set re-
sulted in statistically significant KM curves (n = 83, log-
rank test, P < 0.00001, hazard ratio [HR] = 2.91; Figure 3D, 
top row). m-RRS was also found to be a prognostic indi-
cator of OS in the independent test cohort (n = 113, log-
rank test, P-value = 0.0028, HR = 1.73; Figure 3D, top row). 
Interestingly, the m-RRS obtained from the training set 
was not found to be prognostic in a female-specific vali-
dation cohort (n = 70, log-rank test, P = 0.263, HR = 1.39). 
Further details can be found in Supplementary Section 10 
(Supplementary Figure 3, top row).

Details regarding the T2w and FLAIR radiomic based 
LASSO models can be found in Supplementary Section 8.

Female-Specific Gd-T1w Radiomic Risk Score

When creating a radiomic risk score for the female-specific 
training cohort across different MRI protocols (Gd-T1w, 
T2w, T2w-FLAIR), 287 prognostic radiomic features were 
obtained after feature pruning from univariable Cox regres-
sion. For the Gd-T1w protocol, LASSO model selected 6 
radiomic features. Details of the features selected and their 
coefficients have been listed in Figure 3B. The complete fe-
male Gd-T1w radiomic risk score (f-RRS) formulation can be 
found in Supplementary Section 7. Of the 6 Gd-T1w radiomic 
features, 1 was from the peritumoral edema region, 3 were 
selected from the enhancing region, and 2 were from the 
necrotic core of GBM. The low-risk and high-risk groups 
of females were stratified based on the median f-RRS 
(cutoff = 0.0221). Differential expression of these 6 Gd-T1w 
radiomic features has been illustrated in Supplementary 
Section 8 using violin plots (Supplementary Figure 2). An 
increased expression of Laws energy features (that detect 
levels and edges) from the necrotic core and peritumoral 
edema was found in the relatively better OS group of “low-
risk” female population when compared with the high-risk 
cohort (p necrosis = 0.01 and p edema = 0.0003 respectively). 

The f-RRS for every female patient within the training and 
testing cohort has been provided in Supplementary Sheet 1.

In Cox analysis, the Gd-T1w f-RRS resulted in statistically 
significant KM curves (n = 47, log-rank test, P < 0.0005, 
HR = 2.82; Figure 3D, bottom row). f-RRS was also found 
to be a prognostic indicator of OS in the independent test 
cohort (n = 70, log-rank test, P-value = 0.046, HR = 0.06; 
Figure  3D, bottom row). Interestingly, f-RRS obtained 
from the training set was not found to be prognostic in 
a male-specific validation cohort (n = 113, log-rank test, 
P-value = 0.75, HR = 1.06). These KM curves can be found 
in Supplementary Section 10 (Supplementary Figure 3, 
bottom row).

Additional details regarding the T2w and FLAIR radiomic 
based LASSO models can be found in Supplementary 
Section 8. Further, details regarding the development and 
validation of all-comers Gd-T1w radiomic risk score (all-
RRS) can be found in Supplementary Section 11. The added 
clinical utility of sexually dimorphic RRS has also been 
demonstrated in Supplementary Section 12.

In Table  1 the C-index, HR, and P-value for age, mo-
lecular features (MGMT status, IDH status), extent of re-
section, and combined radiomic features for predicting 
OS both for the male and female cohort have also 
been listed.

Gene Ontology Identifies Distinct Biological 
Processes Associated with Sexually Dimorphic 
Radiomic Risk Scores

Biological processes associated with m-RRS

Differentially expressed were 495 genes (DEGs, P < 0.05, 
FDR = 5%) between the “high-risk” and “low-risk” 
groups of m-RRS. Figure  4A shows the supervised hi-
erarchical clustering of these DEGs. Complete list of the 
495 DEGs can be found in Supplementary Sheet 2.

Radiogenomic analysis of the training cohort using 
for GO analysis revealed that the m-RRS was associ-
ated with 41 biological processes with enrichment fold 
greater than 2, as illustrated in Figure  4B. Implicated 
were 31 biological processes in cell adhesion, angiogen-
esis, cell proliferation, differentiation, and apoptosis. 
Figure 4C shows a few selected GO biological processes, 
but the complete list of all the biological processes is 
provided in Supplementary Sheet 3. A  directed acyclic 
graph investigating the interrelationships between these 
31 biological processes is provided in Supplementary 
Figure 5.

Biological processes associated with f-RRS

We identified 130 DEGs (P < 0.05, FDR = 5%) that were dif-
ferentially expressed between the “high-risk” and “low-
risk” groups of the f-RRS. Figure 5A shows the supervised 
hierarchical clustering of these DEGs. Complete list of 
these 130 DEGs can be found in Supplementary Sheet 2.

Radiogenomic analysis of the DEGs obtained from the 
training cohort using GO revealed the association of f-RRS 
with 142 biological processes with enrichment fold greater 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa231#supplementary-data
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http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa231#supplementary-data
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than 2, as illustrated in Figure 5B. Figure 5C shows a few 
selected GO biological processes, but the complete list of 
all the biological processes is provided in Supplementary 
Sheet 4. It was observed that a total of 87 biological 

processes were implicated in immune response, angiogen-
esis, and apoptosis. A directed acyclic graph investigating 
the interrelationships between these 87 biological pro-
cesses is provided in Supplementary Figure 6.
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Fig. 4  Radiogenomic analysis of male GBM patients. (A) Hierarchical clustering of the differentially expressing genes (DEG, n = 495, P < 0.05, 
false discovery rate = 5%) for sex-specific radiomic risk score within the training cohort. (B) 2D scatter plot to illustrates the number of genes 
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Fig. 5  Radiogenomic analysis of female GBM patients. (A) Hierarchical clustering of the differentially expressing genes (DEG, n = 130, P < 0.05, 
false discovery rate = 5%) for sex-specific radiomic risk score within the training cohort. (B) 2-D scatter plot to illustrates the number of genes 
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illustrated.  
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Single-Sample Gene Set Enrichment Analysis 
Provides Insights into Relationships of Sexually 
Dimorphic Biological Processes with Tumor 
Subcompartment-Based Radiomic Features

ssGSEA of biological pathways implicated in male GBM 
patients

Predefined gene set annotations for 31 GO based biolog-
ical processes (associated with cell adhesion, angiogen-
esis, cell proliferation, differentiation and apoptosis) were 
available from Molecular Signatures Database (MSigDB), 
and thus were used to calculate the ssGSEA scores for the 
training and CPTAC test cohort. Supplementary Sheet 5 
has the complete list of predefined set of genes that were 
used to describe these 31 GO based biological processes. 
The associations of these biological processes with indi-
vidual 8 radiomic features, obtained from different tumor 
subcompartments and used to create the m-RRS, were in-
vestigated using ssGSEA. As observed in the correlation 
matrix of Figure  4D, statistically significant associations 
(P < 0.05) were identified on the training cohort (as shown 
with colored boxed) and verified on the CPTAC test cohort 
(as shown with “X” symbol). Positive correlations were 
found between Laws energy feature (ie, L5R5E5) of the 
peritumoral edematous region of the GBM and biological 
processes of cell adhesion and angiogenesis. Additionally, 
Gabor wavelet texture features from the necrotic core were 
found to be positively correlated with cell adhesion, angio-
genesis, and cell migration.

ssGSEA of biological pathways implicated in female 
GBM patients

Similar to the male cohort analysis, predefined gene 
set annotations for 87 GO based biological processes 
(associated with immune response, angiogenesis, 
and apoptosis) were used to calculate ssGSEA scores 
for every female patient in the GBM training cohort. 
Supplementary Sheet 6 provides the complete list of 
predefined set of genes that were used to describe these 
biological processes. As may be observed in correlation 
matrix of Figure 5D, statistically significant (P < 0.05) and 
positive correlations were seen between Laws energy 
feature (L5E5L5) of the necrotic core with biological pro-
cesses of immune response. Additionally, Haralick fea-
ture (inverse difference moment) from the peritumoral 
edema region was found to be positively correlated with 
immune response.

Sexually Dimorphic Drug-Gene Interactions: 
A Preliminary Analysis

The DEGs across the two groups of sex-specific “low-
risk” and “high-risk” based on prognosis of OS were 
also used to evaluate the drug-gene interactions toward 
obtaining an understanding of their clinical implications 
in personalizing drug-therapy decisions in GBM patients. 
This preliminary analysis and the implications of these 
associated drugs for GBM treatment are briefly discussed 
in Supplementary Section 13.

Discussion
It is known that females tend to have better outcomes 
than males for GBM tumors.3 Existing clinical trials and 
preclinical studies may have been limited in their clin-
ical translation on account of their “all-comers” patient-
enrollment approach, instead of incorporating sex as a 
variable in patient selection for drug trials. Hence, de-
veloping “sex-specific” prognostic models, could allow 
for improved patient stratification in clinical trials as well 
as designing patient-centric treatment plans in GBM 
patients.

In this work, we presented the first approach at devel-
oping and independently evaluating sexually dimorphic 
RRS models that are prognostic of OS in primary GBM, on 
pretreatment Gd-T1w MRI. Further, to establish the mo-
lecular basis of these radiomic based imaging features 
and identify distinct signaling pathways that drive the 
underlying sexually dimorphic nature of tumor biology, 
treatment response and prognosis in GBM population, 
we implemented GO and ssGSEA on the corresponding 
transcriptomic data. Within the male cohort, a prognostic 
m-RRS, consisting of 8 radiomic features (5 Laws energy, 
2 Gabor wavelets, and 1 shape based) from the 3 tumor 
subcompartments on Gd-T1w MRI, was found to be sta-
tistically significantly different across the “low risk” and 
“high risk” groups, both on training (P < 0.00001, n = 83) 
as well as the independent test set (P = 0.0028, n = 113). 
Laws energy features that capture ripples, and spots 
like pattern in an image have been previously shown to 
be prognostic of OS in multiple cancer types including 
GBMs.17,18 Along similar lines, we found Laws energy 
features from the enhancing tumor and peritumoral 
edema have an elevated expression in the “high-risk” 
of poor OS in GBM compared with the low-risk male pa-
tients. These textural features might potentially be cap-
turing microvascular hyperplasia and proliferation that 
leads to local heterogeneity within the tumor. The extent 
of peritumoral edema has also been shown to be prog-
nostic of OS in GBM (HR = 2.27, P-value = 0.015).19 We 
observed that the perimeter of edema was prognostic of 
OS in male GBM patients. More recently, Tixier et al have 
reported that GBM patients with large negative skew-
ness of Gabor wavelets had a significantly longer median 
OS of 22.7 months (P = 0.004).11 In consensus, we found 
that skewness of a Gabor feature (wavelength, λ = 11.31) 
from the necrotic core was prognostic of OS in the male-
specific GBM cohort. At this scale, Gabor wavelets might 
possibly be capturing the homogeneous appearance of 
hypercellular foci and dense regions of pseudopalisading 
cells around the necrotic core.20

Next, using the corresponding gene expression data 
available for the male-specific training set (n = 83), 
we identified a total of 495 DEGs across the “low risk” 
and “high risk” groups obtained from the m-RRS. 
Prognostic significance of some of these genes has 
been demonstrated within various cancers. For ex-
ample, hypoxia-inducible factor 1 subunit α (HIF1A) is 
a known to produce vascular endothelial growth factor 
(VEGF), which in turn triggers angiogenesis.21 We found 
that HIF1A (with an adjusted P-value of 0.05) had a 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa231#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa231#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa231#supplementary-data
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higher expression in the high-risk m-RRS group. When 
establishing radiogenomic associations of male-specific 
radiomic MRI features using GO analysis, consistently 
across the training and CPTAC test cohort, we found 
that cell adhesion and angiogenesis signaling pathways 
played an important role in tumor biology and prognosis 
of male GBM patients. These pathways are known to 
be associated with increased treatment resistance and 
poor prognosis. For example, increased angiogenesis 
is known to deteriorate patient outcome by amplifying 
tumor vasculature and, thus failing to efficiently deliver 
chemotherapeutic agents.22 Using ssGSEA we inter-
estingly found that, higher expression of Laws energy 
(L5R5E5) from the peritumoral edema was positively 
correlated with biological pathways implicated in in-
creased angiogenesis (ρ avg[TCGA+CPTAC GBM] = 0.28) and cell 
adhesion (ρ avg[TCGA+CPTAC GBM] = 0.21). In addition, higher 
expression of Gabor wavelet from the necrotic core were 
positively correlated with cell adhesion (ρ avg[TCGA+CPTAC 

GBM] = 0.58) and cell migration (ρ avg[TCGA+CPTAC GBM] = 0.59).
In a similar manner, f-RRS, developed on Gd-T1W 

MRI, was found to be statistically significantly different 
across the “low risk” and “high risk” groups, both on 
training (P < 0.0005, n = 47) as well as the hold-out test 
set (P = 0.046, n = 70). Colen et  al have previously dem-
onstrated that female GBM patients, unlike male patients, 
with high volumes of necrosis had significantly shorter 
survival (6.5 vs 14.5  months, P = 0.01).23 We found that 
Laws energy features (E5L5L5, L5E5L5) from the necrotic 
core are prognostic of OS in females, with low-risk pa-
tients exhibiting an increased expression compared with 
the high-risk cohort. Further, it is known that the heteroge-
neous regions on MR imaging manifest as local variation in 
image intensity, and results in lower Haralick IDM (inverse 
difference moment) values, whereas high expression of 
IDM suggests a more homogeneous appearance on MRI.19 
We found that the peritumoral edema in low-risk female 
GBM patients exhibited higher IDM radiomic patterns, sug-
gesting that the low- risk f-RRS cohort has a homogeneous 
tumor appearance compared with the high-risk group. 
This finding is consistent with previous findings,19,24,25 sug-
gesting that heterogeneous radiomic textural changes of 
edema are potentially capturing the proliferative patterns 
of infiltrating tumor cells in the high-risk cohort of patients, 
who have poor OS.

Using the GO analysis, we found that multiple path-
ways of immune response were associated with the 
tumor biology and prognosis of female GBM patients. 
Immunological sex differences are known to predomi-
nantly originate from the human X chromosome, that con-
tains genes associated with multiple immune functions.26 
Multiple in vitro studies have demonstrated that the female 
immune system is more responsive to a variety of antigens, 
mitogens and other immunologic assays compared with 
males.27 To this end, the reduced incidence of certain tu-
mors in females can potentially be attributed to their pro-
tective humoral and cell-mediated immune responses.28

On a cellular level, GBM tumor microenvironment is 
known to be characterized by production of cytokines, ac-
tivation of regulatory T cells, presence of tumor-associated 

macrophages and tissue hypoxia.29 Interleukin-6 (IL-6), a 
pro-inflammatory cytokine, plays an important role in sup-
pressing this immune microenvironment, leading to in-
creased cell proliferation.30 In our radiogenomic analysis, 
we found that IL-6 was one of the DEGs that was statistically 
significantly different across the f-RRS groups (adjusted 
P-value = 0.01). Interestingly, inhibition of IL-6 signaling 
in preclinical GBM models has been previously shown to 
be associated with reduced tumor growth, and increased 
OS.8 In an attempt to further understand this dimorphism 
of immune responses in females, analysis using ssGSEA 
revealed that the laws energy (L5E5L5) based imaging fea-
ture from the necrotic core was positively correlated with 
a biological processes of immune response (ρ avg[TCGA+CPTAC 

GBM] = 0.76). On an imaging scale, these results suggest that 
“high-risk” f-RRS female patients, exhibiting lower expres-
sion of Laws energy from the necrotic core, are associated 
with low or impaired activity of the immune microenviron-
ment, which potentially leads to shorter OS.

Beyond prognosis, differences in sex are also known 
to affect the degree of therapeutic response and drug in-
duced toxicity in GBMs.5 For instance, Yang et  al have 
demonstrated that the Stupp protocol is more effective for 
females compared with males with GBM.4 Other groups 
have reported that females are prone to higher chemo-
therapy based toxicity.4,5 Thus, sex-specific models could 
allow for creating more personalized treatment plans in 
GBM patients to target specific signaling pathways, in-
stead of a “one-size-fits-all” Stupp protocol.

This retrospective study did have some limitations. The 
radiogenomic analysis was only possible on 2 of the 4 co-
horts (due to unavailability of the corresponding gene ex-
pression data in the Cleveland Clinic cohort, and use of 
different gene expression pre-processing pipeline of Ivy 
GAP cohort). Thus, additional work is required to develop a 
radiogenomic approach that has been validated on a large 
co-localized, multiple site MRI and transcriptomic cohorts. 
We envision that obtaining co-localized datasets across im-
aging and omics data in future could allow for development 
of precise sex-specific radiogenomic prognostic and predic-
tive markers that are biologically motivated and validated. 
Additionally, while the study consisted of 313 GBM studies, 
the stratification based on sex reduced the experimental 
design to 196 male GBM patients and 117 female GBM pa-
tients. This sex-stratification also resulted in only 53 female 
cases that were available for the radiogenomic analysis 
using GO and ssGSEA. Further, while our radiogenomic 
correlations were controlled by correcting the accepted 
criteria for significance (by using the FDR),31 it may be 
important to establish the casual inference of the identi-
fied radiogenomic relationships using preclinical or large 
multi-institutional prospective analysis. Our future work 
will focus on expanding the sex-controlled radiogenomic 
analysis on large prospectively collected MRI studies with 
corresponding co-localized gene expression data, toward 
optimizing treatment decisions in GBM tumors.
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online.
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Data Availability

Apart from the details below, all the other data supporting the 
findings of this study are available within the article and/or its 
associated supplementary information files. Please reach out to 
the corresponding author for further information, if required.

Images
1. � The TCGA-GBM cases of 130 patients can be downloaded 

from here:

   • � MRI scans—https://wiki.cancerimagingarchive.net/display/ 
Public/TCGA-GBM

   • � Corresponding annotations—https://wiki.cancerimaging
archive.net/display/DOI/Segmentation+Labels+and+Radiomic+
Features+for+the+Pre-operative+Scans+of+the+TCGA-GBM+ 
collection

2. � The CPTAC-GBM cases were downloaded from here: https://
wiki.cancerimagingarchive.net/display/Public/CPTAC-GBM

3. � The Ivy Gap cases of 30 patients can be downloaded 
from here: https://wiki.cancerimagingarchive.net/pages/
viewpage.action?pageId=22515597

4. � Since the MRI scans from Cleveland Clinic (CCF) are pro-
tected through institutional compliance, the clinical repos-
itory of 130 patient scans from CCF can only be shared per 
specific institutional review board (IRB) requirements. Upon 
reasonable request, a data sharing agreement can be initi-
ated between the interested parties and the clinical insti-
tution following institution-specific guidelines; Interested 
groups can contact the corresponding author for facilitating 
request regarding access to CCF MRI scans.

5. � Preprocessing of the MR scans was performed using the 
CapTK software, which is available for download here—
https://www.med.upenn.edu/cbica/captk/

Genomics Data
1. � TCGA GBM expression data (Level3—Affymetrix HT HG U133A) 

and CPTAC GBM Discovery cohort read counts were down-
loaded using TCGABiolinks package on R. (https://bioconductor.
org/packages/release/bioc/html/TCGAbiolinks.html)

2. � These predefined set of genes for the GO based biological 
processes can be acquired from the Molecular Signatures 
Database platform, using the following link: http://software.
broadinstitute.org/gsea/msigdb/genesets.jsp?collection=BP

Code
1. � The feature extraction pipeline MATLAB-based code has been 

publicly made available at https://github.com/ccipd/BrIC_Lab
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