Table 1.
Comparison of sensitivity and specificity for different methods on the COVID-19 recognition task on image basis. The best performance is boldfaced, and “sd” denotes standard deviation
Method | UP-ResNet18 | P-ResNet18 | UP-ResNet50 | P-ResNet50 | |
---|---|---|---|---|---|
Sensitivity, mean (sd) (%) | COVID-19 | 90.23 (9.62) | 97.11 (1.05) | 90.87 (8.00) | 96.72 (11.59) |
Other pneumonias | 94.69 (5.65) | 95.87 (4.95) | 95.24 (4.05) | 95.46 (4.06) | |
Normal | 93.3 (4.43) | 93.83 (4.60) | 92.81 (3.48) | 96.65 (2.66) | |
Specificity, mean (sd) (%) | COVID-19 | 96.34 (3.55) | 97.50 (2.15) | 97.86 (1.40) | 98.53 (2.04) |
Other pneumonias | 96.82 (1.80) | 96.64 (2.60) | 94.97 (2.19) | 97.44 (2.00) | |
Normal | 96.00 (5.61) | 99.04 (0.75) | 96.64 (4.08) | 98.49 (0.79) |
Sensitivity: . Specificity:
N the number of images, x the category, tp true positive, fp false positive, tn true negative, fn false negative