
The completed macronuclear genome of a model ciliate 
Tetrahymena thermophila and its application in genome 
scrambling and copy number analyses

Yalan Sheng1,2, Lili Duan1,2, Ting Cheng1,2, Yu Qiao1,2, Naomi A. Stover3, Shan Gao1,2,*

1Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China

2Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine 
Science and Technology, Qingdao 266003, China

3Department of Biology, Bradley University, Peoria, Illinois 61625, USA

Abstract

The ciliate Tetrahymena thermophila has been a powerful model system for molecular and cellular 

biology. However, some investigations have been limited due to the incomplete closure and 

sequencing of the macronuclear genome assembly, which for many years has been stalled at 1,158 

scaffolds, with large sections of unknown sequences (available in Tetrahymena Genome Database, 

TGD, http://ciliate.org/). Here we completed the first chromosome-level Tetrahymena 
macronuclear genome assembly, with approximately 300× long Single Molecule, Real-Time reads 

of the wild-type SB210 cells—the reference strain for the initial macronuclear genome sequencing 

project. All 181 chromosomes were capped with two telomeres and gaps were entirely closed. The 

completed genome shows significant improvements over the current assembly (TGD 2014) in both 

chromosome structure and sequence integrity. The majority of previously identified gene models 

shown in TGD were retained, with the addition of 36 new genes and 883 genes with modified gene 

models. The new genome and annotation were incorporated into TGD. This new genome allows 

for pursuit in some underexplored areas that were far more challenging previously; two of them, 

genome scrambling and chromosomal copy number, were investigated in this study. We expect 

that the completed macronuclear genome will facilitate many studies in Tetrahymena biology, as 

well as multiple lines of research in other eukaryotes.
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INTRODUCTION

As a unicellular eukaryote model organism, Tetrahymena thermophila is the most well-

studied of all protozoa and has contributed to fundamental biological discoveries in multiple 

aspects (Cervantes et al., 2013; Feng et al., 2017; Gao et al., 2013; Mochizuki et al., 2002; 

Mochizuki and Gorovsky, 2004a, 2005; Orias et al., 2017; Wang et al., 2017b; Wang et al., 

2019b; Xiong et al., 2016; Xu et al., 2019; Zhao et al., 2019). Like other ciliates, 

Tetrahymena possess two types of nuclei in a single cell, distinct in their appearance and 

function (Cheng et al., 2019; Collins and Gorovsky, 2005; Karrer, 2012; Wang et al., 2017a; 

Yan et al., 2019). The smaller, diploid, germline-like micronucleus (MIC) directly 

contributes DNA to the sexual progeny (Ray Jr, 1956; Karrer, 1999) and consists of five 

pairs of chromosomes (Karrer, 2012). The larger, polyploid, soma-like macronucleus (MAC) 

supports all the vegetative functions of the cell and contains 181 chromosomes (Coyne et al., 

2012). This unique nuclear dimorphism has fascinated researchers in many fields of biology.

The macronuclear genome of Tetrahymena was among the first few to be sequenced in the 

dawn of the genomic era. Its first version was reported in 2006 (Eisen et al., 2006), with 

reads produced by first-generation shotgun sequencing. Since then, the assembly was 

continuously improved in sequence accuracy, genome assembly, and gene model annotation, 

with efforts from the whole Tetrahymena research community (Coyne et al., 2008; Hamilton 

et al., 2006; Stover et al., 2006; Xiong et al., 2012). The current community-annotated 

assembly (TGD 2014) contains a 103.01 Mb genome with highly accurate sequences and 

gene model annotation, providing invaluable resources for the Tetrahymena community and 

other fields as well. However, as the TGD genome was assembled from reads with limited 

length (~2,000 bp), its 181 chromosomes are split into 1,158 scaffolds (129 with two 

telomeres, collectively ~58.9 Mb; 29 with only one telomere), with 0.06% unknown 

sequences (Ns) (Fraser et al., 2002). An updated genome assembly with complete 

chromosomes is demanded for future research.

For example, the occurrence of genome-wide DNA scrambling/unscrambling in 

Tetrahymena has not been systematically tested. This phenomenon is exaggerated in some 

ciliates (Chen et al., 2019; Zhang et al., 2018), such as Oxytricha, wherein massive DNA 

segments are reshuffled to functional genes in the MAC from their interrupted and 

scrambled germline precursors (Chen et al., 2014; Fang et al., 2012; Nowacki et al., 2008), 

after the fragmentation of MIC chromosomes (Klobutcher et al., 1988; Prescott, 2000) and 

the removal of internally eliminated sequences (IESs) (Prescott, 1994). In Tetrahymena, 

however, the remaining macronuclear-destined sequences (MDSs) were generally thought to 

be linear between MAC and MIC (Mochizuki and Gorovsky, 2004b; Ruehle et al., 2016; 

Stover et al., 2012). It was proposed that shuffling of discontinuous MIC segments also 

occurs during the new MAC development (Hamilton et al., 2016), but the parallel 

comparison between MAC and MIC was challenging, given that MAC chromosomes are not 

complete and a considerable part of the current MAC genome assembly is comprised of 

interscaffold gaps.

Chromosomal copy number is another area yet to be fully explored. The T. thermophila 
MAC genome consists of 181 chromosomes, which was identified by physical and genetic 
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mapping (Coyne et al., 2012). Of these, the 21 kb ribosomal DNA (rDNA) minichromosome 

is an inverted repeat with ~9,000 copies (Gall, 1974; Mohammad et al., 2007; Yao and Yao, 

1989). The remaining non-rDNA chromosomes were inferred to be maintained at an average 

of ~45 copies per cell, based on phenotype assortment rates from a handful of loci (Doerder 

et al., 1992). The uniformity was validated for limited chromosomes in the initial MAC 

assembly (Eisen et al., 2006), but its generality for all chromosomes remain inconclusive. 

Less is known about how or do Tetrahymena chromosomes maintain a stable copy number 

(~45C), as the MAC divides amitotically and its chromosomes are distributed unequally 

during each cell division (Orias and Flacks, 1975). The complete sequence of all 181 

chromosomes is a prerequisite to decipher their copy number control mechanism.

The long-read sequencing technology such as Single Molecule, Real-Time (SMRT) 

sequencing permitted span of repeats and missing bases, thereby closing gaps and 

completing chromosomes. Indeed, SMRT was employed in a hypotrich ciliate Oxytricha 
trifallax with highly fragmented genome, showing the ability to capture tiny 

nanochromosomes in single reads (Lindblad et al., 2019). It was also used for the high-

quality and near-complete macronuclear genome assembly of another ciliate Paramecium 
bursaria (He et al., 2019).

We here report the complete closure of the MAC genome of T. thermophila. Using SMRT 

sequencing data with an ultra-high depth (~300×), we completed the first chromosome-level 

MAC genome assembly of T. thermophila and updated the gene model annotation. With the 

help of the completed genome, we tested two underexplored topics in Tetrahymena, genome 

scrambling and chromosomal copy number. We conclude that the completed MAC genome 

will greatly facilitate many investigations of Tetrahymena biology.

RESULTS AND DISCUSSION

Completion of the Tetrahymena thermophila macronuclear genome

The whole-genome shotgun sequence of the T. thermophila MAC genome presents a unique 

challenge, with more than 1,000 scaffolds and about 650 intrascaffold gaps (average length 

of 271 bp) (Eisen et al., 2006). As scaffolds could not be assembled directly into 

superscaffolds due to a large amount of intra- and inter-scaffold gaps (Eisen et al., 2006; 

Hamilton et al., 2016), we employed SMRT sequencing in this study to generate long reads, 

ideal for resolving long tandem repeats and closing gaps (English et al., 2012; Rasko et al., 

2011; Roberts et al., 2013). In total, SMRT reads (average sub-read length of 11.2 kb) with 

an ultra-high sequencing depth (300×) of T. thermophila wild-type (WT) SB210 strain were 

generated and assembled into a draft assembly composed of 346 contigs using Canu (Koren 

et al., 2017). After filtering erroneous contigs (repetitive contigs and contigs with low 

mapped reads or with no telomeres), 180 contigs were retained. Of these, 165 contigs were 

capped with telomeric repeats at both ends, and 15 contigs were telomere-capped at one end. 

The gap closures of 10 uncompleted contigs were finished by BLAST to the TGD 2014 

assembly, and the remaining five contigs were completed by polymerase chain reaction 

(PCR) amplification and sequencing (Figure S1A in Supporting Information). The 21 kb 

rDNA minichromosome was separately assembled using SMRT link v5.10 (Pacific 

Biosciences). 10 Gb Illumina reads were used to error correct the PacBio assembly using 

Sheng et al. Page 3

Sci China Life Sci. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pilon (Walker et al., 2014). In total, we obtained a 103.3 Mb T. thermophila MAC genome 

assembly consisting of 181 complete chromosomes (Figure 1), named from 1 to 181 by their 

order along the 5 MIC chromosomes (chr181 for rDNA minichromosome) (Hamilton et al., 

2016).

The genome size and GC content of the completed genome are nearly identical to the TGD 

2014 assembly (Table 1). In the TGD 2014 assembly, a large portion (54.5%) of scaffolds is 

shorter than 5 kb (Figure 2A). In the updated assembly, the N50 length was increased about 

two-fold, from 521 to 930 kb, with the longest being 3.3 Mb (Table 1, Figure 2A). Six 

hundred and twenty intrascaffold gaps, representing 0.06% sequences of the genome, were 

entirely closed. In particular, 432 gaps were located in genic regions, closure of which 

resulted in an amino acid sequence change for 266 corresponding genes.

To estimate the sequence accuracy and integrity, the completed genome was compared with 

the TGD 2014 assembly (Stover et al., 2012). The total alignment percentage (alignment 

length in the completed genome/length of TGD scaffolds) is 100.55%, because the 

completed genome increases slightly in size after closing gaps. The alignment percentage of 

each TGD scaffold was shown in Figure 2B. Of these, most long scaffolds, including 129 

completed chromosomes and 28 one telomere capped scaffolds in TGD 2014, showed high 

concordance to corresponding chromosomes in the completed genome, presented as dots 

with alignment percentage approaching 100%. Dots with alignment percentage under 100% 

indicated that these scaffolds were merged in the completed genome, while above 100% 

indicated that these scaffolds belonged to part of repetitive sequences in the completed 

genome. The only exception (red dot, left bottom in Figure 2B) was a misassembled scaffold 

(scf_8255776, 251 bp), completely made up of telomeric repeats.

To remove MIC DNA contamination in the MAC genome assembly, we searched for the 

presence of all 7,544 IES sequences (Hamilton et al., 2016) in the completed genome using 

BLASTN (E-value<1.0×10−5, identity>95%, alignment length>90%). Only one effective hit 

(IES-05521-r13) was detected, which however was incorrectly predicted and should be 

reassigned as an MDS (Figure S1B, Table S1 in Supporting Information).

Together, these results demonstrated that the sequences in the completed genome had high 

accuracy and integrity.

Optimized gene model annotation of the completed MAC genome

Considering that the TGD gene model annotation has been constantly improved and widely 

accepted, gene and CDS sequences from TGD were used to make hintsfile for gene 

prediction conducted by Augustus (Stanke et al., 2006). In total, 26,258 protein-coding 

genes were predicted. 25,339 of them matched the TGD models completely, so their 

“TTHERM” identifier number and functional annotation were inherited. One hundred and 

sixty-seven genes were merged from 393 genes in TGD with numerically adjacent GenBank 

IDs; they were split in TGD due to unconnected scaffolds and unclosed gaps. Another 716 

adjacent genes were split from TGD genes, due to newly predicted stop codons after the 

completion of the genome. Intriguingly, we found 36 new genes that are not present in TGD, 
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coding for proteins homologous to extracellular matrix protein FRAS1, proteasome subunit 

beta 2, and so on.

A BLASTN search was performed between ours and the TGD 2014 gene models (Table S2 

in Supporting Information). Six hundred and seven older gene models had no significant 

match (E>1.0×e−5) to the updated gene sequences. Most of these genes were too short to 

code for functional proteins (74%<1,000 bp, median length =1,072 bp) (Figure 2C), and 34 

of them contained unknown sequences (N≥10). The comparison was also performed using 

BLASTP for peptides (Table S3 in Supporting Information). Six hundred and twenty-three 

previous TGD proteins had no significant match (E>1.0×e−5) with the updated protein sets, 

and their median length was 162 amino acids (Figure 2D), including 92 with gaps and 471 

“hypothetical proteins”. These results collectively confirmed the accuracy of the updated 

gene model annotation.

Scrambled regions detected in the completed MAC genome

To detect potential DNA scrambling in the MAC, MDSs identified by MIDAS (http://

knot.math.usf.edu/midas/index.html) were aligned to the MIC genome. 2,711 scrambled 

regions were detected and categorized into three types: insertion (1,622), permutation 

(1,033), and inversion (56) (Figure 3A). Four hundred and seventy-four of the 1,622 

insertions could possibly be re-categorized as a variant of permutation, considering that the 

MIC genome sequence used in this study has not been fully completed, and the five 

micronuclear chromosomes remain split into numerous contigs.

In particular, we confirmed a typical scrambled region by PCR amplification and 

sequencing, in which three MDSs from two MIC contigs were reversed (inversion), inserted 

(insertion) and reordered (permutation) in the MAC (Figure 3B). PCR testing validated three 

other scrambled regions, two for permutation and one for inversion (Figure S1C in 

Supporting Information). Descrambling of these three regions is required to assemble 

functional genes, coding for two transmembrane proteins (TTHERM_00229940 and 

TTHERM_000229949) and one kinase (TTHERM_00171610) respectively, suggesting that 

scrambling is a biologically relevant event in Tetrahymena. A better assembled MIC genome 

will allow us to further explore the scale, function and molecular mechanism of scrambling 

in Tetrahymena.

Analysis of the chromosomal copy number

The number of reads mapped to the reference chromosome should have a direct 

proportionality with chromosomal length and copy number, given that whole-genome 

sequencing (WGS) generates reads with highly uniform coverage of the genome (Illumina 

sequencing official document) (Xu et al., 2017). Therefore, we used the ratio between 

unique mapped reads and chromosomal length to reflect the relative copy number (R) of 

chromosomes (R=unique mapped reads/chromosomal length). In this study, WT (SB210 and 

CU427) and replication-deficient (ΔTXR1) cells were sequenced and analyzed (Wang et al., 

2019a).

The 180 non-rDNA chromosomes were maintained at the same level in all tested strains, 

represented as dots along the same trend line (Figure 4A and B). Moreover, strain 
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background (SB210 vs. CU427) had no influence on copy number in both rDNA 

minichromosome and non-rDNA chromosomes, showed as trend lines with similar slopes 

(Figure 4A and C). The ratio of rDNA minichromosome to non-rDNA chromosomes 

(1,200/9≈130) was slightly different from expected (9,000/45=200), possibly because the 

repetitive sequences in the palindromic rDNA reduced the number of uniquely mapped 

reads.

In the replication-deficient strain ΔTXR1 (Gao et al., 2013; Zhao et al., 2017), the copy 

number of non-rDNA chromosomes is identical to that of WT (Figure 4B). However, the 

copy number of the rDNA minichromosome increased significantly (Figure 4D). This was 

verified by quantitative polymerase chain reaction (qPCR) showing that the amount of rDNA 

minichromosome was much higher in ΔTXR1 cells (Figure S2 in Supporting Information), 

consistent with a previous finding revealed by plug gel electrophoresis (Gao et al., 2013). 

These results suggested that the copy number of rDNA minichromosome and non-rDNA 

chromosomes was regulated by different mechanisms (Larson et al., 1986), although the 

nature and role of the regulatory elements are largely unknown (Larson et al., 1986; Larson 

et al., 1991).

MATERIALS AND METHODS

Cell growth, DNA isolation, and library construction

WT strains for T. thermophila (SB210, CU427) were obtained from the Tetrahymena Stock 

Center (http://tetrahymena.vet.cornell.edu). Replication-deficient ΔTXR1 was a 

homozygous homokaryon strain generated by genetic manipulation (Gao et al., 2013; Zhao 

et al., 2017).

Genomic DNA was collected from vegetative log-phase cells (~2×105 cells mL–1) using 

Wizard® Genomic DNA Purification Kit (Promega, A1120). SMRT sequencing libraries of 

SB210 and Illumina sequencing libraries of SB210, CU427 and ΔTXR1 were constructed 

according to manufacturer-recommended protocols and sequenced by Novogene Co. Ltd 

(Beijing, China).

Genome assembly

SMRT sub-reads generated in this study and previously (Wang et al., 2017b; Wang et al., 

2019b) were assembled into a draft assembly using Canu (Koren et al., 2017) software 

(correctedErrorRate=0.040, corMaxEvidenceErate=0.15, genomeSize=100 m), including 

error correction, read trimming and sequence assembly. Subsequently, erroneous contigs 

(CovStat≼0, contigs more likely to be repetitive; SuggestRepeat=yes, contigs detected as a 

repeat based on graph topology or read overlaps to other sequences; log2 (Normalized reads 

frequency)≼10, contigs with low mapped reads; without telomeres) were filtered. Reads 

frequency was defined as number of reads mapped to each contig, normalized by contig 

length. The remaining 180 contigs were separated into two groups: 165 contigs with 

telomeres on both sides and 15 contigs with telomeres on one side. Telomeres were 

identified by searching contigs for exact matches to a 12-mer encompassing two telomeric 

repeats (GGGGTTGGGGTT or CCCCAACCCCAA) (Eisen et al., 2006). Among these 15 
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contigs, 10 contigs were completed by BLAST to the TGD 2014 assembly. PCR primers 

(Table S1 in Supporting Information) were designed for another five contigs to amplify the 

uncompleted sequences (Figure S1A in Supporting Information) and were sequenced by 

Sanger sequencing. The 21 kb rDNA minichromosome was assembled with the same sub-

reads using the assembly protocol (HGAP4, default parameters) in the SMRT link v5.10 

(Pacific Biosciences). Finally, PE150 reads from short insert-size (200 bp) libraries were 

imported to Pilon (–genome genome.fasta, –bam input.bam) to correct the draft genome 

(Walker et al., 2014). The assembly flow is shown in Figure 1. The comparison between the 

completed genome and the TGD 2014 assembly was conducted by MUMmer (Delcher et al., 

2003) with parameters (-i 90 -q).

Gene prediction and annotation

To identify protein-coding genes, gene and CDS sequences from TGD were aligned to the 

completed genome using BLAST (E-value≤1.0×10−5, identity>98%, alignment 

length>95%) for making hintsfile for gene prediction conducted by Augustus (Stanke et al., 

2006) (–species=tetrahymena). Of these genes, 241 mispredicted genes (sequences 

length<40, encompassing telomeric repeats, false start codon or stop codon) were discarded. 

The Reciprocal Best Hits (RBH) approach was used in BLAST to generate similar genes 

between the remaining 26,258 predicted genes and the 26,996 genes from TGD 2014, with 

only effective hits retained (E-value≤1.0×10−20, identity≥93%) (Table S3 in Supporting 

Information). Approximately 96.5% (25,339) predicted genes matched corresponding TGD 

2014 genes in the RBH list; in these cases, the “TTHERM” number and functional 

annotation of these genes were also inherited by the gene models in this study. Molecular 

function, biological process, and cellular component predictions for new genes found in this 

study were annotated using the Gene Ontology (GO). All genes were first aligned by 

BLASTP to sequences in the NCBI non-redundant database, and Blast2GO (Conesa et al., 

2005) was used subsequently to annotate the sequences with GO terms.

Nuclei purification, unscrambling illustration

Purification of MACs and MICs was carried out following established protocols (Chen et al., 

2016). The MDSs were identified by MIDAS (http://knot.math.usf.edu/midas/index.html) 

and aligned to the MIC assembly from TGD. Scrambled regions were detected and classified 

by customized scripts in Perl. To further confirm this phenomenon, corresponding PCR 

primers were designed (Table S1 in Supporting Information).

Copy number analysis

A total of six DNA samples of T. thermophila were sequenced, two replicates each for WT 

(SB210 and CU427) and ΔTXR1 respectively. After trimming sequencing adapters and 

filtering low quality reads with Trimmomatic (Bolger et al., 2014) (TruSeq3-PE.fa: 2:30:10, 

leading: 3, trailing: 3, sliding window: 4:15, minlen: 80), reads were mapped to the updated 

Tetrahymena genome by TopHat2 (Kim et al., 2013). For non-rDNA chromosomes, 

uniquely mapped reads were defined as reads mapped only once to the reference genome. 

For the palindromic rDNA minichromosome, uniquely mapped reads were defined as reads 

mapped twice, once to each palindromic half. The number of unique reads mapped to each 

chromosome was determined using customized Perl scripts. qPCR validation of rDNA copy 
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number disparity between CU427 and ΔTXR1 was performed with genomic DNA as 

template and with serial rDNA-specific primers covering the 11 kb arm of rDNA (Table S1 

in Supporting Information). JMJ1 (TTHERM_00185640) was used for loading control and 

normalization.

Data availability

The new genome and gene model annotation data were incorporated into Tetrahymena 
Genome Database (TGD, http://ciliate.org/). All sequencing data are accessible from NCBI 

under BioProject numbers PRJNA 611686.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The assembly flow of the completed genome.
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Figure 2. 
Comparisons between the completed genome and the TGD 2014 assembly. A, The length 

distribution of chromosomes in the completed genome and TGD 2014. B, The completed 

genome shows high sequence similarity to TGD 2014. Green dots and red dots represent the 

scaffolds with two telomeres and one telomere in TGD 2014 respectively. The x-axis 

represents the length of TGD 2014 scaffolds, and the y-axis represents the alignment 

percentage (alignment length in the new genome/TGD scaffold length). C, The length 

distribution of 607 TGD genes which had no significant match (E>1.0×e−5) among the 

updated set. D, The length distribution of 623 TGD proteins which had no significant match 

(E>1.0×e−5) among the updated set.
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Figure 3. 
DNA scrambling in the macronuclear genome. A, Three types of scrambled regions, 

categorized by possible ways for the MDSs to be unscrambled. B, A typical scrambled 

region in T. thermophila confirmed by PCR amplification and sequencing.
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Figure 4. 
The copy number variation between two WT strains (SB210, CU427) and replication-

deficient ΔTXR1 in non-rDNA chromosomes and rDNA minichromosome. The y-axis 

represents the length of chromosomes and the x-axis represents the number of unique reads 

(normalized by total reads number of each sample) mapped to the corresponding 

chromosome.
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Table 1

The comparison between the completed genome and the current assembly

Completed genome TGD 2014 genome

Genome size 103.34 M 103.01 M

Gene models 26,258 26,996

Total contigs 181 1,158

N’s per 100 kb 0.00 61.83

N50 929,705 520,943

Longest contig 3,329,751 2,216,158

Contigs with two telomeres 181 129

Contigs with one telomere 0 29

GC (%) 22.30 22.32
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