Table 22. Models performance for SS2 using TF-IDF and BoW concatenation.
Model | Accuracy | Class | Precision | Recall | F1 score |
---|---|---|---|---|---|
RF | 0.92 | 0 | 0.87 | 0.99 | 0.93 |
1 | 0.95 | 0.85 | 0.89 | ||
2 | 0.96 | 0.87 | 0.92 | ||
macro avg | 0.92 | 0.91 | 0.92 | ||
weighted avg | 0.92 | 0.92 | 0.92 | ||
XGboost | 0.92 | 0 | 0.88 | 0.95 | 0.91 |
1 | 0.95 | 0.88 | 0.91 | ||
2 | 0.95 | 0.90 | 0.92 | ||
macro avg | 0.93 | 0.92 | 0.92 | ||
weighted avg | 0.92 | 0.92 | 0.92 | ||
SVC | 0.89 | 0 | 0.85 | 0.94 | 0.88 |
1 | 0.91 | 0.84 | 0.86 | ||
2 | 0.92 | 0.85 | 0.88 | ||
macro avg | 0.89 | 0.88 | 0.89 | ||
weighted avg | 0.89 | 0.89 | 0.89 | ||
ETC | 0.93 | 0 | 0.89 | 0.93 | 0.91 |
1 | 0.90 | 0.86 | 0.88 | ||
2 | 0.91 | 0.88 | 0.90 | ||
macro avg | 0.90 | 0.89 | 0.89 | ||
weighted avg | 0.90 | 0.90 | 0.90 | ||
DT | 0.91 | 0 | 0.92 | 0.97 | 0.94 |
1 | 0.93 | 0.91 | 0.92 | ||
2 | 0.93 | 0.90 | 0.92 | ||
macro avg | 0.93 | 0.93 | 0.93 | ||
weighted avg | 0.93 | 0.93 | 0.93 |