Skip to main content
. 2021 Feb 25;16(2):e0245579. doi: 10.1371/journal.pone.0245579

Table 1. Parameters settings for DL models utilized in the study.

Conv, convolutional layer; fc, fully connected layer; SGD, stochastic gradient descent.

Parameters Inception-V3 Cascaded model ResNet50
Input image size 117×117×3 117×117×3 224×224×3
Input kernel size - - -
Number of layers 42 40 152
First conv layer feature maps 55×55×4 53×53×4 55×55×4
First conv layer kernel size 5 3 5
First conv layer stride 3×3 3×3 3×3
Next few conv layer feature maps 24×24×28 21×21×24 27×27×64
No. fully connected layer (fc) fc800 fc800 fc800
No. of parameters in million 23.2 22.8 25.6
Batch size 10,000 patches 10,000 patches 10,000 patches
Learning rate 0.001 0.001 0.001
Optimizer SGD SGD SGD