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Abstract

Dysregulated iron metabolism is a hallmark of many cancers, including glioblastoma (GBM). However, its role in tumor
progression remains unclear. Herein, we identified coatomer protein complex subunit zeta 1 (COPZ1) as a therapeutic target
candidate which significantly dysregulated iron metabolism in GBM cells. Overexpression of COPZI was associated with
increasing tumor grade and poor prognosis in glioma patients based on analysis of expression data from the publicly
available database The Cancer Genome Atlas (P <0.001). Protein levels of COPZI were significantly increased in GBM
compared to non-neoplastic brain tissue samples in immunohistochemistry and western blot analysis. SIRNA knockdown of
COPZ1 suppressed proliferation of U§7MG, U251 and P3#GBM in vitro. Stable expression of a COPZ1 shRNA construct
in U87MG inhibited tumor growth in vivo by ~60% relative to controls at day 21 after implantation (P <0.001).
Kaplan—Meier analysis of the survival data demonstrated that the overall survival of tumor bearing animals increased from
20.8 days (control) to 27.8 days (knockdown, P <0.05). COPZ1 knockdown also led to the increase in nuclear receptor
coactivator 4 (NCOAA4), resulting in the degradation of ferritin, and a subsequent increase in the intracellular levels of ferrous
iron and ultimately ferroptosis. These data demonstrate that COPZ]1 is a critical mediator in iron metabolism. The COPZ1/
NCOA4/FTHI axis is therefore a novel therapeutic target for the treatment of human GBM.

Introduction

Supplementary information The online version of this article (https://
doi.org/10.1038/s41388-020-01622-3) contains supplementary
material, which is available to authorized users.

Glioblastoma (GBM) is the most common primary malig-
nant brain tumor in adults, with an annual incidence of 5.26
per 100,000 population [1, 2]. Prognosis and the quality of
life of GBM patients are poor [3]. Median survival of
patients is around 14 months, despite aggressive treatment
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iron-related enzyme activities [5]. These changes often
contribute to the relatively high availability of iron in GBM
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that are involved in many physiological processes, such as
tumor initiation, progression, and metastasis [6—8]. Target-
ing iron-related proteins or increasing intracellular iron
levels are considered to be feasible strategies for treating
cancers [9, 10]. Our recently published work also found that
inducing ferroptosis in GBM can achieve good therapeutic
effects [11]. However, an understanding of the molecular
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mechanisms involved in the process in GBM will help to
exploit ferroptosis in the treatment of the disease.

Ferroptosis is an iron-dependent form of regulated cell
death which occurs as a consequence of lethal lipid per-
oxidation [12]. Although the physiological function of fer-
roptosis is not clearly defined, the accumulation of reactive
oxygen species (ROS) exceeding the capacity of glutathione
(GSH) has been shown to induce ferroptosis [13]. Iron is an
essential cofactor of metabolic enzymes, and is tightly
integrated with many biological processes such as neuro-
transmitter transmission, oxygen transport, cellular division
and energy generation [14]. Disruption of normal iron
transport may cause a build up of iron within the cells, drive
intracellular ROS production by the Fenton reaction, which
is a catalytic process that converts ferrous iron and hydro-
gen peroxide into a highly toxic free radical, triggering lipid
peroxidation, which has cytotoxic effects [15, 16]. Ferrop-
tosis occurs in several human diseases, such as ischemic
heart diseases, brain damage, kidney failure and cancer [17—
20]. However, very little is currently known about the role
of ferroptosis in GBM.

Several proteins have been shown to be involved in fer-
roptosis, including iron chaperones poly (rC)-binding protein
1 (PCBPI1) [21], nuclear receptor coactivator 4 (NCOA4)
[22], iron-responsive element-binding protein 2 [23], and
heat shock protein beta-1 [24]. Coatomer protein complex
subunit zeta 1 (COPZ1), which belongs to the coatomer
protein complex I, is involved in intracellular trafficking,
endosome maturation, lipid homeostasis, and autophagy
[25, 26]. Intriguingly, COPZ1 is associated with iron meta-
bolism through regulation of transferrin (TF) [27]. It is also
involved in the homeostasis of hepcidin, a key regulator of
iron entry into mammalian blood circulation [28].

In thyroid tumor cells, depletion of COPZI leads to cell
death, suggesting it has potential as a therapeutic target for
thyroid cancer, furthermore, subcutaneous xenograft models
locally injected with siRNAs against COPZ1 reduced
thyroid tumor growth [29]. In this study, we provide the first
evidence that decreased COPZI1 expression induces fer-
roptosis, and that it is mediated by the NCOA4 protein in
human GBM cells. These discoveries not only identify a
novel role for COPZ1 in ferroptosis, but also validate
manipulating the ferroptotic process as a potential ther-
apeutic strategy in the treatment of GBM patients.

Results

COPZ1 is overexpressed in human gliomas and
predicts poor prognosis

To begin to examine the role of COPZ1 in the development
of human glioma, we first examined mRNA levels of the
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gene in human glioma samples using the expression data in
the publicly available dataset from The Cancer Genome
Atlas (TCGA). COPZI mRNA levels were increased in low
grade (WHO II; n=226) and high-grade gliomas (WHO
I, n=244; WHO 1V, n=150; p<0.0001) relative to
non-neoplastic brain tissue samples (n=4) (Fig. la).
Kaplan—Meier analysis of the TCGA dataset also demon-
strated that high COPZI expression in tumors (>the median
value) predicted shorter overall survival in patients (Fig.
1b). Analysis of the publicly available Rembrandt dataset
yielded similar results (Supplementary Fig. la, b). We
found a corresponding increase in COPZ1 protein levels in
western blot analysis of lysates prepared from primary
human glioma specimens relative to non-neoplastic brain
tissue samples (~4x, grade IV vs non-neoplastic tissue
samples) (Fig. 1c, d). Immunohistochemical (IHC) staining
performed on 60 paraffin-embedded clinical samples,
including grade II (n = 18), grade III (n = 18), grade IV (n
=18) and non-neoplastic brain tissue samples (n=6),
confirmed the result that COPZ1 increased with increasing
tumor grade. (Fig. le, f). Furthermore, we examined other
factors such as age, gender, tumor size, liquefactive
necrosis, preoperative tumor edema, and tumor grade. The
results showed that COPZ1 expression was positively
associated with tumor grade and liquefactive necrosis,
independent from age, gender, tumor size, and edema,
which suggested that COPZ1 could be a potential diagnostic
marker for glioma patients (Table 1, p <0.05).

Finally, western blot analysis demonstrated that COPZ1
protein levels were also elevated in human glioma cells
U87MG, U251, A172, LN229, T98 and P3#GBM relative
to normal human astrocytes (NHA) in culture (Fig. 1g, h).
Immunofluorescence staining showed that COPZ1 was
mainly localized within the cytoplasm of U87MG and
U251 cells (Fig. 1i). Taken together, these results indicate
that COPZ1 may have an important role in glioma pro-
gression and serve as a novel diagnostic marker.

Silencing COPZ1 inhibits glioma cell proliferation
and induces cell death

We examined the biological effect of knocking down
COPZ1 with two small interfering RNAs (si-COPZ1#1 and
si-COPZ1#2). Knockdown with either siRNA reduced
COPZ1 mRNA and protein levels by ~80 and 60%,
respectively (Fig. 2a, b). Likewise, cell growth was sig-
nificantly inhibited in si-COPZ1 compared to NC cells
(Fig. 2¢). In EdU (Fig. 2d, e) and colony formation assays
(Fig. 2f, g), cell proliferation of U251 and P3#GBM cells
transfected with si-COPZ1#1 was also reduced. Stable
knockdown was also achieved by infecting cells with
lentiviral constructs expressing two different shRNAs
(Supplementary Fig. 2a).
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Fig. 1 COPZ1 expression is
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To examine mechanisms mediating inhibition of cell
growth in COPZ1 knockdown, we assessed cell death using
LDH release and the Live/Dead viability assay. The release
of LDH increased in U87MG, U251, and P3#GBM cells by
~30% with loss of COPZ1 (Fig. 2h). In the Live/Dead cell
viability assay, the number of dead U251 and P3#GBM
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cells transfected with si-COPZ1#1 (red fluorescence) was
elevated to 29.6% and 35.8% compared to the control (4.0%
of U251cells and 2.8% of P3#GBM cells, Fig. 2i, j). Col-
lectively, these data suggest that COPZ1 knockdown inhi-
bits cell proliferation and induces cell death in GBM cell
lines in culture.
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Table 1 Correlations of COPZ1 expression with clinicopathological
features in glioma patients.

Variables n COPZ1 expression P value
Low High

Age (year)
<60 37 18 19 0.359
260 17 6 11

Gender
Male 29 12 17 0.625
Female 25 12 13

Tumor size (cm)

<4 18 9 9 0.561

>4 36 15 21

Liquefactive necrosis
Negative 35 19 16 0.048
Positive 19 5 14

Edema
None to mild 16 9 7 0.257
Moderate to severe 38 15 23

WHO grade
I 18 16 2 <0.001
i1 18 6 12
v 18 2 16

Knockdown of COPZ1 increases intracellular iron
levels

Since COPZ]1 is involved in iron metabolism [27, 30], we
next studied whether knockdown of COPZ1 induced fer-
roptosis in GBM cells. First, we assessed intracellular iron
levels in si-COPZI1#1 transfected U87MG, U251 and
P3#GBM cells compared to controls. With loss of COPZ1,
the intracellular iron levels were increased by ~ 70% (Fig.
3a). The proportion of ferrous iron levels (Fe?™) was also
increased relative to ferric iron (Fe”, Fig. 3b), indicating
that intracellular ferrous iron was upregulated with knock-
down of COPZI.

Increased intracellular iron induces ferroptosis, and a
hallmark of ferroptosis is morphological changes in mito-
chondria [17]. Therefore, we used the ratio of red to green
fluorescence of JC-1 dye in cells to detect possible changes
in mitochondrial membrane potential. JC-1 aggregates at
high concentrations and emits red fluorescence in normal
mitochondria but exists as a green fluorescing monomer at
lower concentrations under depolarization. The ratio of red
to green fluorescence in US7MG cells transfected with si-
COPZ1#1 decreased, indicating a reduction in the mito-
chondrial membrane potential as less dye aggregated in the
organelles (Fig. 3c, d). These results were consistent with
the morphology of mitochondria in transfected cells
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characterized with transmission electron microscopy.
USTMG cells with loss of COPZI1 displayed shrunken
mitochondria with increased membrane density (Fig. 3e).

To determine the mechanism underlying the increase in
intracellular iron, we performed western blot analysis to
detect levels of two proteins involved in the uptake of iron,
TF and the transferrin receptor (TFR). TF binds to iron and
the TFR transfers the TF-iron complex into cells. Levels of
both TF and TFR were increased in si-COPZ1#1 transfected
U87MG, U251, and P3#GBM cells. Furthermore, ferritin
(FTH1), which regulates intracellular ferrous iron, was
down-regulated (Fig. 3f). Fluorescence staining of TFR
validated these results, demonstrating that the protein was
increased in cells with COPZ1 knockdown (Supplementary
Fig. 3a, 3b). We next performed western blots to investigate
the role of the FBXLS5/IRP2 pathway, which plays a vital
function in iron metabolism, in GBM. The western blot
results showed no significant alterations in the levels of
FBXLS5 nor IRP2 in our glioma cell lines (Supplementary
Fig. 3c). Our results are therefore consistent with the
hypothesis that knockdown of COPZI induces iron accu-
mulation by promoting cellular uptake of iron.

Knockdown of COPZ1 causes ferroptosis in GBM
cells

Ferroptosis is characterized by lipid peroxidation, and the
final product of lipid peroxidation is malondialdehyde
(MDA) [12, 31]. Thus, we examined whether loss of
COPZ1 led to changes in MDA levels. MDA levels were
significantly increased in si-COPZ1#1 transfected U87MG,
U251, and P3#GBM cells compared to controls (Fig. 4a).
BODIPY 581/591 staining confirmed these results (Sup-
plementary Fig. 4a). To test whether the increase in MDA
was an iron dependent process, transfected cells were
exposed to the iron chelator deferoxamine (DFO). DFO
suppressed the increase of MDA in si-COPZ1#1 transfected
cells (Fig. 4b, Supplementary Fig. 4b, 4c). Cells pretreated
with DFO (600 umol/L) also showed reduced levels of
intracellular ferrous iron (Fig. 4c, Supplementary Fig. 4d,
4e). However, increasing intracellular iron through expo-
sure to ferric ammonium citrate (FAC) led to further
increases in MDA levels in si-COPZI1#1 transfected cells
(Fig. 4b, Supplementary Fig. 4b, c). The increase in MDA
was also inhibited in transfected P3#GBM cells pretreated
with GSH, the critical tripeptide antioxidant (Fig. 4b).
These results indicated that the increase in intracellular iron
was due to loss of COPZI induced lipid peroxidation.

To determine whether increased MDA in si-COPZ1#1
transfected cells was associated with cell death, cells were
treated with ferrostatin-1 (Fer-1, 50 umol/L), a small
molecule scavenger of free radical species involved in lipid
peroxidation. Both the levels of MDA and the cell death
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rate were decreased in si-COPZ1#1 transfected cells treated
with Fer-1 (Fig. 4b, d). Increasing iron in cells through
exposure to FAC also led to increased cell death. However,
pretreatment with DFO alleviated cell death (Fig. 4d, Sup-
plementary Fig. 4f, 4g). To better understand the role of
ferroptosis in cells with loss of COPZI1, apoptosis and
necrosis inhibitors were used to examine their contribution

to cell death in our model (Supplementary Fig. 4h). Inter-
estingly, we found that ferroptosis is not the sole process of
cell death in our model, with necrosis and apoptosis con-
tributing to cell death by 14.5% and 7.7%, respectively.
Thus, the observed effect of COPZ1 knockdown on cell
viability is mainly due to dysregulation of iron metabolism
sensitizing cells to ferroptosis, and partly attributable to
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Fig. 2 Silencing of COPZ1 inhibits GBM cell viability and pro-
liferation. a qRT-PCR to detect COPZI mRNA levels in US7MG,
U251, and P3#GBM cells transfected with two independent
COPZI1 siRNAs, si-COPZ1#1, and si-COPZ1#2. b Western blot
analysis of COPZ1 protein levels in U87MG, U251, and P3#GBM
cells transfected with si-COPZ1#1 and si-COPZI1#2. ¢ Growth curves
for si-COPZ1 transfected U87MG, U251, and P3#GBM cells gener-
ated with OD 450 readings plotted over time using the CCKS assay. d
Fluorescence images of EdU assays performed on U87MG and
U251 cells transfected with si-COPZ1#1. Nuclei were stained with
DAPI (blue). Scale bar, 100 um. e Graphic representation of the ratios
of EdU positive cells in U§7MG and U251 cells transfected with si-
COPZ1#1. f Representative images of colony forming assays for U251
and P3#GBM cells transfected with si-COPZI#1 to evaluate cell
proliferation. Cells were fixed and stained with crystal violet, and
colonies were counted. g Graphic representation of the number of
colonies shown in (f). h LDH release assay for si-COPZ1#1 trans-
fected US7MG, U251, and P3#GBM cells compared to their respective
control cells. i Representative images of live (green)/dead (red) assays
for U251 and P3#GBM cells transfected with si-COPZ1#1. Scale bar,
100 um. j Graphic representation of the rate of dead (red) cells in U251
and P3#GBM cells transfected with si-COPZ1#1. Student’s ¢ test for
two-group comparison: *p <0.05, **p <0.01, ***p <0.001; one-way
ANOVA for multi-group comparisons: *p <0.05, **p <0.01, ***p <
0.001.

necrosis and apoptosis. In summary, these results suggest
that lipid peroxidation may contribute to cell death induced
in GBM cell lines through the loss of COPZL1.

Elevated intracellular iron levels increase the
production of reactive oxygen species

ROS, such as hydrogen peroxide (H,0,), superoxide radi-
cals (O, ") and the highly cytotoxic hydroxyl radicals (*OH)
are the main causes of intracellular oxidative stress [32, 33].
Increases in iron can trigger the Fenton reaction which
converts hydrogen peroxide (in the presence of ferrous iron)
into superoxide radicals and hydroxyl radicals and releases
ferric iron, these hydroxyl radicals cause lipid peroxidation
[34]. Therefore, we examined whether loss of COPZI1
altered intracellular levels of H,O,. H,O, accumulated to a
greater level in cells transfected with si-COPZ1#1 knock-
down compared to the controls (Fig. 4e). In addition, the
increase in H,O, was enhanced with FAC and blocked with
DFO (Fig. 4e). As H,O, is produced from superoxide, we
therefore investigated the generation of superoxide using
the red fluorescent superoxide probe, dihydroethidium
(DHE). Fluorescence intensities detected in si-COPZ1#1
transfected cells were significantly greater than in controls
(Fig. 4f, g).

The small molecule erastin induces ferroptosis by inhi-
biting system X., which leads to lipid peroxidation. In both
WT and si-COPZI transfected cells, erastin promoted cell
death and enhanced MDA levels. (Supplementary Fig. 4i, 4j).
Fer-1, however, not only reversed the effect of erastin treat-
ment on cell death and MDA levels in WT and si-COPZ1
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transfected cells, but it also seemed to reverse the effect of
the si-COPZ treatment. In conclusion, increased iron levels
due to the loss of COPZI led to elevated production of
intracellular H,O, and superoxide.

COPZ1 depletion induces autophagy in GBM cells
in vitro

Autophagy is a conserved degradation pathway maintaining
intracellular homeostasis [35]. However, excessive autophagy
will promote cell death rather than contribute to cell survival
[36]. COPZ1 depletion has also been shown to induce lethal
autophagy in tumor cells [29, 37]. TEM also revealed an
increase in the number of autophagosomes in si-COPZ1#
transfected US7MG cells (Fig. 3e). Therefore, we determined
whether loss of COPZ1 induced autophagy in GBM cells.
Autophagy occurs in different stages. The progression from
formation of autophagosomes to degradation of proteins is
detected with the pH sensitive tandem fusion of GFP/mCherry
to the protein LC3, which is involved in the formation of
autophagosomes. Co-localization of green (GFP) and red
fluorescence (mCherry) occurs in the formation of autopha-
gosomes. USTMG cells were transfected first with a lentivirus
expressing GFP/mCherry-LC3 for 48 h and then si-COPZ1#1
for 24 h. Under confocal microscopy, the GFP/mCherry-LC3
puncta increased in the si-COPZI1#1 transfected cells, and the
green and red fluorescence intensities were elevated ~ 2x and
1.6x compared to the NC group (Fig. 5a, b).

Protein markers of autophagosomes and autophagy were
also examined using western blot analysis of lysates pre-
pared from si-COPZ1#1 transfected cells. A protein
involved in the formation of autophagosomes, LC3B-II,
was increased in si-COPZ1#1 transfected US7TMG, U251,
and P3#GBM cells (Fig. 5¢). Autophagy-related protein 7
(ATG7), which plays a central role in mediating autophagy,
was also increased in the si-COPZ1#1 transfected cells (Fig.
5c). In contrast, levels of a protein substrate in autophagy,
SQSTM1 (P62), were decreased (Fig. 5c). Taken together,
these results indicate that loss of COPZ1 promoted autop-
hagy in GBM cells in culture.

NCOAA4 plays a central role in autophagy induced by
the loss of COPZ1 in GBM cells

Ferritin is the main iron storage protein complex in cells,
and it consists of FTL1 (ferritin light polypeptide 1) and
FTH1 (ferritin heavy polypeptide 1) [38]. Recent studies
have shown that increased autophagy promotes the degra-
dation of ferritin and increases intracellular iron content,
leading to the Fenton reaction and subsequent ferroptosis
[22]. On western blot, FTH1 levels were decreased in si-
COPZ1#1 transfected US7MG, U251, and P3#GBM cells
(Fig. 5d).
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Fig. 3 COPZ1 knockdown induces changes in iron metabolism. a
Total intracellular iron in US§7MG, U251 and P3#GBM glioma cells
after transfection with si-COPZ1#1 at 24 h. b Graphic representation
of the levels of intracellular ferrous iron compared to ferric iron, as
evaluated with the colorimetric iron assay kit. ¢ Representative
fluorescence images of US7MG and U251 cells stained with the JC-1
probe to assess mitochondrial membrane potential. Scale bar, 25 ym. d
Statistical analysis of the red and green fluorescence shown in (c). e

It is well-known that NCOA4 is a selective cargo
receptor for the autophagic degradation of ferritin which
is known as ferritinophagy [39, 40]. We therefore ana-
lyzed whether NCOA4 was involved in ferroptosis
induced by the loss of COPZ1. Protein levels of NCOA4
were increased in si-COPZ1#1 transfected cells (Fig. 5d).

Images from transmission electron microscopy showing morphology
of mitochondria (white arrows) and formation of autophagosomes (red
arrows) in U87MG cells transfected with si-COPZ1#1 for 24 h.
Mitochondria show increased membrane density (white arrows) and a
shrunken morphology. Scale bar,1.2 um (left) and 0.6 um (right). f
Western blot analysis of TFR, TF, and FTHI in lysates prepared from
U87MG, U251, and P3#GBM cells transfected with si-COPZ1#1.
Student’s ¢ test: *p <0.05, **p <0.01, ***p <0.001.

Using immunofluorescence, we found that NCOA4 (red)
was in the cytoplasm in normal U87MG and U251 cells
and that it colocalized with COPZ1 (green) positive
puncta (Fig. Se).

To examine autophagic flux, U87MG-sh-COPZ1#1 cells
were treated with 3-MA or chloroquine (CQ) for 48 h, and
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Fig. 4 Intracellular iron increases with loss of COPZ1 and
enhances cell death by causing ROS and lipid peroxidation. a
MDA levels detected in US7MG, U251 and P3#GBM glioma cells
transfected with si-COPZ1# for 48 h. b MDA levels detected in si-
COPZ1#1 transfected cells pretreated with DFO, Fer-1, FAC, or GSH.
¢ Iron assay to detect ferrous iron levels in the presence of DFO. d
LDH release assay of transfected cells treated with DFO, Fer-1, or
FAC. e Hydrogen peroxide assay showing accumulation of H,O, in
P3#GBM cells transfected with si-COPZ1#1 and treated with DFO,
FAC and Fer-1 relative to controls. f Representative images of

the levels of LC3B-I and LC3B-II, markers of autophago-
some assembly, were examined on western blot. Treatment
with 3-MA, which prevents autophagosome assembly,
inhibited conversion of LC3B-I to LC3B-II. However,
treatment with 3 uM CQ for 48 h, which interferes with the
progression of autophagy through inhibition of the fusion of
autophagosomes and lysosomes, resulted in accumulation
of LC3B-II (Fig. 5f).

NCOA4 levels were increased when cells were treated
with 3-MA or CQ to block autophagosome assembly or
function and thus degradation (Fig. 5f, Supplementary Fig.
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U251

dihydroethidium (DHE; red fluorescence) superoxide probe 48 h after
transfection of cells with si-COPZ1#1. For each group of 2 cell lines, 3
images from triplicate experiments were counted. Scale bar, 75 ym. g
Statistical analysis of the fluorescence intensities of U§7MG and the
U251 GBM cell lines transfected with si-COPZ1#1 compared to their
respective control cells. Student’s 7 test for two-group comparison: *p
<0.05, **p<0.01, ***p<0.001; one-way ANOVA for multi-group
comparisons: NS = non-significant, *p <0.05, **p<0.01, ***p<
0.001.

Sa, 5b). Inhibition of ferritinophagy with 3-MA or CQ led
to decreased ferrous iron levels (Fig. 5g, Supplementary
Fig. 5c, 5d) and cell death ratios (Fig. Sh, Supplementary
Fig. 5e, 5f). MDA levels also did not increase (Fig. 5i,
Supplementary Fig. 5g, 5h). Infection of previously
COPZ1 silenced U87MG cells with a lentiviral construct
expressing COPZ1 (OE-COPZ1) resulted in lower
expression of NCOA4 (Supplementary Fig. 5i). Transfec-
tion of si-COPZ1 into cells overexpressing NCOA4 did not
change NCOA4 levels significantly compared to controls,
when NCOA4 overexpressing cells were transfected with
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OE-COPZ1, the NCOA4 levels were inhibited (Supple-
mentary Fig. 5j, 5k). Taken together, these results indicated

that COPZ1 might negatively regulate NCOA4 activity, as

knockdown of COPZ1 induces NCOA4-mediated ferriti-
nophagy. Thus, NCOA4-mediated ferritin degradation is
critical to ferroptosis induced by COPZ1 deficiency.

NCOA4 mediated degradation of ferritin enhances
ferroptosis in COPZ1 deficient cells

Since knockdown of COPZ1 elevated the levels of NCOA4
leading to degradation of ferritin, we next examined the
effects of NCOA4 knockdown on ferroptosis in GBM cells.

SPRINGER NATURE



1434

Y. Zhang et al.

Fig. 5 Loss of COPZ1 induces autophagy in GBM cells in vitro. a
Representative fluorescence images of GFP/mCherry-LC3B puncta in
si-COPZ1#1 transfected US7TMG after 48 h. Scale bars, 25um. b
Statistical analysis of the images shown in (a). Quantification repre-
sents results taken from 3 images from experiments performed in tri-
plicate. ¢ Representative western blots showing protein levels of
LC3B, SQSTMI (p62), ATG7 and ACTB (loading control) in si-
COPZ1#1 transfected US7TMG, U251, and P3#GBM cells. d Western
blots showing protein levels of FTH1, NCOA4, and ACTB (loading
control) in si-COPZ1#1 transfected U87MG, U251, and P3#GBM
cells. e Representative fluorescence images showing intracellular
localization of COPZ1 (green) and NCOA4 (red). Alexa-NCOA4 was
diffusely localized in the cytoplasm and largely colocalized with
FITC-COPZ1 in normal U87MG and U251 cells. Scale bar, 10 um;
scale bars of magnified images, 1 pm. f Western blots to detect levels
of NCOA4 and LC3B in U87MG-sh-COPZ1#1 cells after pretreat-
ment with 3-MA (10mM) and CQ (3uM) for 1h. Data are repre-
sentative of 3 independent experiments. g Relative iron levels in
U87MG-sh-COPZ1#1 cells after pretreatment with 3-MA (10 mM)
and CQ (3 uM) for 1 h. h Cell death ratio after pretreatment with 3-MA
(10 mM) and CQ (3 uM) for 1 h in US7TMG-sh-COPZ1#1 cells. i MDA
levels after pretreatment of U887MG-sh-COPZ1#1 cells with 3-MA
(10 mM) and CQ (3 uM) for 1 h. Student’s ¢ test for two-group com-
parison: **p <0.01; one-way ANOVA for multi-group comparisons:
NS = non-significant, **p <0.01, ***p <0.001.

Protein levels of NCOA4 were markedly decreased on
western blot in U87MG, U251 and P3#GBM cells trans-
fected with two independent NCOA4 siRNAs (Fig. 6a).
In P3#GBM-sh-COPZ1#1 cells transfected with the
NCOA4 siRNAs, basal levels of ferritin levels (FTHI1) were
increased (Fig. 6b). This result suggests that NCOA4-
deficiency counteracts the up-regulation of iron-induced by
COPZ1 deficiency. Therefore, we examined the levels of
ferrous iron (Fe**) in US7MG-, U251- and P3#GBM-sh-
COPZ1#1 cells transfected with NCOA4 siRNAs compared
to controls. With knockdown of NCOAA4, ferrous iron levels
were decreased in U887MG-, U251-, and P3#GBM-sh-
COPZ1#1 cells (Fig. 6c). Furthermore, FTHI1 levels
decreased with DFO despite the absence of COPZ1 (Fig.
6d), and FAC treatment did not change FTH1 levels sig-
nificantly, indicating that iron metabolism might be regu-
lated through the NCOA4-FTH1 pathway. Cell death ratios
and MDA levels also decreased in the COPZ1 deficient
GBM cell populations with NCOA4 knockdown (Fig. 6e,
f). Finally, levels of superoxide in U87MG-sh-
COPZ1#1 cells decreased with NCOA4 knockdown as
assessed using DHE fluorescence (Fig. 6g).

The protein autophagy related 7 (ATG?7) is involved in the
autophagic degradation of ferritin [41]. Therefore, we trans-
fected cells with two independent siRNAs against ATG7 and
examined cells for markers of ferroptosis. For both siRNAs,
protein levels of ATG7 were reduced in US7TMG, U251 and
P3#GBM cells compared to controls (Supplementary Fig. 6a).
Ferrous iron (Supplementary Fig. 6b), cell death (Supplemen-
tary Fig. 6¢c, 6d) and MDA (Supplementary Fig. 6e, 6f) were all
decreased in U87MG- and P3#GBM-sh-COPZ1#1 cells
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transfected with si-ATG7#1 and si-ATG7#2 compared to the
corresponding controls. These data demonstrate that depletion
of COPZ1 induces ferroptosis in glioma cells by increasing
NCOA4 and ATG7 levels. Thus, the COPZ1/NCOA4/FTH]1
axis may be a novel therapeutic target in the treatment of
gliomas.

Downregulation of COPZ1 inhibits growth of GBM
cells in vivo

To determine the effect of COPZ1 on cell growth in vivo,
we implanted luciferase expressing U87TMG-sh-COPZ1#1
and US7MG-NC cells into the brains of nude mice (n =10
mice in each group). Tumor growth was monitored at
weekly intervals over 21 days using bioluminescence. Dif-
ferences in bioluminescence values were significant between
the two groups of animals by day 14 (Fig. 7a). At day 21
after implantation, the mean total flux was approximately
60% less in U87MG-sh-COPZ1#1 tumors than in the NC
group (p<0.001; Fig. 7b). Kaplan—-Meier analysis of the
survival data demonstrated that the overall survival of tumor
bearing animals increased from 20.8 days (control group) to
27.8 days (knockdown group, p <0.05; Fig. 7c). On histo-
logical examination, U87MG-sh-COPZ1#1 tumors were
found to be smaller than NC tumors (Fig. 7d). Proliferation
was also reduced based on immunostaining of the nuclear
proliferation marker Ki67 on sections from U87MG-sh-
COPZ1#1 tumors, while the expression of NCOA4 was
increased (Fig. 7e). Furthermore, ferrous iron and MDA
levels were increased in the U87MG-sh-COPZ1#1 tumors
(Fig. 71, g). Together, these findings demonstrated that loss
of COPZ1 inhibited GBM tumor growth possibly through
ferroptosis mediated tumor cell death.

Discussion

A substantial amount of evidence obtained over the past 10
years indicates that changes in iron uptake and iron man-
agement are essential features of neoplastic cells [42].
Changes in iron metabolism are now considered a key
metabolic “hallmark™ of cancer [43]. Iron metabolic repro-
gramming and iron homeostasis dysfunction have also been
shown to occur in GBM [44]. In this work, we analyzed
genomic datasets for human glioma and discovered that high
expression of COPZ1 was associated with poor prognosis and
increasing tumor malignancy. COPZ1 expression was also
upregulated in GBM cell lines compared to NHA. SiRNA
knockdown of COPZ1 stimulated GBM cells in vitro to form
autophagosomes and led to increased levels of the autophagy
flux marker LC3B-II. Finally, COPZI shows a tendency to
negatively regulate NCOA4 activity and knockdown of
COPZ1 induces NCOA4-mediated ferritinophagy (Fig. 7h).
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Fig. 6 NCOA4 mediates autophagic delivery of ferritin and con-
trols iron homeostasis. a Western blots showing levels of NCOA4
and ACTB (loading control) in US§7MG, U251, and P3#GBM glioma
cells transfected with si-NCOA4#1 and si-NCOA4#2 for 48h. b
Western blots showing levels of NCOA4, FTH1, and ACTB (loading
control) in P3#GBM-sh-COPZ1#1 cells transfected with 2 indepen-
dent siRNAs against NCOA4 (si-NCOA4#1 and si-NCOA4#2). ¢
Ferrous iron levels detected after knockdown of NCOA4 in US7MG-,
U251- and P3#GBM-sh-COPZI1#1 cells. d Western blots to detect

FTH1 and ACTB (loading control) in U§7MG-, U251-, and P3#GBM-
sh-COPZ1#1 cells transfected with si-NCOA4#1. e LDH assay as a
measure of cell death in U87MG-, U251-, and P3#GBM-sh-
COPZI1#1 cells transfected with NCOA4 siRNAs. f MDA levels in
U87MG-, U251-, and P3#GBM-sh-COPZ1#1 cells transfected with
NCOA4 siRNAs. g DHE levels in U87MG-sh-COPZl1#l1cells trans-
fected with si-NCOA4#1. Student’s ¢ test for two-group comparison:
**p <0.01; one-way ANOVA for multi-group comparisons: *p < 0.05,
**p <0.01, ***p <0.001.
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This pathway thus might represent a novel approach, by
induction of ferroptosis through loss of COPZ1, for treatment
of human GBM.

The role of autophagy has been controversial, as it is
thought to be activated as a mechanism of survival when
tumor cells encounter stresses such as anticancer drugs,
starvation and hypoxia [45, 46]. In this study, we found that
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NC sh-COPZ1#1

the autophagic process involving ferritin, and ferritinophagy,
caused GBM cell death via ferroptosis. We demonstrated
that COPZ1 and NCOA4 colocalized in the cytoplasm, and
that knockdown of COPZI increased ferritin protein levels
in GBM cells. NCOA4 has been proven to be a hallmark of
ferritinophagy, which plays a key role in degenerative dis-
eases and cancers [47]. Our study further confirms a role for
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Fig. 7 Down-regulation of COPZ]1 reduces in vivo tumor growth. a
Images of Intracranial tumor growth of luciferase expressing U§7MG-
sh-COPZ1#1 cells or U§7MG-NC cells monitored at days 7, 14, and
21 after implantation using the IVIS-200 imaging system to detect
bioluminescence. b Quantification of the bioluminescent signals from
the orthotopic tumors in mice implanted with U87MG-sh-
COPZ1#1 cells or US7TMG-NC cells at days 7, 14, and 21. ¢
Kaplan—Meier analysis of overall survival of tumor bearing animals. A
log-rank test was used to assess the statistical significance of the dif-
ferences. d Representative images of hematoxylin and eosin-stained
sections from brains of orthotopic US§7MG-sh-COPZ1#1 or US7TMG-
NC tumor bearing nude mice. Scale bar, 100 pm. e Representative
images of immunohistochemical staining for NCOA4 and Ki67 in
sections from brains of orthotopic U87MG-sh-COPZ1#1 or U87TMG-
NC tumor bearing nude mice. Scale bar third column, 100 um; scale
bar fourth column, 25um. f Comparison of ferrous iron levels in
orthotopic U87MG-sh-COPZ1#1 or U§7MG-NC xenograft samples. g
Comparison of MDA levels in orthotopic U87MG-sh-COPZ1#1 or
U87MG-NC xenograft samples. h Schematic figure of the COPZ1
induction of ferroptosis in GBM. Student’s ¢ test for two-group com-
parison: *p <0.05, **p <0.01, ***p <0.001; log-rank test: p <0.05.

NCOA4 in GBM pathophysiology, which might help us
further understand the pathogenesis of GBM and develop
therapies based on the induction of ferroptois to treat cancer.

Studies show that it is difficult to inhibit GBM cells with
chemical drugs alone [48]. This necessitates an urgent need
to explore new therapeutic targets to improve the effec-
tiveness of GBM treatment. Increasing iron levels in GBM
cells in various ways to induce ferroptosis in tumor cells
now appears to be an effective therapeutic approach
[11, 49]. Our finding of the induction of the COPZ1-based
ferroptosis signaling pathway in GBM provides a new
possibility for treatment of this disease and possibly others,
as COPZ1 also appears to play an important role in the
occurrence and development of other types of solid tumors
based on analysis of related databases.

Collectively, our data strongly suggest that autophagy
plays an important role in regulating ferroptosis by increasing
intracellular iron metabolism and cellular ROS accumulation.
Knockdown of COPZ1 induces ferritinophagy and activates
ferroptosis, as a result of the degradation of the intracellular
iron storage protein ferritin through an NCOA4-mediated
pathway. Ferrous iron levels are elevated, triggering the
Fenton reaction which induces an increase in ROS. ROS
causes lipid peroxidation, which leads to ferroptosis. Thus,
the COPZ1/NCOA4/FTH1 axis and the iron upregulation
demonstrated here may be a novel therapeutic target in the
treatment of human GBM.

Materials and methods

Cell lines and cultures

Human glioma cell lines U87MG, U251, A172, LN229 and
T98 were purchased from the Chinese Academy of Sciences

Cell Bank (Shanghai, China). NHA and primary human
GBM biopsy propagated tumor cells P3#GBM were kindly
provided by Prof. Rolf Bjerkvig at the Department of Bio-
medicine, University of Bergen, Norway. Detailed protocols
are provided in Supplementary “Materials and Methods”.

SiRNA transfections

Gene-specific and negative control siRNAs were synthe-
sized by GenePharma (Shanghai, China) and transfected
into US7MG, U251 and P3#GBM cells for 48 h using
Lipofectamine 2000 (Thermo Fisher Scientific) according to
the manufacturer’s protocol. Detailed protocols are pro-
vided in Supplementary “Materials and Methods”.

Immunohistochemistry

Blinded review of the images and staining was performed
independently by two experienced neuropathologists (see
Supplementary “Materials and Methods”). Staining of
cancer cells within the sections was scored as follows: 0, no
staining; 1, weak staining in <50% cells; 2, weak staining in
250% cells; 3, strong staining in <50% cells; and 4, strong
staining in 250% cells.

Western blot analysis

Cells and tissues were collected and lysed with RIPA lysis
buffer (Thermo Fisher Scientific) supplemented with the
proteinase inhibitor PMSF (Solarbio, Beijing, China) at a
ratio of 100:1 (v/v). Protein concentration was determined
with the BCA Protein Assay Kit (Beyotime). Equal quan-
tities (20 ug) of protein extracts were separated with 10%
SDS-PAGE and transferred to PVDF membranes (Merck
Millipore; Billerica, MA, USA). The membrane was
blocked with skimmed milk for 1h and incubated with
primary antibodies overnight at 4 °C.Antibodies are listed in
Supplementary “Materials and Methods”. For detection,
membranes were incubated with horseradish peroxidase-
conjugated secondary antibodies (ZSGB-BIO) dissolved in
antibody dilution buffer (Beyotime) for 1h at room
temperature. The membranes were visualized with chemi-
luminescence (Bio-Rad; Hercules, CA, USA) according to
the manufacturer’s protocol.

Iron assay

Ferrous iron concentration was analyzed in US7TMG, U251
and P3#GBM cells using an iron colorimetric assay kit (Iron
Assay Kit, Abcam; Burlingame, California, USA), Detailed
protocols are provided in Supplementary “Materials and
Methods”. The iron concentration was calculated according
to the following formula: Iron concentration = (Sa/Sv) « D.
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Sa: content of iron in the sample well calculated from the
standard curve (nM), Sv: volume of sample added into the
reaction wells (uL), D: sample dilution factor.

Lipid peroxidation assessment

A MDA assay kit (Beyotime) was used to determine lipid
peroxidation levels in U§7MG, U251 and P3#GBM cells. A
detailed protocols are provided in Supplementary “Materi-
als and Methods”. The MDA content was expressed as a
ratio of the absorbance value between treated cells and
control cells.

Animal studies

For intracranial xenograft studies, U87MG-NC and US7MG-
sh-COPZ1#1 glioma cells were implanted into 4-week old
female nude mice (n=20; Shanghai SLAC Laboratory
Animal Co., Shanghai, China). Detailed protocols are pro-
vided in Supplementary “Materials and Methods”.

Statistical analysis

The Student’s ¢ test for paired data was used to compare
mean values. ANOVA was used to analyze potential dif-
ferences between two groups with continuous variables. A
two-sided y* -test was used to determine the association
between COPZI expression and clinicopathological fea-
tures. Kaplan—-Meier survival curves were compared using
the log-rank test to assess survival differences between
groups. Statistical analysis was conducted using GraphPad
Prism version 7.00 software (GraphPad; La Jolla, CA,
USA). All the experiments were repeated at least three times
with triplicates unless stated otherwise. All tests were two-
sided, and P values <0.05 were considered to be statisti-
cally significant.
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