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The rapid spread of a new severe acute respiratory 
syndrome-related coronavirus (SARS-CoV-2) around the 
globe has led to a worldwide spike in a SARS-like respira-

tory illness termed coronavirus disease 2019 (COVID-19)1. To date, 
more than one million lives have been lost due to COVID-19. A 
detailed understanding of the molecular interactions and perturba-
tions occurring during SARS-CoV-2 infection is required to under-
stand the biology of SARS-CoV-2 and design therapeutic strategies.

SARS-CoV-2 is an enveloped, positive-sense, single-stranded 
RNA virus that, upon infection of a host cell, deploys a 
‘translation-ready’ RNA molecule, which uses the protein synthe-
sis machinery of the host to express a set of viral proteins crucial 
for replication2. Replication of the full-length viral genome and 
transcription of subgenomic RNAs both involve the synthesis of 
negative-strand RNA intermediates3. In common with other RNA 
viruses, SARS-CoV-2 is dependent on effectively engaging host cell 
factors such as regulators of RNA stability, processing, localization 
and translation to facilitate replication and production of progeny. 
The host cell, on the other hand, must detect the pathogen and 
activate appropriate innate immune response pathways to restrict  
virus infection4.

Studies on SARS-CoV-2-infected human cells to date have 
focused on characterizing expression or modification changes 
in the host cell transcriptome5,6 or proteome7–9. Further, interac-
tions between recombinant viral proteins and host proteins have 
been identified in uninfected cells10,11. Mapping of the interactions 

between viral and host proteins has revealed cellular pathways rele-
vant to productive infection12. However, these studies cannot reveal 
how viral RNA is regulated during infection or how host cell RNA 
metabolism is remodelled to enable virus replication13.

We sought to obtain an unbiased and quantitative picture of the 
cellular proteins that directly bind to SARS-CoV-2 RNAs in infected 
human cells. Recent RNA capture and quantitative mass spectrom-
etry (MS) approaches14–17 applied ultraviolet (UV) crosslinking to 
create covalent bonds between RNA molecules and the proteins 
they directly interact with. Unlike chemical crosslinking, UV irradi-
ation does not stabilize protein–protein or RNA–RNA interactions, 
making it a preferable choice for dissecting direct RNA–pro-
tein interactions18,19. RNA antisense purification and quantitative 
mass spectrometry (RAP–MS) combines UV crosslinking with a 
highly denaturing purification procedure and is ideally suited to  
capture and identify only those proteins that bind directly to 
SARS-CoV-2 RNAs14,15.

Results
Capturing SARS-CoV-2 RNAs in infected human cells. To purify 
SARS-CoV-2 RNAs and the complement of directly crosslinked 
cellular proteins from infected human cells, we designed a pool of 
biotinylated DNA oligonucleotides antisense to the positive-sense 
SARS-CoV-2 RNA and its subgenomic messenger RNAs. As a cel-
lular system, we selected the human liver cell line Huh7, which 
is naturally permissive to both SARS-CoV-1 and SARS-CoV-2  
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replication20,21. SARS-CoV-2 preferentially infects cells in the  
respiratory tract, but infection of multiple organs, including the 
liver, has been reported22.

To test if our pool of antisense capture probes was suitable for 
the purification of SARS-CoV-2 RNAs from infected Huh7 cells, we 
performed RAP–MS 24 h after infection when viral replication levels 
were high21. We implemented a covalent protein capture step after 
the release of SARS-CoV-2 RNA-bound proteins, which enabled 
us to identify RNA sequences crosslinked to purified proteins  
(Fig. 1a and Methods). Protein-crosslinked RNA fragments mapped 
to the entire length of the viral genome with near-complete sequence  
coverage, indicating that interactions across all viral RNA 
regions were captured (Extended Data Fig. 1a). Sequencing reads  

originating from SARS-CoV-2 RNA made up 93 and 92% of all 
mapped reads in 2 highly correlated replicate experiments (r = 0.994; 
Extended Data Fig. 1b,c).

To identify proteins that specifically interact with SARS-CoV-2 
RNAs as opposed to non-specific background proteins, we com-
pared the protein content of SARS-CoV-2 RNA purifications to 
that of an unrelated control ribonucleoprotein complex of known 
composition. As the control, we used the endogenously expressed 
human ribonuclease mitochondrial RNA processing (RMRP) RNA 
and purified both SARS-CoV-2 RNA and RMRP from infected 
Huh7 cells. RMRP was selected for several reasons: (1) RMRP inter-
acts with approximately ten well-known proteins that serve as an 
internal control15,23; (2) RMRP is not translated; and (3) RMRP does 
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Fig. 1 | RNA–protein interactome of SARS-CoV-2 in infected human cells. a, Outline of the RAP–MS method to identify proteins bound to SARS-CoV-2 
RNA and their crosslinked RNA sequences. b, Quantification of SARS-CoV-2 RNA-interacting proteins relative to RMRP-interacting proteins. The scatter 
plot of log2-transformed TMT ratios from two biological replicates is shown. The grey dots represent all proteins detected with two or more unique 
peptides. c, Proteins enriched in SARS-CoV-2 RNA purifications (Supplementary Table 1). Left: core SARS-CoV-2 RNA interactome (adjusted P < 0.05). 
Left and right: expanded SARS-CoV-2 RNA interactome. Significantly enriched proteins are highlighted in teal; SARS-CoV-2-encoded proteins are 
highlighted in magenta. Adjusted P value: two-tailed moderated t-test.
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not globally bind to mRNA. Hence, RMRP-binding proteins are dis-
tinct from the group of proteins expected to bind to SARS-CoV-2 
RNAs, making it an ideal control for the discovery of unknown 
interactors. Further, the purification of SARS-CoV-2 RNA and 
RMRP from infected cells avoids biases resulting from widespread 
changes in the host cell proteome induced by viral infection.

On average, approximately 90% of all crosslinked RNA fragments 
originated from the SARS-CoV-2 genome in SARS-CoV-2 RNA 
purifications, while more than 99% of crosslinked RNA fragments 
from RMRP purifications mapped to the human genome (Extended 
Data Fig. 1d). Western blot analysis confirmed the specific capture 
of SARS-CoV-2 nucleocapsid protein only in SARS-CoV-2-purified 
samples (Extended Data Fig. 1e). The RMRP component POP1 was 
detected only in RMRP purifications. Together, these experiments 
verify the high specificity of our approach for capturing the desired 
RNAs and the proteins that directly bind to them.

An atlas of SARS-CoV-2 RNA–protein interactions in human 
cells. Next, we subjected proteins purified with RMRP and 
SARS-CoV-2 RNAs to tandem mass tag (TMT) labelling and rela-
tive quantification by liquid chromatography coupled with tandem 
mass spectrometry (LC–MS/MS). In two replicate experiments, we 
identified 699 proteins, of which 583 were detected with 2 or more 
unique peptides (Supplementary Table 1 and Methods). As shown 
in Fig. 1b, we found five known RMRP components among the ten 
most significantly enriched proteins in RMRP purifications.

Next, we analysed proteins enriched in SARS-CoV-2 RNA purifi-
cations and found 15 SARS-CoV-2 proteins, 6 of which were among 
the 20 most significantly enriched proteins (Fig. 1b,c). In addition 
to 5 viral proteins translated from distinct open reading frames 
(ORFs), 10 of the 16 non-structural proteins (NSPs), which are 
derived from a precursor polyprotein24, were detected by RAP–MS.

As expected, the SARS-CoV-2 nucleocapsid protein, which 
binds the viral RNA, was one of the two most significantly enriched 
viral proteins, followed by several known viral RNA binders, such 
as the endoribonuclease NSP15 (ref. 25), the RNA-dependent RNA 
polymerase (RdRP) NSP12 (ref. 26), the methyltransferase NSP16 
(ref. 27), the RNA-binding protein NSP9 (ref. 28), the capping fac-
tor NSP10 (ref. 27), the primase NSP8 (ref. 26), the 5′-UTR binder 
NSP1 (ref. 29) and the multifunctional protein NSP3 (ref. 30). 
Remarkably, NSP3 and the most strongly enriched protein in our 
data, NSP6, were required for the formation of double-membrane 
vesicles31 and both proteins are candidate constituents of a molecu-
lar pore complex involved in the export of RNA from coronavirus 
double-membrane vesicles32. We also found ORF3a, which binds 
the 5′-end of the SARS-CoV-1 genome33, as well as ORF9b and 
the S and M proteins among strongly enriched candidates. While 
M is known to interact with the nucleocapsid protein, a model for 
genomic RNA packaging further suggests a possible RNA-binding 
function for M34. An RNA-binding activity of S was not previously 
reported. While S covers the surface of the viral envelope, it has a 
transmembrane domain and an intracellular tail35, making it con-
ceivable that S may indeed contact viral RNA.

Discovery of 104 human proteins that bind SARS-CoV-2 RNA. We 
next focused on the human proteins enriched in SARS-CoV-2 RNA 
purifications. We identified 276 proteins with a positive log2 fold 
change. Of these, 57 were significantly enriched (adjusted P < 0.05, 
two-tailed t-test), which we subsequently defined as the set of core 
SARS-CoV-2 RNA interacting proteins (Fig. 1c). Additionally, we 
also defined an expanded SARS-CoV-2 RNA interactome using a 
relaxed false discovery rate (FDR) of less than 20% (Fig. 1c).

The expanded SARS-CoV-2 RNA interactome encompassed 104 
human proteins and included 13 SARS-CoV-2-encoded proteins. 
The vast majority of the human RNA interactome proteins (100 pro-
teins, 96%) have been identified previously in system-wide studies 

aimed at capturing proteins that crosslink to RNA36 (Supplementary 
Table 2). Comparing this expanded SARS-CoV-2 RNA interactome 
with the poly(A)-RNA interactome in Huh7 cells37, revealed high 
overlap between both datasets (69 proteins, 66%) (Fig. 2a). Next, 
we compared our direct SARS-CoV-2 RNA interactome with pro-
teins that directly or indirectly associate with the RNA genomes of 
Dengue and Zika viruses in Huh7.5 cells38. Sixty-six proteins (63%) 
of the expanded SARS-CoV-2 RNA interactome also associated 
with the Dengue and Zika virus RNAs, while 38 proteins (36.5%) 
were unique SARS-CoV-2 RNA binders (Fig. 2a). Since corona-
viruses form replication/transcription complexes (RTCs), we also 
compared the expanded SARS-CoV-2 RNA interactome to the 
protein content of murine coronavirus RTCs39 and found 64 shared 
proteins (Supplementary Table 2).

Finally, only 10 of the 332 human proteins that bound recombi-
nant SARS-CoV-2 proteins in uninfected cells10 also bound directly 
to viral RNA in infected cells (Supplementary Table 2). These results 
highlight the importance of discriminating between protein–pro-
tein and RNA–protein interactions when dissecting the biology of 
SARS-CoV-2.

Biological functions of SARS-CoV-2 RNA-binding proteins. 
To analyse the biological functions of SARS-CoV-2 RNA bind-
ers, we performed a hypergeometric gene ontology (GO) enrich-
ment analysis on the expanded SARS-CoV-2 RNA interactome. We 
observed strong enrichment for GO terms linked to translational 
initiation (GO:0006413), nonsense-mediated decay (GO:0000184), 
signal-recognition particle-dependent cotranslational protein tar-
geting to the membrane (GO:0006614) and viral transcription 
(GO:0019083) (Fig. 2b and Supplementary Table 3). Consistent 
with the enrichment of these GO terms, the importance of subge-
nomic mRNA translation at the endoplasmic reticulum membrane 
is well established for coronaviruses40. Further, nonsense-mediated 
mRNA decay was recently described as an antiviral mechanism tar-
geting coronavirus RNAs41.

In agreement with the crucial role of mRNA translation, the 
expanded SARS-CoV-2 RNA interactome included 19 ribosomal 
proteins and 12 translation factors. Among the translation factors, 
the eukaryotic translation initiation factor 4F (EIF4F) components 
EIF4G1 and EIF4B are regulated by mammalian target of rapamy-
cin (mTOR) signalling42,43. EIF4B is important for recruiting the 
40S subunit to mRNA and both the phosphatidylinositol-3-kinase 
(PI3K)/mTOR and mitogen-activated protein kinase (MAPK) path-
ways target EIF4B to control its activity43. Inhibition of PI3K/Akt/
mTOR signalling has been demonstrated to suppress SARS-CoV-2 
replication in Caco2 cells8.

To examine the connectivity of the identified SARS-CoV-2 
RNA-binding proteins and their relationship to virus-associated 
biological processes systematically, we constructed a protein–pro-
tein association network using our expanded RNA interactome 
(Fig. 2c and Supplementary Table 4). We observed a striking enrich-
ment for physical interactions when comparing the total connectiv-
ity among RNA interactome proteins to the connectivity of equally 
sized networks sampled from expressed proteins (Extended Data 
Fig. 2 and Methods; permutation test P < 2.2 × 10−16). In addition to 
ribosomal proteins and translation factors, many virus-associated 
RNA-binding proteins are prominently represented in this net-
work (Fig. 2c). Since RNA-binding proteins can be regulated 
by phosphorylation, we intersected our expanded SARS-CoV-2 
RNA interactome with a recent phosphoproteomic dissection of 
SARS-CoV-2-infected cells7, highlighting 30 proteins that might  
be dynamically phosphorylated in response to SARS-CoV-2  
infection (Fig. 2d).

We next integrated known drug–target interactions44 within 
this network and identified 23 SARS-CoV-2 RNA interactome 
proteins that can be targeted with existing compounds, including  
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peptidyl-prolyl cis-trans isomerase A (PPIA), actin-related  
protein 2 (ACTR2; henceforth ARP2), sodium/potassium 
-transporting ATPase subunit alpha-1 (ATP1A1), annexin A1 
(ANXA1), cofilin-1 (CFL1) and epidermal growth factor receptor 
(EGFR) (Fig. 2e). Notably, EGFR is a known target of compounds 
that inhibit SARS-CoV-2 replication7,8,10.

Identification of activated host response pathways. To gain 
deeper insight into host response pathways activated upon 
SARS-CoV-2 infection, we globally measured protein abundance 
changes in infected cells. We performed triplicate MS experi-
ments on SARS-CoV-2-infected and uninfected Huh7 cells and  

identified 10,956 proteins with 2 or more unique peptides (Fig. 3a 
and Supplementary Table 5). Among the detected proteins, 4,578 
proteins were regulated (adjusted P < 0.05, two-tailed t-test) after 
24 h of SARS-CoV-2 infection, which is consistent with widespread 
proteome regulation and agrees well with previously published data 
(Extended Data Fig. 3a)8,9. As expected, proteome samples clustered 
according to their infection status in a principal component analysis 
(Extended Data Fig. 3b). Among differentially expressed proteins, 
we detected 13 viral proteins and 56 proteins from our expanded 
SARS-CoV-2 RNA interactome (Fig. 3a).

We next performed gene set enrichment analysis (GSEA) 
using our proteome abundance measurements. Among the most  
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downregulated proteins are shown in dark grey. Circle sizes scale to the number of connections of each interactome protein. Selected GO enrichments for 
network communities are shown in the transparent circles (Methods). Full GO term analysis is provided in Supplementary Table 8.
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significantly enriched hallmark gene sets were ‘TGF-β signalling’, 
‘TNF-α signalling via NF-κB’, ‘interferon (IFN)-γ response’ and 
‘IL-6 JAK STAT3 signalling’ (Fig. 3b and Extended Data Fig. 3c), 
which is consistent with the induction of broad pro-inflammatory 
and antiviral responses in infected cells. Further, we observed sig-
nificant enrichment of the gene sets ‘GO regulation of MAPK cas-
cade’, ‘GO positive regulation of MAPK activity’ and ‘GO response 
to type I interferon’ (Supplementary Table 6). Recent evidence indi-
cates that these pathways are indeed highly relevant in the context 
of SARS-CoV-2 infections5,7,8. Inhibition of growth factor signalling 
through the MAPK pathway, which responds to and controls the 
production of pro-inflammatory cytokines, including TNFα and 
IL-6, was shown to modulate SARS-CoV-2 replication7,8.

In agreement with recent transcriptome studies5,6, our proteome 
data suggest activation of interferon signalling upon SARS-CoV-2 
infection. Among interferon-related genes, we observed signifi-
cant upregulation of several major components of IFN signalling 
pathways, including STAT1 and IRF9, which together with STAT2 
make up the interferon stimulated gene factor 3 (ISGF3) complex, 
their upstream components TYK2 and JAK1, as well as their down-
stream targets IFIT1, IFIT3, IFITM3, OAS2 and ISG15 (Fig. 3a). 
Other strongly upregulated IFN-related genes include BST2, SP110, 
UBE2L6, ADAR and TGIF1 (Supplementary Table 5). Notably, 
many SARS-CoV-2 RNA interactome members are linked to the 
IFN response. These include the strongly enriched PUM1 (ref. 45), 
YBX1 (ref. 46), SYNCRIP47, G3BP1 (refs. 48,49), G3BP2 (refs. 48,49), 
EIF4B50, MOV10 (ref. 51), CAPRIN1 (ref. 49), DDX3X52, LSM14A53, 
RyDEN54,55, STRAP56, ANXA1 (ref. 57), DDX1 (ref. 58), PCBP2 (ref. 59),  
HNRNPA2B1 (ref. 60) and YWHAZ61. In conclusion, our proteome 
analysis verifies the induction of an appropriate host response in 
SARS-CoV-2-infected Huh7 cells and further supports an impor-
tant role for IFN and MAPK signalling in SARS-CoV-2 infection.

Interplay between SARS-CoV-2 RNA binders and host cell pro-
teins. As an RNA-based obligate intracellular parasite, SARS-CoV-2 
must effectively interface with the host cell and rewire RNA metab-
olism and RNA-associated regulatory processes. In addition to 
controlling the RNA life cycle62, host RNA-binding proteins are an 
integral part of regulatory circuits that participate in host defence 
mechanisms63,64. To examine the interplay and connectivity between 
direct SARS-CoV-2 RNA binders and the host cell proteome, we 
used curated protein–protein interaction data to build a network 
that visualizes interactions between SARS-CoV-2 RNA binders 
and regulated host proteins (Fig. 3c, Extended Data Fig. 3d and 
Supplementary Table 7). We considered the connectivity among all 
differentially expressed host proteins and those that were detected 
in our core RNA interactome. Interactome proteins had a greater 
than twofold enrichment for network connections (mean 108) 
when compared to proteins not detected by RAP–MS (mean 45), 
indicating a significant enrichment in connectivity (Wilcoxon test, 
P = 8.92 × 10−08). To further contextualize this network, we over-
laid biological processes that were enriched among regulated pro-
tein communities that associate with SARS-CoV-2 RNA binders  
(Fig. 3c and Supplementary Table 8). This analysis highlighted sev-
eral cellular pathways and processes emerging as highly relevant in 
the context of SARS-CoV-2 infections, including myeloid-mediated 
immunity65, receptor signalling8, protein phosphorylation7,8, vesicle 
transport8,10, protein folding6,7 and translational regulation8,66.

Taken together, our network analysis connects RNA interactome 
proteins to emerging SARS-CoV-2 biology and provides a map of 
putative regulatory hubs in SARS-CoV-2 infections.

Genetic screens identify functional SARS-CoV-2 RNA binders. 
To functionally stratify our direct RNA binders, we intersected the 
SARS-CoV-2 RNA interactome with a recent genome-wide CRISPR 
perturbation screen designed to identify host factors that affect cell 

survival after SARS-CoV-2 infection67. Out of 104 human proteins 
in our expanded RNA interactome, we obtained CRISPR z-scores 
for 94 proteins67; depletion of 11 of these proteins had a statisti-
cally significant effect on SARS-CoV-2-induced cell death (Fig. 4a). 
Strikingly, cellular nucleic acid-binding protein (CNBP), the human 
protein most significantly enriched in RAP–MS, also had the most 
significant effect on virus-induced cell death among all SARS-CoV-2 
RNA interactome members (Fig. 4a). In addition to the 11 aforemen-
tioned proteins, the direct SARS-CoV-2 RNA binders cold shock 
domain-containing protein E1 (CSDE1)68, polyadenylate-binding 
protein 1 (PABPC1) (refs. 11,68) and Ras-related protein Rab-7a 
(RAB7A)11 were also identified as host factors with functional rel-
evance in SARS-CoV-2 infections by genetic screening approaches.

CNBP functions as an antiviral regulator. CNBP is required to 
activate the innate immune response and has been linked to regu-
lating the expression of pro-inflammatory cytokines in response to 
foreign nucleic acid sensing69,70. Notably, CNBP-deficient animals 
were highly susceptible to infections with different pathogens69,70. 
These findings are consistent with CNBP-depleted cells being sen-
sitized to virus-induced cell death, which suggests that CNBP may 
act as an antiviral regulator. To corroborate the functional impor-
tance of CNBP in SARS-CoV-2 infections, we generated polyclonal 
Huh7 CNBP knockout cell lines using CRISPR–Cas9 (Fig. 4b). We 
infected CNBP knockout cells with SARS-CoV-2 and noted sig-
nificantly elevated levels of intracellular viral RNA compared to 
matched Huh7 control cells (Fig. 4b). Thus, CNBP is indeed a func-
tionally important SARS-CoV-2 RNA interactor.

To confirm the direct physical engagement of SARS-CoV-2 
RNAs by CNBP, we performed enhanced crosslinking and immu-
noprecipitation (eCLIP) in SARS-CoV-2-infected Huh7 cells and 
quantified the enrichment of CNBP peaks relative to size-matched 
input libraries71. First, we analysed CNBP binding to the human 
transcriptome. Consistent with earlier reports72, CNBP bound to 
protein-coding transcripts and displayed a preference for binding 
within the coding sequence (CDS) of mRNAs (Fig. 4c,d). A large 
number of transcripts bound by CNBP in SARS-CoV-2-infected 
cells were previously reported as CNBP targets (approximately 
46%; Supplementary Table 9). We next analysed CNBP binding to 
SARS-CoV-2 RNA and observed several strongly enriched bind-
ing sites in the viral genome (Fig. 4e). These data provide strong 
evidence for a direct interaction between CNBP and SARS-CoV-2 
RNAs in infected cells and validate that RAP–MS indeed identifies 
direct RNA binders. Further, the finding that CNBP preferentially 
associates with the CDS of mature mRNAs lends credibility to its 
previously proposed role as a translational regulator72 in addition to 
its function in regulating pro-inflammatory cytokines.

LARP1 binds genomic and subgenomic SARS-CoV-2 RNAs. 
Other than CNBP, two members of the La-related protein (LARP) 
family, namely LARP1 and LARP4, were strongly enriched in 
SARS-CoV-2 RNA purifications. While LARP1 did not quite meet 
our significance cut-off, both LARP1 and LARP4 were among the 
15 host proteins with the strongest enrichment based on overall 
effect size, indicating that LARP1 is very likely a SARS-CoV-2 RNA 
binder. Additionally, LARP1 was detected among protein–protein 
interactors of the nucleocapsid protein in uninfected cells10.

Given that LARP1 is a major downstream target of mammalian 
target of rapamycin complex 1 (mTORC1) (refs. 73,74) and inhibition 
of PI3K/Akt/mTOR was recently shown to inhibit SARS-CoV-2 
replication in Caco2 cells8, we sought to characterize the 
LARP1-SARS-CoV-2 axis in greater detail. We performed eCLIP71 
to map direct physical interactions between LARP1 and its RNA tar-
gets. LARP1 predominantly bound protein-coding transcripts and 
we observed most of the enriched peaks in the CDS, followed by 
5′-UTR and 3′-UTR sequences (Fig. 5a). Previous work suggested 
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that LARP1 binds the 7-methylguanosine triphosphate (m7Gppp) 
moiety of the cap and the adjacent 5′-terminal oligopyrimidine 
(5′TOP) motif of mRNAs to regulate their translation75. Consistent 
with this finding, our eCLIP data revealed a strong enrichment of 
5′-proximal nucleotides in 5′-UTR sequences and we recovered 
an oligopyrimidine motif reminiscent of TOP-like sequences in 
approximately 30% of all bound 5′-UTRs (Fig. 5b,c). Out of 112 
mRNAs that are regulated by LARP1 downstream of mTOR76, 
we observed LARP1 binding to 84 mRNAs (75%; Supplementary 
Table 10). In line with the known regulatory functions of LARP1 
(ref. 76), LARP1 target transcripts were most strongly enriched 
for GO terms linked to translational regulation (Supplementary  
Table 11). Together, these data demonstrate that our eCLIP experi-
ments recovered known regulatory interactions of LARP1.

Having confirmed the quality of our eCLIP experiment on host 
RNAs, we next characterized LARP1 binding to SARS-CoV-2 RNAs 
and found several regions of enrichment that coincided with oli-
gopyrimidine sequences (Fig. 5d). Notably, we observed LARP1 
binding to the first 70 nucleotides at the 5′-end of the SARS-CoV-2 
genome, which corresponds to the viral 5′-leader sequence77 
and contains a TOP-like motif instance (Fig. 5d). Binding to the 
5′-leader, which is present in all viral subgenomic mRNAs, suggests 
a direct association of LARP1 with subgenomic mRNAs.

LARP1 represses SARS-CoV-2 replication. To determine the 
impact of LARP1 depletion on SARS-CoV-2 replication, we gen-
erated four clonal LARP1 knockout cell lines using CRISPR–Cas9 
in HEK293 cells (Extended Data Fig. 4a). We infected cells with 
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SARS-CoV-2 and measured intracellular viral RNA levels and the 
production of infectious virus. Compared to wild-type (WT) cells, 
LARP1 knockout cells displayed approximately fivefold higher levels 
of intracellular viral RNA and a similar increase in the production 
of infectious virus (Fig. 5e). Conversely, transient overexpression of 
LARP1 fused to green fluorescent protein (GFP) in WT cells led 
to a significant reduction of viral RNA and infectious virus when 
compared to GFP expression alone (Fig. 5f and Extended Data Fig. 
4b). Next, we complemented LARP1 knockout cells with transiently 
expressed LARP1–GFP proteins (Fig. 5g, Extended Data Fig. 4c). 
In all knockout cell lines, we observed a clear reduction in intra-
cellular viral RNA that approached WT levels when compared to 
cells transfected with GFP alone. These experiments established 
that LARP1 functions as a repressor of SARS-CoV-2 replication in 
infected human cells.

RyDEN suppresses ribosomal frameshifting during SARS-CoV-2 
RNA translation. LARP1 interacts with PABPC1 and both LARP1 
and PABPC1 have been proposed to reside in the same ribonucleo-
protein complex with RyDEN54, all of which were enriched in RAP–
MS experiments. In addition to being an IFN-induced protein, 
RyDEN suppresses Dengue virus production in infected cells54 and 
inhibits programmed -1 ribosomal frameshifting (-1FS) in human 
immunodeficiency virus type 1 (HIV-1) infections55.

In coronaviruses, production of RdRP requires translation of 
the ORF1b gene, which is controlled by -1FS. For SARS-CoV-2, it is 
presently unknown if the efficiency of -1FS is important for the viral 
life cycle78. To dissect if RyDEN can modulate the frequency of -1FS 
in SARS-CoV-2, we generated a dual-colour fluorescence reporter 
system to quantify frameshifting efficiency in response to RyDEN 
induction, as seen upon SARS-CoV-2 infection (Extended Data Fig. 
4d and Methods). Using a reporter containing the HIV-1 frameshift 
element as a positive control, we confirmed that overexpression of 
RyDEN fused to enhanced cyan fluorescent protein (eCFP) sup-
pressed -1FS when compared to eCFP expression alone (Fig. 5h). 
Importantly, overexpression of RyDEN also led to a significant 
reduction of -1FS during translation of the SARS-CoV-2 frameshift 
element (Fig. 5h). Together, our results show that RyDEN is induced 
upon SARS-CoV-2 infection, associates with the SARS-CoV-2 RNA 
in infected cells and modulates the efficiency of SARS-CoV-2 -1FS.

Pharmacological inhibition of interactome proteins restricts 
viral replication. Next, we tested if targeting the SARS-CoV-2 RNA 
interactome and its associated pathways with known inhibitors is 
effective in restricting viral replication. We selected four inhibi-
tors that target components of our expanded RNA interactome: 
PPIA; ARP2; ATP1A1; and DDX3X. While DDX3X is a DEAD-box 
RNA helicase and canonical RNA-binding protein, PPIA, ARP2 
and ATP1A1 are non-classical RNA binders that are nonetheless 

robustly detected among RNA-binding proteins in Huh7 cells36,37,79. 
In addition to Huh7 cells, we evaluated all inhibitors in Calu3 cells, 
a human lung epithelial cell line that is naturally susceptible to 
SARS-CoV-2 infection.

We observed a dose-dependent inhibition of intracellular  
viral RNA expression accompanied by a reduction in the pro-
duction of infectious virus for the PPIA inhibitor cyclosporin A 
(Extended Data Fig. 5a,b), the ARP2/3 complex inhibitor CK-548 
and the ATP1A1 inhibitor ouabain (Fig. 6a,b). The observed  
effect was highly consistent between Calu3 and Huh7 cells  
(Fig. 6a,b). While CK-548 treatment reduced cell viability at the 
highest concentration in Huh7 cells, we did not observe such  
effects at identical concentrations in Calu3 cells. All other effica-
cious inhibitors had no apparent effect on cell viability (Extended 
Data Fig. 5c,d). Unlike the three aforementioned compounds,  
inhibition of DDX3X only led to a moderate reduction of intracel-
lular viral RNA and infectious virus in Calu3 cells at the highest 
concentration (Fig. 6a,b).

Beyond inhibiting direct RNA binders, we also targeted 
mTORC1, the upstream regulatory complex that controls LARP1 
activity. Consistent with LARP1 restricting SARS-CoV-2 replica-
tion, we observed that inhibiting mTORC1/2 resulted in reduced 
viral replication in Huh7 and Calu3 cells (Fig. 6a,b). These findings 
agree well with previous results showing that mTORC1 phosphory-
lates LARP1, which leads to a translational de-repression of LARP1 
target mRNAs76. Indeed, recent phosphoproteomic surveys demon-
strate that LARP1 undergoes dynamic phosphorylation in response 
to SARS-CoV-2 infection7,8.

Inhibition of another upstream regulator, TANK-binding kinase 
1, which interacts with the SARS-CoV-2 RNA binders DDX3X52 
and ANXA1 (ref. 57), increased the levels of viral RNA and infec-
tious virus in A549-ACE2 cells, but did not show a consistent 
effect in Huh7 or Calu3 cells (Extended Data Fig. 5a,b). Together, 
our experiments demonstrate that RNA interactome proteins rep-
resent viable targets for inhibiting SARS-CoV-2 replication. The 
SARS-CoV-2 RNA interactome provides valuable starting points 
for future mechanistic studies and may help developing new antivi-
ral approaches for COVID-19.

Discussion
Decoding how the RNA genomes of pathogenic RNA viruses  
interface with the host cell proteome has been a long-standing chal-
lenge. In this study, we provide detailed molecular insights into 
the identity of host factors and cellular machinery that directly 
and specifically bind SARS-CoV-2 RNAs during infection of 
human cells. We integrate CRISPR perturbation data and perform 
genetic and pharmacological validation experiments that together  
suggest functional roles for 18 RNA interactome proteins in 
SARS-CoV-2 infections.

Fig. 5 | LARP1 binds SARS-CoV-2 RNAs and restricts viral replication. a, Distribution of LARP1 eCLIP peaks to different RNA types and transcript regions. 
b, Meta-gene analysis of LARP1 eCLIP signal across mature mRNAs. c, Oligopyrimidine-rich sequence motif discovered de novo in LARP1 peaks mapping 
to 5′-UTRs (Methods). d, LARP1 eCLIP data aligned to the SARS-CoV-2 RNA genome. The fold change relative to the size-matched input is shown. 
MACS2-enriched peaks are shown above the fold change track. Oligopyrimidine-rich sequences that coincide with strongly enriched LARP1 peaks are 
highlighted. A zoom-in to the SARS-CoV-2 5′-leader sequence is shown below the genomic alignment. e, Left: RT–qPCR measurements of intracellular 
SARS-CoV-2 RNA at 24 h post-infection in WT HEK293 cells or 4 different LARP1 knockout cell lines. Quantification relative to 18S rRNA and WT cells 
is shown. Right: Infectious viral titres in the supernatants of infected cells quantified by plaque assays at 24 h post-infection. P values were determined 
using an unpaired two-tailed t-test. f, Left: RT–qPCR measurements of intracellular SARS-CoV-2 RNA at 24 h post-infection in HEK293 cells transiently 
overexpressing GFP or LARP1–GFP proteins. Quantification relative to 18S rRNA and GFP-overexpressing cells is shown. Right: Infectious viral titres in the 
supernatants of infected cells quantified by plaque assays at 24 h post-infection. P values were determined using an unpaired one-tailed t-test. g, RT–qPCR 
measurements of intracellular SARS-CoV-2 RNA at 24 h post-infection in LARP1 knockout cells complemented with either GFP or LARP1–GFP plasmids. 
Quantification relative to 18S rRNA and GFP-transfected WT cells is shown. P values were determined using an unpaired two-tailed t-test. e–g, All values 
are the mean ± s.d. (n = 3 independent infections) h, Quantification of ribosomal frameshifting efficiency using a dual-fluorescence translation reporter 
(Extended Data Fig. 4d) in HEK293 cells is shown. Data were normalized to cells transfected with eCFP (n = 6 independent transfections, except for 
control RNA n = 4). Values are the mean ± s.d. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05; NS, not significant; FSE, frameshift element.

Nature Microbiology | VOL 6 | March 2021 | 339–353 | www.nature.com/naturemicrobiology346

http://www.nature.com/naturemicrobiology


ArticlesNATURE MICRoBIoLoGy

Beyond identifying proteins that bind SARS-CoV-2 RNAs, we 
globally mapped where CNBP and LARP1 contact viral and human 
RNA and report binding preferences that are consistent with  

previously described regulatory functions of both proteins. While 
we show that CNBP acts as an antiviral factor, it remains to be  
determined if its role as a regulator of mRNA translation or its effect 

Enriched LARP1 peaks

a 5′-UTR CDS 3′-UTR

Start codon Stop codon

0

50

100

Scrambled FSE

HIV FSE

SARS-CoV-2 FSE

RyDEN-eCFP– + – + – +

No
rm

al
ize

d 
-1

FS
 e

ffi
cie

nc
y 

(%
)

eCFP only–+ – + – +

Control 
construct

Frameshift 
construct

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f C
LI

P 
pe

ak
s

Other

lncRNA
Pseudogene

Protein
coding

5′-UTR

3′-UTR

CDS

1

2

3

b c

Fold change

d

S M N
ORF7bORF1ab

0 kb 10 kb 20 kb 30 kb
SARS-CoV-2

LA
R

P1
 e

C
LI

P

0

6
MACS2 peaks

0 bp 10 bp 20 bp 30 bp 40 bp 50 bp 60 bp 70 bp

LA
R

P1
 e

C
LI

P

Fold change

0

2.32

5′-leader

WT

LA
RP1 k

no
cko

ut 
1

LA
RP1 k

no
cko

ut 
2

LA
RP1 k

no
cko

ut 
3

LA
RP1 k

no
cko

ut 
4

0

2

4

6

8

0

2

4

6

8

10

GFP ov
ere

xp
res

sio
n

LA
RP1–

GFP ov
ere

xp
res

sio
n

0

0.5

1.0

1.5

1 × 104

1 × 105

1 × 106 3 × 103

2 × 103

1 × 103p.
f.u

. m
l–1

p.
f.u

. m
l–1

GFP ov
ere

xp
res

sio
n

LA
RP1–

GFP ov
ere

xp
res

sio
n

e f

g

WT

LA
RP1 k

no
cko

ut 
1

LA
RP1 k

no
cko

ut 
2

LA
RP1 k

no
cko

ut 
3

LA
RP1 k

no
cko

ut 
4

GFP overexpression LARP1–GFP overexpression

LARP1 LARP1 LARP1 LARP1 
knockout 4knockout 3knockout 2knockout 1

h

0

1

2

Bi
ts

1 2 3 4 5 6 7 8 9 10

30% of 5′-UTR sequences 
E  = 1.4 × 10–19

Fo
ld

 e
nr

ic
hm

en
t 

R
el

at
iv

e 
vi

ra
l R

N
A 

le
ve

ls

R
el

at
iv

e 
vi

ra
l R

N
A 

le
ve

ls

R
el

at
iv

e 
vi

ra
l R

N
A 

le
ve

ls

NS

**
**

**
* *

***

****

**

**

**

******

NS **** ****

0

*

Nature Microbiology | VOL 6 | March 2021 | 339–353 | www.nature.com/naturemicrobiology 347

http://www.nature.com/naturemicrobiology


Articles NATURE MICRoBIoLoGy

on cytokine expression is critical for this function. We provide 
strong genetic evidence for a functional role of LARP1 in restricting 
SARS-CoV-2 replication. Remarkably, the SARS-CoV-2 5′-leader 
contains a TOP-like sequence motif that is bound by LARP1 in 
infected cells. While the TOP-like sequence is still several nucleo-
tides away from the 5′-end of the SARS-CoV-2 leader, it is tempt-
ing to speculate that binding of LARP1 would negatively influence 
translation of SARS-CoV-2 RNAs similar to LARP1-mediated 
translational repression of host-encoded 5′TOP mRNAs.

In addition to genetic perturbation, we inhibited SARS-CoV-2 
RNA binders pharmacologically. Notably, all host proteins and 
complexes that are effectively targeted by these inhibitors have 
previously been linked to viral diseases: (1) PPIA is involved in 
protein folding and has a well-documented impact on the replica-
tion of viruses80,81. Its direct interaction with SARS-CoV-2 RNA 
expands these previously described functions. While the PPIA 
inhibitor cyclosporin A has immunosuppressive properties, the 
non-immunosuppressive cyclosporin A analogue alisporivir may 
offer greater translational potential82; (2) a role for the RNA-binding 
metabolic enzyme ATP1A137 in coronavirus and respiratory syncy-
tial virus infections has been reported previously83,84. ATP1A1 had 
a significant effect on virus-induced cell death in a SARS-CoV-2 
CRISPR perturbation screen67. Hence, both genetic and pharma-
cological evidence point to ATP1A1 as an important SARS-CoV-2 
host factor; (3) ARP2 is part of the actin-related protein 2/3 com-
plex and contributes to regulating cell shape and motility, which 
can affect intracellular pathogens82. ARP2 has been identified as 
a respiratory syncytial virus host factor and is involved in filopo-
dia formation85. Recent work demonstrated that SARS-CoV-2  

infection induced a dramatic increase in filopodia and viral particles  
localized to these actin-rich protrusions7.

In addition to the aforementioned factors, we observed vari-
ous other notable proteins among SARS-CoV-2 RNA binders. 
These include vesicle trafficking proteins (SCFD1, USO1, RAB1A, 
RAB6D, RAB6A, RAB7A, GDI2), cytoskeleton regulators (ARP2, 
CFL1, PFN1, ACTA1), RNA editing cofactors (RBM47, A1CF) and 
subunits of a transfer RNA-splicing ligase complex (DDX1, RTCB).

Our work highlights opportunities for targeting proteins or path-
ways linked to the SARS-CoV-2 RNA interactome to interfere with 
viral infection. We believe that our approach provides a general 
roadmap for dissecting the biology of RNA viruses and the interac-
tions between hosts and pathogens at the molecular level.

Methods
Tissue culture. We maintained Huh7, Calu3, HEK293, ACE2-A549 (a generous 
gift from A. Pichlmair) and TMPRSS2-Vero E6 cells (a generous gift from S. 
Pöhlmann) in DMEM medium (Thermo Fisher Scientific) supplemented with 10% 
heat-inactivated FCS (Thermo Fisher Scientific) and 100 U ml−1 streptomycin and 
100 mg ml−1 penicillin. Cells were grown at 37 °C and 5% CO2.

Generation of LARP1 knockout cell lines using CRISPR–Cas9. To generate the 
LARP1 CRISPR knockout cells, we used the pX335-U6-chimeric-BB-CBh-hSpCas
9n(D10A) nickase (a generous gift from F. Zhang) together with GTTGGGT 
GGCAGTTTACGGGT and GCCACCCAAGAAGGACATGA as guide sequences. 
HEK293 cells were transfected with TransIT-X2 (Mirus Bio) and selected with 
2 µg ml−1 of puromycin in DMEM for 48 h and with 1 µg ml−1 for another 48 h. We 
picked single colonies and screened for LARP1 deletion by western blotting.

Plasmids for LARP1 overexpression were generated using C-terminal 
Myc-DDK-tagged human LARP1 (NM_015315), which was purchased from 
OriGene and subcloned into pEGFP-C1 retaining the C-terminal Myc-DDK tag.
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Generation of CNBP knockout cell lines using CRISPR–Cas9. A total of  
2.5 × 105 Huh7 cells per well were seeded in a 6-well plate and transfected the 
next day with 2.5 µg of a commercially available CNBP CRISPR–Cas9 knockout 
plasmid (catalogue no. sc-404090; Santa Cruz Biotechnology) using 2 µl of 
Lipofectamine 2000 (Thermo Fisher Scientific) per 1 µg of DNA. A plasmid 
containing a puromycin resistance gene was cotransfected as the selection marker. 
Control cells were transfected only with the puromycin resistance plasmid. 
Successfully transfected cells were selected with puromycin (5 µg ml−1) starting at 
24 h post-transfection for 2 d. CNBP expression in polyclonal cell populations was 
analysed by western blot.

Virus production. We used previously described patient-derived SARS-CoV-2 
isolates86,87 propagated on Vero cells. To make high-titre viral stocks, we used 
TMPRSS2-Vero E6 cells, which were infected at a multiplicity of infection (MOI) 
of 0.005 plaque-forming units (p.f.u.) per cell for virus propagation. After 1 h of 
incubation at 37 °C, the inoculum was removed, cells were washed with PBS and 
OptiMEM (Gibco) containing 1% FCS was added. At 48 h post-infection, the cell 
culture supernatant was cleared by centrifugation (500g for 5 min) and aliquoted. 
Viral titres were determined by plaque assay on TMPRSS2-Vero E6 cells and by 
crystal violet staining.

Virus infections. In general, the virus inoculum was prepared in DMEM 
containing 5% FCS and 100 U ml−1 of streptomycin and 100 mg ml−1 of penicillin. 
Cells were washed with PBS and incubated with the inoculum for 1 h at 37 °C. The 
inoculum was removed and fresh DMEM supplemented with 5% FCS; 100 U ml−1 
of streptomycin and 100 mg ml−1 of penicillin were added to the cells.

RAP–MS. RAP–MS was carried out as described previously15 with the following 
modifications: to capture endogenous SARS-CoV-2 RNAs, we designed and 
synthesized 5′ biotinylated 90-mer DNA oligonucleotides (Integrated DNA 
Technologies) antisense to the complementary target RNA sequence. We used  
67 probes such that one probe binding site occurred roughly every 400 bases in 
the approximately 30-kilobase (kb) SARS-CoV-2 genome and excluded regions 
that matched to human transcripts or genomic regions as described previously88,89. 
For the SARS-CoV-2 RNA and RMRP antisense purifications, we grew ten 10-cm 
tissue culture plates of Huh7 cells per replicate. We prepared two replicates for 
SARS-CoV-2 RNA and RMRP purifications and included two non-crosslinked 
control samples that were used for RMRP purifications. SARS-CoV-2 infection 
was carried out with a previously described isolate87 at an MOI of 10 for 24 h. 
Cells were washed once with PBS and then crosslinked on ice using 0.8 J cm−2 of 
254 nm UV light in a GS Gene Linker (Bio-Rad Laboratories). Cells were then 
lysed on the tissue culture plate by adding 1 ml of RAP lysis buffer (10 mM of 
Tris pH 7.5, 500 mM of LiCl, 0.5% dodecyl maltoside, 0.2% SDS, 0.1% sodium 
deoxycholate, EDTA-free protease inhibitor cocktail (Thermo Fisher Scientific) 
and murine RNase inhibitor (New England Biolabs)). Lysates were then collected 
and flash-frozen in liquid nitrogen for storage at −80 °C. All subsequent steps were 
carried out as described previously15.

RAP–MS protein digestion and TMT labelling. RAP-captured proteins were 
resuspended in 40 μl of 8 M of urea in 50 mM of Tris-HCl, followed by reduction 
with 4 mM of dithiothreitol (DTT) for 30 min at room temperature and alkylation 
with 10 mM of iodoacetamide for 45 min at room temperature in the dark. All six 
samples were then digested with 0.1 μg of Lys-C for 2 h, followed by a reduction 
of the urea concentration to <2 M and continued digestion with 0.5 μg of trypsin 
overnight. Reactions were quenched with formic acid at a final concentration of 
5% and then desalted by reverse-phase C18 stage tips as described previously90 and 
dried down. Peptides were then resuspended in 50 μl of 50 mM of HEPES buffer 
and isobarically labelled using 400 μg of TMT 6-plex (TMT6) isobaric labelling 
reagent (Thermo Fisher Scientific). The labelling reactions were then quenched 
with 4 μl of 5% hydroxylamine; samples were mixed together and dried. The 
sample was fractionated by SCX stage tip strategy using three pH cuts at 5.15, 8.25 
and 10.3 as described previously90.

Proteome analyses of SARS-CoV-2-infected cells. For the proteome 
measurements, we expanded the Huh7 cells to two 10-cm tissue culture plates per 
replicate. Cells were infected with a previously described SARS-CoV-2 isolate87 
at an MOI of 10 and incubated for 24 h before being collected. Three process 
replicates of infected and non-infected cell line samples were generated. Cells 
were lysed in 8 M of urea, 75 mM of NaCl, 50 mM of Tris pH 8.0, 1 mM of EDTA, 
2 µg ml−1 aprotinin, 10 μg ml−1 of leupeptin, 1 mM of phenylmethylsulfonyl fluoride, 
10 mM of NaF, phosphatase inhibitor cocktail 2 (PIC2) (Sigma-Aldrich), PIC3 
(Sigma-Aldrich) and 10 mM of sodium butyrate. Benzonase was added to digest 
nucleic acids and DNA was sheared using a probe sonicator (10% amplitude, 
0.7 s on, 2.3 s off, 6 min 15 s total). Cell debris was removed by centrifugation and 
lysates were flash-frozen for storage. All samples were prepared for MS analysis 
using an optimized workflow as described previously91. Briefly, lysed samples were 
reduced, alkylated and digested by LysC for 2 h, followed by overnight digestion 
with trypsin. Digestions were quenched with formic acid and all peptide samples 
were desalted using reverse-phase C18 Sep-Pak cartridges. Samples were then 

quantified using the Pierce bicinchoninic acid protein assay and measured into 
500-μg aliquots for isobaric labelling. Peptides were isobarically labelled with 
TMT6 following the reduced TMT protocol92. After confirming 98% or greater 
label incorporation, samples were mixed together and desalted. The resulting 
sample was then fractionated by offline high pH reversed-phase chromatography 
and concatenated into 24 fractions for analysis using online LC–MS/MS91.

LC–MS/MS analysis (RAP–MS and proteome). All the samples were analysed 
either on an Orbitrap Exploris 480 (RAP–MS fractions) or a Q Exactive Plus 
(proteome fractions) mass spectrometer coupled with an Easy nLC 1200 ultra-high 
pressure liquid chromatography system (Thermo Fisher Scientific) with solvent 
A of 0.1% formic acid/3% acetonitrile and solvent B of 0.1% formic acid/90% 
acetonitrile. One microgram of each of the proteome fractions and half of each 
of the RAP–MS fractions were injected on a 75-μm ID PicoFrit column packed 
in-house to approximately 28-cm length with ReproSil-Pur C18-AQ 1.9-μn beads 
(Dr. Maisch). Samples were separated at a 200 nl min−1 flow rate with a gradient 
of 2–6% solvent B for 1 min, 6–30% B for 84 min, 30–60% B for 9 min, 60–90% 
B for 1 min, followed by a hold at 90% B for 5 min. Both mass spectrometers 
were operated in data-dependent acquisition mode. An Exploris 480 MS1 scan 
(r = 50,000) was followed by MS2 scans (r = 15,000) for the top 20 most abundant 
ions using normalized automatic gain control (AGC) of 100% for MS1 and 200% 
for MS2, MS2 maximum injection time of 150 ms, normalized collision energy 
of 34 and fit filter of 50%. The Q Exative Plus MS parameters were set as follows: 
MS1, r = 70,000; MS2, r = 17,500; MS1 AGC target of 3e6; MS2 for the 12 most 
abundant ions using an AGC target of 5e4 and maximum injection time of 120 ms; 
and normalized collision energy of 29.

Quantification and identification of peptides and proteins (RAP–MS and 
proteome). MS/MS spectra were searched on the Spectrum Mill MS Proteomics 
Workbench against a Reference Sequence (RefSeq)-based sequence database 
containing 41,457 proteins mapped to the human reference genome (hg38) 
obtained via the University of California, Santa Cruz Table Browser (https://
genome.ucsc.edu/cgi-bin/hgTables) on 29 June 2018, with the addition of 13 
proteins encoded in the human mitochondrial genome, 264 common laboratory 
contaminant proteins, 553 human non-canonical small ORFs, 28 SARS-CoV-2 
proteins obtained from RefSeq derived from the original Wuhan-Hu-1 China 
isolate (NC_045512.2) (ref. 93) and 23 new unannotated SARS-CoV-2 ORFs 
whose translation is supported by ribosome profiling94, yielding a total of 42,337 
proteins. Among the 28 annotated SARS-CoV-2 proteins, we opted to omit 
the full-length ORF1ab to simplify peptide-to-protein assignment, and instead 
represented ORF1a and ORF1ab as the mature 16 individual NSPs that resulted 
from proteolytic processing of the 1a and 1ab polyprotein. Finally, we added to the 
database the UniProt entry for ORF9b. We further added the D614G variant of the 
SARS-CoV-2 spike protein that is commonly observed in European and American 
virus isolates. Spectrum Mill search parameters included: instrument setting 
of ESI-QEXACTIVE-HCD-v4-35-20; parent and fragment mass tolerance of 
20 parts per million; trypsin allow P enzyme setting; and up to 4 missed cleavages. 
Carbamidomethylation and TMT labelling at lysine (with and without labelling 
at the N terminus) were set as fixed modifications, while variable modifications 
included acetylation of protein N termini, oxidized methionine, deamidation of 
asparagine and pyroglutamic acid at the peptide N-terminal glutamine. Peptide 
spectrum match score thresholding was optimized to achieve a target–decoy FDR 
of 1.2% for the validation of spectra. Peptide-level auto-validation was followed  
by protein polishing with an FDR of 0% at the protein level and a minimum  
score of 13.

The Spectrum Mill generated proteome-level export from the RAP–MS and 
proteome datasets, which were filtered for human proteins identified by two 
or more distinct peptides, SARS-CoV-2 proteins and unannotated virus ORFs, 
were used for further statistical analyses. Five of the SARS-CoV-2 NSPs (NSP6, 
NSP15, NSP16, NSP9 and NSP1) identified by a single, highly scoring distinct 
peptide were kept in the dataset. Keratins were excluded from the RAP–MS 
data. Protein quantification was achieved by taking the ratio of TMT reporter 
ion for each sample/channel over the median of all six channels. A moderated 
two-sample t-test was applied to compare SARS-CoV-2 RNA and RMRP samples 
after mean normalization and SARS-CoV-2-infected and non-infected samples 
after median-median absolute deviation (MAD) normalization of RAP–MS 
and proteome datasets, respectively. A Benjamini–Hochberg-corrected P value 
threshold of 0.05 was used to assess significantly regulated proteins in each  
of the datasets.

Covalent protein capture and sequencing of crosslinked RNA. To capture RNA 
sequences covalently crosslinked to proteins purified with RAP–MS, we carried  
out RAP as described above. After our pilot RAP–MS experiment (Extended  
Data Fig. 1a,b), SARS-CoV-2-bound proteins were eluted from streptavidin  
beads by heat fragmentation of RNA (3 min at 91 °C in 100 mM of HEPES pH 7.5,  
5 mM of MgCl2, 100 mM of KCl, 0.02% Triton X-100). For subsequent RAP–MS 
experiments, we replaced heat fragmentation with ribonuclease (RNase) H 
digestion, using 7.5 μl of RNase H (New England Biolabs), 2 μl of TURBO DNase 
(Thermo Fisher Scientific) in 55.5 μl of RNase H buffer (100 mM of HEPES pH 7.5,  
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75 mM of NaCl, 3 mM of MgCl2, 0.125% N-lauroylsarcosine (NLS), 0.025% 
sodium deoxycholate, 2.5 mM of tris(2-carboxyethyl)phosphine (TCEP)) and 
incubating for 30 min at 37 °C. Following the elution of proteins, supernatants 
were transferred into new tubes and beads were washed once with RNase H buffer. 
Wash fractions were pooled with eluates and stored on ice. The next steps were 
described previously in similar form by Quinodoz et al.95. We separated 100 μl of 
NHS magnetic beads (Thermo Fischer Scientific) on a magnet and discarded the 
supernatant. We then washed them with 1 ml of 1 mM of ice-cold HCl, followed 
by a quick rinse in 1 ml of ice-cold PBS. After removing the PBS, we immediately 
added the stored eluates to the prepared beads. Binding was carried out overnight 
at 4 °C on a rotating wheel. The next day, we quenched the NHS beads by adding 
1 ml of 0.5 M Tris pH 8.0 and incubating for 1 h at 4 °C. We then washed the beads 
4 times in 1 ml of modified RLT buffer (RLT buffer supplied by QIAGEN with 
added 10 mM of Tris pH 7.5, 1 mM of EDTA, 1 mM of EGTA, 0.2% NLS, 0.1% 
Triton X-100 and 0.1% NP-40). Next, we washed the beads twice more in 1 ml of 
1× PBS, 5 mM of EDTA, 5 mM of EGTA, 5 mM of DTT, 0.2% Triton X-100, 0.2% 
NP-40, 0.2% sodium deoxycholate and incubated each washing step for 5 min at 
55 °C. These heated washing steps were followed by two additional washes in the 
same buffer at room temperature. Subsequently, beads were rinsed on the magnet 
in 1× FastAP buffer (10 mM of Tris pH 7.5, 5 mM of MgCl2, 100 mM of KCl, 0.02% 
Triton X-100). Next, end repair was carried out by resuspending the beads in 50 μl 
of FastAP mix (39 μl of H2O, 5 μl of 10× FastAP buffer (Thermo Fisher Scientific), 
1 μl of murine RNase inhibitor, 5 μl of FastAP enzyme (Thermo Fisher Scientific) 
and incubating for 20 min at 37 °C. In the meantime, we prepared 150 μl of T4 
polynucleotide kinase (PNK) mix (120 μl of H2O, 20 μl of 10× T4 PNK buffer (New 
England Biolabs), 1 μl of murine RNase inhibitor, 7 μl of T4 PNK, 1 μl of TURBO 
DNase), which was added to the FastAP reaction and incubated for another 20 min 
at 37 °C. After end repair, we washed the beads once in modified RLT buffer and 
twice in detergent wash buffer (20 mM of Tris pH 7.5, 50 mM of NaCl, 0.2% Triton 
X-100, 0.2% NP-40, 0.2% sodium deoxycholate). We then rinsed the beads on the 
magnet twice with 1× T4 RNA ligase buffer (50 mM of Tris-HCl pH 7.5, 10 mM 
of MgCl2), before resuspending the beads in 25 μl of RNA ligation mix (9 μl of 
H2O, 3 μl of 10× T4 RNA ligase buffer (New England Biolabs), 0.3 μl of 0.1 M of 
ATP, 0.8 μl of dimethylsulfoxide (DMSO), 0.4 μl of murine RNase inhibitor, 9 μl of 
polyethylene glycol 8000 and 2.5 μl of T4 RNA ligase I High Concentration (New 
England Biolabs). Next, we added 5 μl of 20 nM of RiL19 (/5phos/rArGrArUrCr
GrGrArArGrArGrCrGrUrCrGrUrG/3SpC3/; Integrated DNA Technologies) and 
incubated the samples for 75 min at 23 °C. After 3′-ligation, we washed the beads 
once in 1 ml of modified RLT buffer, followed by two washes in detergent wash 
buffer. Next, we resuspended the beads in 250 μl of proteinase K (New England 
Biolabs) mix containing 200 μl of NLS RNA elution buffer (20 mM of Tris pH 
8.0, 10 mM of EDTA, 2% NLS, 2.5 mM of TCEP), 12.5 μl of 5 M of NaCl, 1 μl of 
500 mM of TCEP, 12.5 μl of proteinase K and 24 μl of H2O and incubated the 
samples for 1.5 h at 55 °C. After proteinase K digestion, we separated beads on a 
magnet, transferred the supernatant into a new tube and extracted RNA using 
phenol-chloroform extraction. All subsequent manipulation steps were carried out 
as described in the eCLIP library preparation protocol71, starting with the reverse 
transcription of recovered RNA fragments.

eCLIP. For the eCLIP experiments, we grew approximately 24 × 106 Huh7 cells and 
infected them with SARS-CoV-2 at an MOI of 5 PFU per cell; 24 h after infection, 
culture medium was removed, cells were briefly rinsed with PBS and subjected to 
UV irradiation with a total dose of 0.8 J cm−2. Cells were scraped in PBS using a 
flexible rubber scraper, pelleted at 200g for 5 min and lysed by adding 2× CLIP lysis 
buffer (100 mM of Tris-HCl pH 7.4, 300 mM of NaCl, 2 mM of EDTA, 2% (v/v) 
NP40, 1% sodium deoxycholate, 0.5 mM of DTT). After a 30-min incubation at 
room temperature, lysates were stored at −80 °C.

Frozen lysates were combined with an equal amount of nuclease-free 
water to adjust the lysis buffer to a 1× concentration. Subsequent steps were 
performed as described in the eCLIP protocol71 with the following modifications. 
Immunoprecipitates were washed twice in 1 ml of CLIP lysis buffer, twice in 
immunoprecipitation wash buffer (50 mM of Tris-HCl pH 7.4, 300 mM of NaCl, 
1 mM of EDTA, 1% (v/v) NP40, 0.5% sodium deoxycholate, 0.25 mM of DTT), 
followed by two washes in 50 mM of Tris-HCl pH 7.4, 1 mM of EDTA and 0.5% 
(v/v) NP40. All other steps were carried out as described in the eCLIP method71. 
We used the following antibodies for the immunoprecipitation reactions: CNBP 
antibody (catalogue no. 67109-1-Ig; Proteintech) and LARP1 (catalogue no. A302-
087A; Bethyl Laboratories).

Inhibitor treatment and infection. A total of 1 × 105 Huh7 or A549-ACE2 cells 
or 3 × 105 Calu3 cells were seeded per well of a 24-well plate. After 24 h (for Huh7 
and A549-ACE2 cells) or 48 h (for Calu3 cells), the growth medium was replaced 
by DMEM with 5% FCS containing cyclosporin A (catalogue no. SML1018; 
Sigma-Aldrich), BX-795 hydrochloride (catalogue no. SML0694; Sigma-Aldrich), 
Ouabain octahydrate (catalogue no. O3125; Sigma-Aldrich), CK-548 (catalogue no. 
ALX-270-504-M002; Enzo Life Sciences), sapanisertib (catalogue no. HY-13328; 
Hölzel Diagnostika) or RK-33 (catalogue no. TMO-T6970; Hölzel Diagnostika) 
at the indicated concentrations (Fig. 6) 2 h before infection. Cells were infected 
with SARS-CoV-2 at an MOI of 0.5 PFU per cell (Huh7 and A549-ACE2 cells) or 

an MOI of 0.1 PFU per cell (Calu3 cells). After incubating the cells for 1 h with 
the virus inoculum, the medium was replaced with inhibitor-containing DMEM 
with 5% FCS. At the indicated time points post-infection, the supernatants were 
collected for plaque assay analyses and cells were lysed for quantitative PCR with 
reverse transcription (RT–qPCR) analyses.

Infection of Huh7 CNBP knockout cells. A total of 1 × 105 cells were seeded 
per well of a 24-well plate. The next day, cells were infected with SARS-CoV-2 
at an MOI of 0.5 PFU per cell as described above. At the indicated time points 
post-infection, supernatants were collected for plaque assay analyses and cells were 
lysed for RT–qPCR analyses.

Infection of HEK293 LARP1 knockout cells. A total of 1.5 × 105cells were seeded 
per well of a poly-L-lysine-coated 24-well plate. For the rescue experiments, cells 
were transfected the next day with 500 ng per well LARP1-GFP overexpression 
plasmid or pEGFP-C1 as the control using 3 µl of TransIT-X2 transfection reagent 
per 1 µg of DNA. At 24 h post-transfection, cells were infected with SARS-CoV-2 
at an MOI of 0.5 PFU per cell as described above. At the indicated time points 
post-infection, supernatants were collected for the plaque assay analyses and cells 
were lysed for the RT–qPCR analyses.

RNA extraction and RT–qPCR. Cells were lysed in 300 µl of TRIzol per 
well and RNA was extracted using the Direct-zol RNA Microprep Kit (Zymo 
Research). RNA was reverse-transcribed into complementary DNA using the 
AffinityScript Multiple Temperature Reverse Transcriptase system (Agilent 
Technologies) according to the manufacturer’s instructions. Viral RNA was 
quantified by qPCR using the PowerUp SYBR Green Master Mix (Thermo 
Fisher Scientific) and primers specific to the SARS-CoV-2 RdRP gene (forward: 
GTGARATGGTCATGTGTGGCGG, reverse: CARATGTTAAASACA 
CTATTAGCATA) and 18S ribosomal RNA (forward: ATGGCCGTTCTTAGTTG 
GTG, reverse: GAACGCCACTTGTCCCTCTA). We calculated the differences in 
RNA expression using the ΔΔCT

I
 method versus 18S. To achieve power to detect 

small effects in gene expression, we performed four technical qPCR replicates from 
the same cDNA and took the median value for further analysis.

Western blot. In general, we added NuPAGE LDS Sample Buffer (Thermo Fisher 
Scientific) to a 1× concentration and incubated samples for 3 min at 95 °C. Proteins 
were resolved by SDS–polyacrylamide gel electrophoresis using NuPAGE 4 to 12% 
Bis-Tris-HCl Gels (Thermo Fisher Scientific) at 200 V for 1 h, followed by transfer 
to a nitrocellulose membrane using the iBlot dry blotting system (Thermo Fisher 
Scientific). Western blots were performed using the iBind Automated Western 
System (Thermo Fisher Scientific). For protein detection, we used the following 
primary antibodies: nucleocapsid protein (catalogue no. ab272852; Abcam); POP1 
(catalogue no. 12029-1-AP; Proteintech); LARP1; CNBP; α-Tubulin (catalogue 
no. 2144; Cell Signaling Technology); β-Actin (catalogue no. sc-47778; Santa Cruz 
Biotechnology). We used the following secondary antibodies: IRDye 800CW goat 
anti-rabbit IgG (LI-COR); IRDye 800CW goat anti-mouse IgG (LI-COR). For the 
visualization of bands, we used the Odyssey Clx Infrared Imager System (LI-COR).

Plaque assay. TMPRSS2-Vero E6 cells were infected with 10-fold serial dilutions 
of the virus-containing sample in DMEM with 1% FCS. After a 1-h incubation, the 
inoculum was removed and cells were overlayed with 0.6% (w/v) methylcellulose 
(Carl Roth) in MEM (Gibco) supplemented with 25 mM of HEPES, 0.44% 
NaHCO3, 2 mM of GlutaMAX (Gibco), 100 U ml−1 of streptomycin, 100 mg ml−1 of 
penicillin and 5% FCS. At 4 d post-infection, cells were fixed and stained by adding 
2× staining solution (0.23% crystal violet, 8% formaldehyde, 10% ethanol) directly 
to the medium for 2 h. Cells were washed with H20 and plaques were counted to 
determine viral titres.

Cell viability assay. For the cell viability assays, cells were seeded in 96-well plates 
(2 × 104 cells per well for Huh7 and A549-ACE2 cells, 6 × 104 cells per well for 
Calu3 cells) and treated with inhibitors as described for the infection assays. After 
24 h (Calu3 cells) or 48 h (Huh7 and A549-ACE2 cells) of treatment, cell viability 
was assessed using the CellTiter-Glo reagent (Promega Corporation) according to 
the manufacturer’s instructions.

Quantification of ribosomal frameshifting. HEK293 cells were transiently 
transfected with either the control or frameshifting construct of our dual-colour 
enhanced GFP (eGFP)–mCherry translation reporter outlined in Extended Data 
Fig. 4d. Briefly, cells transfected with this reporter express a single fluorescent 
protein (eGFP) when the 0 reading frame is translated (Extended Data Fig. 4d). 
Expression of a second fluorescent protein (mCherry) downstream of eGFP is 
dependent on -1FS, which prevents translation of an inframe stop codon. Thus, 
the ratio between mCherry and eGFP directly correlates to -1FS efficiency. As a 
normalization control, we used a construct lacking a stop codon in the 0 reading 
frame, leading to the expression of eGFP and mCherry in equal ratios.

RyDEN was expressed as fusion protein with eCFP. In the control experiments, 
a plasmid only carrying eCFP was used. Using flow cytometry (Novocyte 
Quanteon), eCFP+ cells were analysed for the ratio between mCherry and eGFP, 
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providing a direct readout of ribosomal frameshifting efficiency. Accordingly, 
frameshifting efficiency was calculated using the ratio of mCherry to eGFP 
observed with the frameshifting reporter construct relative to the mCherry/eGFP 
ratio observed with the control construct (Extended Data Fig. 4d).

Computational analyses. Protein–protein interaction network. To establish 
protein–protein interactions for the proteins identified from the MS experiments, 
we utilized STRING v.11 (ref. 96). For all network and interaction inferences, 
we used the ‘combined score’ from STRING, which utilizes both physical and 
functional interactions. Specifically, for the RAP–MS network (Fig. 2), we seeded 
all proteins detected with an adjusted P < 0.2 and positive log fold change from the 
moderated t-test between SARS-CoV-2 RNA and RMRP purifications. The edges 
between interacting proteins were included for those above a combined interaction 
score of 550. To generate the combined RAP–MS and proteome MS network, we 
seeded nodes where the adjusted P < 0.05 for either of the assays. Edges between 
RAP–MS and proteome MS nodes were included for combined interaction scores 
exceeding 700.

Gene set and pathway enrichment analysis. First, we performed a hypergeometric 
GO enrichment analysis for the expanded SARS-CoV-2 RNA interactome proteins 
using the DAVID tool (v.6.8, https://david.ncifcrf.gov/tools.jsp) and applying 
default settings (Fig. 2b). Additionally, we performed GSEA for the proteome 
experiments with the clusterProfiler R package (v.3.18)97 utilizing the Hallmark and 
C5 biological processes gene sets available through Molecular Signatures Database 
(v.7.2)98 (Fig. 3b). Genes were ranked based on the product of the log2 fold change 
and the log10 moderated t-test P value between SARS-CoV-2 and mock treatments. 
To establish enriched terms for communities within the interactome network  
(Fig. 3c), we considered all regulated genes in the proteome measurements 
interacting with a specific direct binder and computed enrichments using the C5 
biological processes gene sets.

eCLIP and RNA sequencing analysis. Paired-end sequencing reads from (1) eCLIP 
experiments or (2) sequencing of crosslinked RNA fragments after RAP–MS, were 
trimmed using a custom Python script that simultaneously identified the unique 
molecular identifier associated with each read. These trimmed reads were then 
aligned to the SARS-CoV-2 reference genome (NC_045512.2 contig) using the 
Burrows–Wheeler Aligner (v.0.7.17)99. Next, we removed PCR duplicates using 
the unique molecular identifier-aware deduplication functionality in Picard’s 
MarkDuplicates (v.2.22.0). Finally, enriched regions of protein binding were 
identified using model-based analysis of ChIP–seq 2 (MACS2 v.2.2.7)100 to model 
the fold change between per-million fragment normalized counts (signal per 
million mapped reads) of the treated and control samples. Visualizations of the 
region were rendered from the PCR-deduplicated .bam files using the Integrative 
Genomics Viewer. CLIP peak annotations and overlaps were determined using 
custom functions and the GenomicRanges package (v.1.40.0)101. Meta-gene 
enrichment plots were computed using deepTools (v.3.4.3)102. To establish 
the binding motif of the LARP1 CLIP peaks, we performed a de novo motif 
enrichment using MEME (v.5.2).103 via a strand-aware sequence enrichment for 
peaks that overlapped a single 5′-UTR in our hg38 reference.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The original mass spectra for all experiments and the protein sequence databases 
used for the searches have been deposited with the MassIVE repository (https://
massive.ucsd.edu) and can be accessed at ftp://massive.ucsd.edu/MSV000085734/.
The high-throughput sequencing data have been deposited with the Gene 
Expression Omnibus under the accession no. GSE154430. Source data are provided 
with this paper.

Code availability
The computer code for the custom analyses is publicly available at https://
munschauerlab.github.io/SCoV2-proteome-atlas/.
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Extended Data Fig. 1 | Capturing SARS-CoV-2 RNAs and bound proteins with RAP-MS. a, Alignment of protein-crosslinked RNA fragments to the 
SARS-CoV-2 genome following RNA antisense purification of SARS-CoV-2 RNAs from infected Huh7 cells. Two replicate experiments are shown.  
b, Fraction of crosslinked RNA fragments mapping to the human or SARS-CoV-2 genomes in pilot RAP-MS experiments. c, Correlation plot for two 
replicate RAP experiments. CPM values for SARS-CoV-2 genes are shown. CPM: counts per million. d, As in b, but for full-scale SARS-CoV-2 RNA  
RAP-MS and RMRP RAP-MS experiments. e, Western blot of two replicate SARS-CoV-2 RNA and RMRP RAP-MS experiments. Indicated antibodies  
were used for protein detection.
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Extended Data Fig. 2 | Connectivity in RAP-MS protein-protein association network. Total number of connections observed in protein-protein association 
network constructed based on expanded SARS-CoV-2 RNA interactome (red bar, 1,534 connections), compared to number of connections observed in 
random networks of equal size (grey bars, mean 60 connections, z-score 76) using random sampling of proteins detected in proteome measurements.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Proteome abundance changes in SARS-CoV-2 infected cells. a, Correlation of protein abundance measurements reported in Klann 
et al. and this study (r = 0.411). Proteins displayed are significant at an adjusted P value threshold of 0.01 in both studies (n = 712). b, Principle component 
analysis for proteome measurements of SARS-CoV-2 (SCoV2) infected or mock infected Huh7 cells. c, GSEA for proteins significantly regulated in global 
proteome measurements. Gene sets enriched in addition to those shown in Figure 3b are presented. Statistical test: Kolmogorov-Smirnov test with 
Benjamini-Hochberg adjustment. d, Protein-protein association network of expanded SARS-CoV-2 RNA interactome proteins (blue: interactome protein, 
not regulated; red: interactome protein, regulated) and their connections to differentially regulated proteins upon SARS-CoV-2 infection. Upregulated 
proteins are shown in light grey; downregulated proteins are shown in dark grey. Circle sizes scale to the number of connections of each interactome 
protein.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Pharmacological inhibition of SARS-CoV-2 RNA interactome proteins. a, RT-qPCR measurements of intracellular SARS-CoV-2 
RNA (RdRP gene) in infected Calu3, Huh7 and A549-ACE2 cells after inhibitor treatment. Inhibitors were used at indicated concentration (left to 
right). Calu3 cells were assayed 24 h post-infection, Huh7 and A549-ACE2 cells were assayed 48 h post-infection. Values are normalized to 18S 
rRNA measurements and compared to untreated or DMSO treated cells. b, Infectious viral titers in the supernatants of infected Calu3, Huh7 and 
A549-ACE2 cells after inhibitor treatment. Inhibitors were used at indicated concentration (left to right). Calu3 cells were assayed 24 h post-infection, 
Huh7 and A549-ACE2 cells were assayed 48 h post-infection. All values in a-b are mean ± s.d. (n = 3 independent infections) c-d, Cell viability assay 
in inhibitor-treated and untreated cells. Values are the mean ± s.d. (n = 3 independent treatments). P values determined in unpaired two-tailed t-test. 
***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant.
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Antibodies used CNBP - Proteintech #67109-1-Ig (IP, Western Blot) 
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