Skip to main content
. 2021 Feb 12;11:632192. doi: 10.3389/fpsyg.2020.632192

TABLE 3.

The impact of age structure on COVID-19 total cases on August 2020.

Independent variables GLM1,2 GMM3,4,5 Quantile (25)6,7,8
Median age 91.91 (10.58) [8.68] {0.00} 84.47 (12.21) [6.91] {0.00} 10.33 (4.94) [2.09] {0.03}
Quantile (50)6,7,8
36.01 (5.78) [6.22] {0.00}
Quantile (75)6,7,8
112.7 (15.49) [7.27] {0.00}
Aged-65_older 222.6 (34.15) [6.51] {0.00} 301.7 (49.39) [6.10] {0.00} 40.46 (15.30) [2.64] {0.00}
Quantile (50)6,7,8
120.5 (19.32) [6.23] {0.00}
Quantile (75)6,7,8
335.31 (53.97) [6.21] {0.00}
Aged-70_older 333.38 (52.65) [6.33] {0.00} 465.6 (78.30) [5.94] {0.00} 48.05 (24.5) [1.96] {0.05}
Quantile (50)6,7,8
171.4 (28.9) [5.92] {0.00}
Quantile (75)6,7,8
541.9 (83.3) [6.50] {0.00}

1By Newton-Raphson-Marquardt steps. 2The coefficient covariance is computed using observed Hessian. 3Estimation weighting matrix: HAC (Bartlett kernel, Newey-West fixed bandwidth = 5.0000). 4Standard errors and covariance are computed following the estimation weighting matrix. 5Instrument specification: total-cases-per-million (–1). 6Sparsity methods: Kernel (Epanechnikov) using residuals. 7Bandwidth methods: Hall-Sheather. 8Estimation successfully identifies the unique optimal solution. () shows standard errors, and {} denotes probability values.