
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4548  | https://doi.org/10.1038/s41598-021-84007-0

www.nature.com/scientificreports

Evolutionary conservation 
of the DRACH signatures 
of potential N6‑methyladenosine 
(m6A) sites among influenza 
A viruses
Mahmoud Bayoumi & Muhammad Munir*

The addition of a methyl group to the N6-position of adenosine (m6A) is considered one of the most 
prevalent internal post-transcriptional modifications and is attributed to virus replication and cell 
biology. Viral epitranscriptome sequencing analysis has revealed that hemagglutinin (HA) mRNA of 
H1N1 carry eight m6A sites which are primarily enriched in 5′-DRACH-3′ sequence motif. Herein, a 
large-scale comparative m6A analysis was conducted to investigate the conservation patterns of the 
DRACH motifs that corresponding to the reference m6A sites among influenza A viruses. A total of 
70,030 complete HA sequences that comprise all known HA subtypes (H1–18) collected over several 
years, countries, and affected host species were analysed on both mRNA and vRNA strands. The 
bioinformatic analysis revealed the highest degree of DRACHs conservation among all H1 sequences 
that clustered largely in the middle and in the vicinity to 3′ end with at least four DRACH motifs were 
conserved in all mRNA sequences. The major HA-containing subtypes displayed a modest DRACH 
motif conservation located either in the middle region of HA transcript (H3) or at the 3′ end (H5) or 
were distributed across the length of HA sequence (H9). The lowest conservation was demonstrated 
in HA subtypes that infect mostly the wild type avian species and bats. Interestingly, the total number 
and the conserved DRACH motifs in the vRNA were found to be much lower than those observed in 
the mRNA. Collectively, the identification of putative m6A topology provides a foundation for the 
future intervention of influenza infection, replication, and pathobiology in susceptible hosts.

Viral epitranscriptome is an emerging paradigm in the virus-host battle, which collectively describes all co- and 
post-transcriptional chemical covalent bonds installed on viral transcripts1,2. Among a handful of the chemical 
modification added to viral mRNAs, the methylation at N6-position of adenosine (m6A) exhibits superiority to 
dictate viral behaviour inside the cell, and regulate the fate of virus-infected cells predominantly the oncogenic 
viruses3–10. Moreover, the m6A residues have been known to regulate essential metabolic aspects of cellular 
RNA including stability, translation, splicing, nuclear export, and secondary structure11–13. Furthermore, critical 
attributes of life including embryonic development, fertility, immune modulation, and homeostatic functions 
were reported to be controlled by m6A14–16.

Despite m6A marks were initially identified to be incorporated in viral RNAs several decades ago, due to 
technological limitations at this time, topological and functional characteristics of m6A were not clear in viral-
cell lifecycles17–19. In recent years, the ever-rising progress in epitranscriptome-wide sequencing technologies 
has been exploited to identify and relatively quantify m6A marks20–24. Hence highlights the unexplored aspects of 
m6A in host–pathogen interactions. The addition of the m6A marks on both cellular and viral RNA is governed 
by a complex group of nuclear methyltransferases (writers); these marks can be removed by another group of 
demethylases (erasers). Ultimately, a third group able to bind and generate a recognizable effect on the methylated 
transcripts (readers), all groups are collectively known as m6A machinery9,25–27. Installation of m6A is predomi-
nantly restricted to consensus sequence motif, the putative m6A sites significantly reported to be enriched in 
some 5′-DRA*CH-3′ sequences (where A* denotes the methylatable adenosine, D denotes A, G or U, R denotes 
A and G, and H denotes A, C or U)24,28,29.
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Notably, the addition of m6A on cellular transcripts has been known to be enriched mostly in the coding 
sequence, 3′ untranslated region, and in the vicinity to stop codons21. Moreover, the epitranscriptome-wide analy-
sis confirmed that the majority of methylation sites were conserved among murine and Homo sapiens, which 
emphasize the m6A sites were maintained throughout the evolutionary process via selection pressure21,30,31. Albeit, 
DRACH motifs are widespread all over cellular and viral transcriptomes, a small fraction only was reported to be 
methylated in vivo and the underlying mechanisms for the selection of certain DRACHs to accept methylation 
than others remain elusive16,24.

From the scanty viral epitranscriptome data, it is early to infer the accurate topology of m6A sites, mostly the 
highly variable viruses having various genotypes. Recently, m6A sites have been mapped in a single-nucleotide-
resolution level in HIV-1, the data revealed that consensus m6A sites were relatively conserved across the tested 
isolates. Nonetheless, the genome of HIV-1 is characterized by a high degree of plasticity, highlighting that 
conservation of m6A sites implies many aspects in virus replication and/or subversion of immune-mediated 
responses2,32. Likewise, the m6A landscape has also been reported to be likely conserved and not restricted to 
certain strains in the ZIKA virus (ZIKV) model33.

Vis-à-vis influenza, epitranscriptomics analysis has identified multiple m6A residues across all the segmented 
transcripts17. Unravelling the viral methylome of A/Puerto Rico/8/34/Mount Sinai isolate has been recently 
mapped4. The latter study confirmed the positive impact of m6A on influenza virus replication and protein 
expression. Therefore, the determination of m6A sites among IAVs is most likely due in near future to intervene 
in influenza replication in a wide range of the affected host species. Although the m6A prediction software is 
available for cellular transcripts34,35, the m6A viral prediction software is still lacking and epitranscriptome-wide 
mapping to thousands of IAVs isolates limits its practicality. Herein, we aim to utilize publicly available meta-
data on influenza virus in mapping m6A sites through the DRACH signatures and to predict the evolutionary 
conservation patterns among influenza A viruses.

Results
Identification of DRACH motifs in the reference HA for comparative analysis.  A total of 718,168 
sequences were listed as IAVs sequences in the Influenza Research Database (IRD; as of December 15th, 2020). 
A total of 96,472 sequences were designated as full length HA sequences. From the default settings implemented 
in the IRD, duplicate HA sequences were removed to list only 70,030 unique HA sequences that were utilized for 
computational comparative analysis. Based on the previous H1N1 epitranscriptome-seq data4, eight and nine 
m6A sites were identified across the entire HA mRNA and vRNA, respectively (Fig. 1). However, these sites were 
not precisely identified due to their undescriptive and speculative characterization. Nonetheless, identified and 
functionally validated 12 out of 14 5′-RAC-3′ motifs corresponding to the 8 m6A sites have been mapped on 
mRNA4 (Fig. 1A,B). Similarly, twelve 5′-RAC-3′ motifs corresponding to the 9 m6A sites have been mapped on 
vRNA (Fig. 1C,D).

From the above-mentioned data, we adopted 14 5′-DRACH-3′ motifs for further analysis including the 
previously identified 12 5′-RAC-3′ motifs along with two additional 5′-DRACH-3′ motifs corresponding to the 
8 previously mapped m6A sites on HA mRNA (motifs 7 and 12) (Fig. 1A,B). A total of 14 DRACH motifs were 
utilized as a base for subsequent conservation analysis across IAV HA mRNAs when compared with the reference 
A/Puerto Rico/8/34/Mount Sinai strain (accession number: AF389118) (Fig. 1A,B). The identified motifs were 
fairly distributed across the entire HA. However, clusters of motifs were in the middle of the gene and the vicin-
ity to the 3′ end of HA mRNA (Fig. 1A). Although the reference HA sequence contains 14 5′-RAC-3′ identified 
motifs of interest, three did not match the wider 5′-DRACH-3′ sequences; motif 2 and 10 have incompatible H 
and motif 5 has incompatible D (Fig. 1A). The 14 identified wider motifs exhibited different conserveness and 
diversity according to the location of the nucleotide on the DRACH motif using WebLogo (Fig. 1B). Together, 
considering the 14 wider DRACH motifs might be more representative than the short RAC motifs for the com-
putational conservation analysis of the putative m6A sites spanning HA mRNA of IAVs.

Conservation pattern of the identified DRACH motifs among H1 subtype.  To investigate the 
pattern of conservation of the identified DRACH motifs corresponding to the m6A sites among all IAVs HA 
mRNAs, a computational comparative analysis was generated to initially exploring the conservation of the iden-
tified 14 DRACH motifs among the known HA subtypes (i.e. H1, H2, … etc.), then explore the conservation 
of these motifs within the H1 subtype (i.e., H1N1, H1N2, … etc.) along with the affected host species as stated 
later. All analysis was compared with the reference A/Puerto Rico/8/34/Mount Sinai strain (accession number 
AF389118).

Concerning H1, the major subtype of IAVs that affects predominantly human and swine and harbouring 
the highest number of HA sequences listed on IRD (36%). A total of 25,576 entire unique HA sequences were 
analyzed. We identified 40 typical DRACH motifs across the complete consensus H1 sequence (Table 1). The 
H1 consensus sequence was aligned with the reference HA mRNA. After a comparison of the identified 14 
DRACH motifs and counting the number of matches of each motif of interest with the H1 subtype, sequences 
revealed that 6 out of the 14 DRACH motifs were found to be highly conserved. The conservation percentage 
was 99% in 7th, 12th, and 13th motifs, and 95%, 90%, and 85% in 6th, 9th, and 11th motif, respectively (Table 1, 
Supplementary Fig. 1).

Of particular note, the conservation percentage of the 5th motif was recorded in 85% of the H1 sequences, 
however, did not consider a conserved motif (putative m6A site) due to lack of the complete DRACH sequence 
identity. Additionally, remaining motifs exhibited loss to any/all nucleotide(s) when compared with the refer-
ence sequence (Supplementary Fig. 1). Furthermore, the conserved motifs are clustered in two regions as that 
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Figure 1.   Locations and conserveness of the DRACH motifs utilized in this study. Schematic representation of 
locations of the putative motifs on the IAV-PR8 HA mRNA (A,B) and vRNA (C,D), accession no. AF389118, 
which coincident with the 8/9 m6A peaks identified in4 that are indicated by numbers. Motifs contain the 
complete, partial, and novel DRACH are indicated by coloured circles. (B,D) WebLogo-based diversity and/or 
conserveness of nucleotides in the proposed DRACH motifs in PR8 HA mRNA (B) and vRNA (D), one stack 
for each position in the sequence, the height of the stack indicates the sequence conservation at that position, 
the height of symbols within the stack indicates the relative frequency of each nucleotide at that position. The 
percent of each nucleotide in each position are indicated by coloured pie charts.
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identified in the HA reference transcript. Collectively, a high degree of DRACH motifs showed conservation 
among all H1 sequences and clustered largely in the middle and in the vicinity to 3′ end of H1 mRNAs.

Conservation pattern of the identified DRACH motifs among H3, H5, and H9 subtypes.  Like-
wise, we investigated the pattern of conservation of identified the DRACH motifs in H3, H5, and H9 subtypes, 
which enclose 23,286, 5472, 6408 unique HA mRNA sequences, respectively (collectively represent about 50% of 
HA sequences listed on IRD). These subtypes infect mainly humans, swine, equine, and avian species in various 
geographic distributions all over the world. The conservation pattern of DRACH motifs of interest of H3 subtype 
revealed partial or complete loss of 9 DRACH motifs compared with the H1N1 PR8 HA reference, however, a 
higher degree of conservation identified in 5 motifs; 2, 7–9, and 14 with a conservation percentage 85–99% as 
indicated in (Table 1, Supplementary Fig. 2A). Regarding the H5 consensus HA sequence, A total of 5 DRACH 
motifs were also found to share conservation with the reference HA; two motifs were conserved in the middle 
cluster of H5 transcripts; motif-7 and -8 in 99 and 75% of all H5 transcripts, respectively. Furthermore, the last 
three DRACH motifs were identified to be conserved as well (conservation percent 75–99) (Table 1, Supplemen-
tary Fig. 2B).

The H9 subtype displayed only 3 widely separated conserved motifs; near 5′ end, in the middle region, and 
near 3′ end with the highest degree of conservation (90–99%) among all major HA subtypes. Notably, 50% of 
H9 sequences at motif 14 contain RAC motif, however, lack of a complete DRACH sequence was noticed to 
exclude this motif from the conservation pattern (Supplementary Fig. 2C). Together, all major HA subtypes were 
identified to have partial DRACH sequence conservation compared with the reference sequence that clustered 
either in the middle region of HA transcript (H3), 3′ end of HA mRNA (H5), and distributed all over the HA 
sequence (H9).

Conservation pattern of the identified DRACH motifs among other subtypes.  Similarly, we 
tested the conservation pattern of the identified DRACH motifs between remaining HA sequences (i.e. the lower 
HA number containing subtypes) that collectively enclose 13% of all HA sequences recorded in IRD. These sub-
types infect mainly the wild avian species (H10–16), human (H2 and H7), and bats (H17 and H18). The unique 
HA sequence numbers and the number of conserved DRACH motifs in each subtype were shown in (Fig. 2). 
Each HA subtype consensus sequence was aligned and compared with reference HA of interest.

Regarding the H7 subtype, the highest conserved DRACH was detected in the 11th motif (95% among 2237 
sequences), whilst, H4 (1646 sequences) witnessed the highest conservation in 7th and 14th DRACH. Subtypes 
affecting mostly avian species (H10-16) revealed DRACH motif conservation near 3′ end mostly in 11th and 13th. 
Markedly, bat IAV HA sequences (i.e. H17 and H18) revealed conservation at motif 13 (Table 1). It is important 
to note that infrequent conserved motifs were presented in this group of HA sequences; motif-1 in H11 and H2, 
motif-3 in H6, and motif-10 in H8 with varying conservation percentage as indicated in (Table 1). This group of 
HA subtypes demonstrates the lowest number of DRACH motif conservation. Collectively, the 3′ end DRACH 

Table 1.   Summary of conserved DRACHs distributions among all IAVs HA mRNAs. a The number of HA 
sequences listed on IRD and analyzed here in this study. b The reference influenza A virus strain utilized in 
this study, A/Puerto Rico/8/34/Mount Sinai, HA accession no. AF389118. c The total number of the possible 
DRACH motifs located in the consensus sequence in each subtype.

mRNA Seq no.a DRACHc Motif1 Motif2 Motif3 Motif4 Motif5 Motif6 Motif7 Motif8 Motif9 Motif10 Motif11 Motif12 Motif13 Motif14

H1N1 
PR8b 1 40 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

H1 25,576 40 ✓ 95% ✓ 99% ✓ 90% ✓ 85% ✓ 99% ✓ 99%

H2 618 36 ✓ 65% ✓ 95% ✓ 99% ✓ 50% ✓ 99% ✓ 99% ✓ 50%

H3 23,286 42 ✓ 90% ✓ 99% ✓ 90% ✓ 90% ✓ 85%

H4 1646 51 ✓ 65% ✓ 65% ✓ 99% ✓ 50% ✓ 65% ✓ 85%

H5 5472 34 ✓ 99% ✓ 75% ✓ 99% ✓ 99% ✓ 75%

H6 1836 40 ✓ 85% ✓ 75% ✓ 99% ✓ 99%

H7 2237 45 ✓50% ✓50% ✓ 95% ✓50%

H8 168 48 ✓ 95% ✓ 85% ✓ 50% ✓ 95% ✓65%

H9 6408 43 ✓ 99% ✓90% ✓ 99%

H10 983 45 ✓95% ✓50% ✓ 95%

H11 781 38 ✓ 50% ✓ 75% ✓95% ✓75% ✓ 90% ✓ 90%

H12 337 46 ✓ 90% ✓  75% ✓85% ✓ 85% ✓ 95%

H13 409 43 ✓ 95%

H14 35 44 ✓ 100% ✓ 100%

H15 16 44 ✓ 50%

H16 217 41 ✓ 99%

H17 2 41 ✓ 100% ✓ 100%

H18 2 47 ✓ 100% ✓ 100%
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motifs were found to be conserved in wild avian and bats sequences. Motifs 13, 11, and 7 were identified to be 
the highest conserved among all analyzed HA sequences (Table 1).

Conservation pattern of the identified DRACH motifs among various host species and viruses 
within the subtypes.  To deeply investigate the conservation pattern of DRACH motifs among various host 
species, pathogenicity, geographic locations, and further subtyping. A detailed DRACH conservation analysis 
was generated within subtypes implicated with major human and avian infections. H1N1 sequences comprise 
more than 80% of all H1 sequences recorded in IRD. H1N1 maintained the 6 previously identified conserved 
DRACH motifs of all H1 sequences (Table 2). To explore the effect of DRACH sequences conservation pat-
tern on pathogenicity, the pandemic H1N1 (pH1N1) sequences were compared with non-pandemic sequences. 
Human H1N1 sequences revealed that the pH1N1 sequences have no clear differences from identified the 6 
conserved DRACHs of all H1 sequences in all affected countries. In contrast, 50% of the non-pH1N1 sequences 
gain an additional motif (i.e. motif 8). Moreover, compared to humans, swine H1N1 sequences exhibited loss of 
motif-11 and gain of motif-14. Furthermore, H1N2 sequences lost motif-9 in both human and swine sequences. 
Markedly, motifs 6, 7, 12, and 13 were conserved regardless of viruses, species, pathogenicity, and geographic 
locations (Table 2).

Similarly, compared to the H2 consensus sequence, human H2N2 sequences lost motif-14, while, mallard, 
the most common species infected by H2 sequences, lost motif-1 in H2N2 sequences (Fig. 3). Furthermore, 
human H3N2 sequences the sole to contain motif-14, compared to swine and avian sequences (Fig. 3). Markedly, 
human influenza sequences descended from zoonotic (chicken) origin; H5N1, H7N9, and H9N2 maintained the 

Figure 2.   Summary of conserved DRACHs among all HA subtypes of IAVs. From the centre, the HA cladding 
system is represented by a maximum-likelihood tree contain representing sequences of each subtype. The 
numbers of conserved DRACH motifs to each HA subtype that located on either vRNA or mRNA are indicated. 
The highly susceptible species affecting each subtype are indicated.
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Table 2.   Summary of conserved DRACHs among various species and viruses of H1 mRNAs.

mRNA Seq no Motif2 Motif6 Motif7 Motif8 Motif9 Motif11 Motif12 Motif13 Motif14

H1 25,576 ✓ 95% ✓ 99% ✓ 90% ✓ 85% ✓ 99% ✓ 99%

Human H1N1 16,471 ✓ 95% ✓ 99% ✓ 90% ✓ 90% ✓ 99% ✓ 99%

Pandemic H1N1 10,993 ✓ 99% ✓ 99% ✓ 99% ✓ 99% ✓ 99% ✓ 99%

Non-pandemic H1N1 5490 ✓ 95% ✓ 99% ✓ 50% ✓ 65% ✓ 99% ✓ 99% ✓ 99%

Swine H1N1 4366 ✓ 50% ✓ 95% ✓ 95% ✓ 99% ✓ 99% ✓ 65%

Human H1N2 43 ✓ 95% ✓ 100% ✓ 90% ✓ 99% ✓ 99% ✓ 99%

Swine H1N2 3614 ✓ 50% ✓ 90% ✓ 95% ✓ 65% ✓ 75% ✓ 99% ✓ 99% ✓ 65%

Figure 3.   Summary of conserved DRACH motifs among some IAVs HA mRNAs. Conserved motifs, virus, 
host species, and the number of sequences listed on IRD are indicated. Conservation percent is indicated on the 
upper side.
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same conserved motifs of the original chicken viruses (Figs. 3, 4). Collectively, DRACH motifs seem likely to be 
virus-specific rather than host species-, pathogenicity-, and geographic distribution-specific.

Conservation patterns of identified DRACH motifs among IAVs HA vRNA.  Considering IAVs 
are negative-sense single-stranded RNA viruses36, we sought to investigate the level of conservation of DRACH 
motifs in the genomic sequence as well. Based on the previous H1N1 meta-data4, a total of nine putative m6A 
sites were identified across the entire HA vRNA which were not described before. These novel 9 m6A sites cor-
responding to 12 RACs which have been identified and functionally validated in the vRNA of the reference A/
Puerto Rico/8/34 strain (Accession Number: AF389118)4. These 12 motifs were adopted for further analysis on 
HA vRNA among IAVs in this study. Likewise the m6A motifs were fairly distributed across the entire length of 
the mRNA of IAVs (Fig. 1C). We compared these 12 motifs among all HA subtypes. We noticed that one out of 
the 12 motifs did not match with the wider DRACH (i.e. motif 8) sequence. Intriguingly, this motif was found to 
be non-conserved in the H1 subtype (Table 3).

Albeit total DRACH motifs in the vRNA in each subtype were considerably much lower compared to the 
mRNA of the same subtype (about 50%). A considerable level of conservation was noticed in the 12 DRACH 
motifs of interest in each subtype (Table 3). The highest conservation was noticed in H1 and H3 subtypes. 
Unlike the mRNA, H9 was reported to contain only one conserved motif (i.e. motif 5) in the HA vRNA. Addi-
tionally, the HA subtypes that infect mainly wild bird species and bats were noticed to have only a few DRACH 
motif conservation similar to that of the mRNA. Moreover, motifs 5, 7, and 11 recorded the highest motifs that 
witnessed conservation among the vRNAs of HA subtypes. Whereas motifs 2, 4 and 12 shown to have lowest 
conservation among IAVs.

To deeply investigate the conservation pattern of DRACH motifs among various host species, pathogenic-
ity, geographic locations, and for further subtyping in vRNA, a detailed DRACH conservation analysis was 
generated within the H1 subtype. We noticed that the H1N1 maintained four previously identified conserved 
DRACH motifs in all H1 sequences (Table 3; Supplementary Table 1). Additionally, to explore DRACH sequences 
conservation pattern on pathogenicity, the pandemic H1N1 (pH1N1) sequences compared with non-pandemic 
sequences. Human H1N1 sequences revealed that the pH1N1 sequences have no clear differences from the 
identified 4 conserved DRACHs of all H1 sequences in all affected countries. In contrast, 50% of the pH1N1 
sequences gain an additional motif (i.e. motif 2) on vRNA. Additionally, the swine H1N1 gained additional motif 
compared to humans. Interestingly, H1N2 sequences witnessed much higher conserved DRACH than that of 
H1N1 sequences including 9 motifs in human H1N2 and 8 in swine. Markedly, 4 motifs were conserved regard-
less of viruses, species, pathogenicity, and geographic locations (Supplementary Table 1). Collectively, compared 
to the mRNA, the vRNA witnessed a lower conservation level in both the total and the DRACH Motifs of interest, 
the highest conservation was detected in the major HA− containing subtypes and much lower in HA− subtypes 
affecting wild avian species and bats, and H1 contain 4 conserved motifs in almost all sequences.

Figure 4.   Summary of conserved DRACH motifs among the H5 mRNA. Conserved motifs, virus, host species, 
and the number of sequences listed on IRD are indicated. The conservation percent is indicated by coloured 
circles.
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Discussion
Influenza A viruses are single-stranded octameric segmented RNA belonging to the Orthomyxoviridae family. 
IAVs are characterized by high mutation rates with the hemagglutinin gene (HA) confirmed to have the record 
highest mutation rate. HA gene is responsible for the remarkable genetic plasticity among all remaining IAVs 
genes. The high mutation rate along with the reassortment of IAVs segmented nature can lead to the emergence 
of pandemics. Additionally, IAVs can infect a wide range of host species including humans, animal, and avian 
species suggesting the likely roles to cross species barriers and causing zoonotic fatal infections36–38.

The epigenetic m6A mark is the most abundant internal chemical modification installed onto both cellular 
and viral mRNA that dictate various cell behaviours and the fate of the virus-host interaction2,39. The significance 
of m6A has been highlighted by the fact that this modification is evolutionarily conserved among vertebrates31, 
besides, a high degree of conservation in the majority of m6A machinery has recently been confirmed among 
vertebrates9. Furthermore, the overall inhibition of m6A has various detrimental effects on animals’ life13. There-
fore, the determination of the characteristic features and topology of viral m6A is of paramount importance to 
modulate the outcome of the virus-host battle. However, the utilized methods to precisely determine the loca-
tions of m6A marks remain limited in viral epitranscriptomics, laborious, and non-cost-effective to investigate 
thousands of virus strains. Moreover, the highly evolving nature of viruses could complicate this notion.

Among viruses, influenza was the first model identified to express mRNAs harbour multiple m6A marks in the 
1970s17,19. These earlier studies identified 24 m6A sites across the entire segmented genome with eight of which 
detected in the HA mRNA via biochemical analysis. In agreement with recent high-throughput sequencing data 
using PAR-CLIP and PA-m6A-seq, eight/nine prominent m6A sites were identified across the HA mRNA/vRNA 
of H1N14, respectively. However, the adopted approaches of sequencing did not provide a precise determination 
of the methylated adenosines at single-nucleotide resolution. In this milieu, we utilized the commonly used con-
sensus sequence where m6A marks are installed; the DRACH motif that was described in cellular transcriptome-
wide maps21,30. Moreover, the m6A individual-nucleotide-resolution cross-linking and immunoprecipitation 
(miCLIP) sequence data revealed that m6A were markedly more prevalent in the DRACH sequence context24. 
Furthermore, several loss-of-function experiments have tested the functionality of m6A marks through mapping 
along with synonymous ablation of the DRACH motifs from both cellular40 and viral transcripts4,5,41. Therefore, 
we exploited the DRACH motif to figure the pattern of conservation among IAVs through comparative analysis. 
This wider motif could narrow the window against the evolving nature of the IAVs than the shorter RAC motif.

It is plausible that the number of RAC/DRACH motifs could be higher than the number of the actual m6A 
sites, as multiple close motifs might be present underneath the m6A detection peak mostly in the non-single-
nucleotide-resolution approaches, which could be a challenge to confirm the methylated adenosines. This is a 
characteristic feature for m6A additions to cellular transcripts24. Regarding influenza, the introduction of 12 
out of 14 synonymous mutations to the short RAC motifs corresponding to the eight m6A sites on mRNA has 
been performed4. The two other RAC motifs have not been mutated without alteration of the amino acid code 
(identified here as motif-7 and 12, Fig. 1A). Herein, these 14 motifs were used as a base for conservation analy-
sis. Three RAC motifs did not match with the wider DRACH identity, thus could be highly unlikely real m6A 

Table 3.   Summary of conserved DRACHs distributions among all IAVs HA vRNAs. a The number of HA 
sequences listed on IRD and analyzed here in this study. b The reference influenza A virus strain utilized in 
this study, A/Puerto Rico/8/34/Mount Sinai, HA accession no. AF389118. c The total number of the possible 
DRACH motifs located in the consensus sequence in each subtype.

vRNA Seq no.a DRACHc Motif1 Motif2 Motif3 Motif4 Motif5 Motif6 Motif7 Motif8 Motif9 Motif10 Motif11 Motif12

H1N1 PR8b 1 27 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

H1 25,576 29 ✓ 95% ✓ 90% ✓ 95% ✓ 90%

H2 618 26 ✓ 50% ✓ 50% ✓ 65%

H3 23,286 25 ✓ 85% ✓ 75% ✓ 85% ✓ 95% ✓ 95%

H4 1646 26 ✓ 95% ✓ 75% ✓ 99%

H5 5472 27 ✓ 75% ✓ 75% ✓ 50%

H6 1836 23 ✓ 85% ✓ 95% ✓ 50%

H7 2237 26 ✓ 75% ✓ 50% ✓ 95%

H8 168 26 ✓ 95%

H9 6408 26 ✓ 85%

H10 983 19 ✓ 95% ✓ 85% ✓ 50%

H11 781 42 ✓ 90% ✓ 75%

H12 337 25 ✓ 99%

H13 409 24 ✓ 65%

H14 35 19 ✓ 100% ✓ 100% ✓ 100%

H15 16 21 ✓ 100%

H16 217 26 ✓ 75% ✓ 75%

H17 2 17

H18 2 17 ✓ 100% ✓ 50% ✓ 100%
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sites. Surprisingly, our comparative analysis on mRNA revealed that these 3 motifs had the lowest conservation 
among IAVs (Table 1). Notably, m6A methyltransferases are strictly favouring installing m6A on highly conserved 
consensus sequence42.

A bioinformatic approach is adopted here to predict the highly conserved DRACH motifs that correspond-
ing to m6A sites across HA mRNA/vRNA. We focused only on the HA genes as it encodes the highly variable 
major viral structural glycoprotein43 and the HA gene only was fully mapped in previous literature4. The IRD was 
adopted to decipher the conservation patterns of DRACH motifs of interest utilizing its implemented bioinfor-
matic algorithms between approximately 70,000 complete HA sequences44. Six out of the 14 full DRACH motifs 
were identified to share conservation of 85–99% of the H1 subtype sequences (more than 25,000 HA sequences) 
compared with the reference H1N1 A/Puerto Rico/8/34/Mount Sinai. This high level of conservation highlights 
that these putative m6A sites are not PR8 specific among a highly variable virus generally and HA specifically38. 
Furthermore, clustering of the conserved motifs in the middle and vicinity to 3′ end suggests an underlying 3D 
RNA structure, mRNA folding, and stability regulatory function as previously described in the HIV-1 model2,32. 
Notably, the middle cluster DRACHs are located near the junction between HA1 and HA2 fragments (Supple-
mentary Fig. 2). Albeit, some variations were observed through in-depth comparative analysis demonstrated by 
DRACH gain or loss among various host species affected by viruses of H1 subtype, four motifs were conserved 
whatever the affected host species, virus collection date, and geographic location (Table 2), similarly, the same 
conservation pattern was found in the HA vRNA among IAVs (Table 3, Supplementary Table 1).

Likewise, the conservation of the DRACH motifs of interest in HA mRNAs of H3, H5, and H9 subtypes (col-
lectively comprising more than 50% HA sequences) were confirmed. Of note, the HA cladding system categorizes 
H1, H5, and H9 sequences as clade I, whilst H3 sequences belonging to clade II based on the entire HA sequence 
phylogeny45 (Fig. 2). Nonetheless, H3 HA sequences are still harboring at least 85% conservation of not only 
the middle cluster DRACH motifs namely 7–9 that constitute a part of the HA1 fragment, but conservation of 
motif-14 at the HA2 fragment was also noticed. Moreover, the available H5 and H9 HA sequences maintain a 
pattern of conservation to those DRACH motifs of both the middle region and near the 3′ end of HA.

In a trial to address influenza pathogenicity and m6A sites correlations, the in-depth comparative analysis 
showed that the low pathogenic avian influenza virus of chicken-H5N2 harbours lower conserved DRACH motifs 
compared with highly pathogenic avian influenza viruses of chicken-H5N1 and -H5N846–49. In contrast to this 
finding, the pandemic H1N1 sequences show lower conserved DRACH motifs compared with non-pandemic 
sequences50 (Table 2). Interestingly, on mRNA human influenza HA sequences that originated from avian species 
H5N1, H9N2, and H7N9 share the same DRACH motifs of the original chicken viruses (Fig. 3). Same finding was 
confirmed in vRNA as well between human influenza HA sequences that originated from avian species H5N1, 
H9N2, and H7N9 (Data not shown). Considering the enhanced pathogenicity of zoonotic viruses as confirmed 
by mortalities after transmission to humans38 compared with low pathogenic nature in chicken (i.e. H9N2, H7N9) 
seems peculiar to connect to pathogenicity (Fig. 3). Furthermore, conservation of the same DRACH motifs from 
various host species (i.e. human, chicken, turkey, duck, goose, and environmental isolates in the H5N1 model) 
was observed (Fig. 4). Collectively, it seems that the conserved DRACH motifs (the putative m6A sites) pointing 
to be virus-specific predominantly rather than to be host species-, pathogenicity-, clade-, and geographic-specific 
even in various forms of RNA to the same virus model. The same findings were noticed in HIV-1 and Zika virus 
models2,32,33. However, large-scale functional studies warrant further investigation to support this notion.

The remaining IAVs subtypes that infect mostly the wild avian species, humans, and bats (collectively com-
prise 13% of the HA sequences listed on IRD) harbour the infrequent conserved DRACH motifs; motif-1 in 
H2 and H11, motif-3 in H6, and motif 10 in H8. The scanty number of HA sequences identified so far per each 
subtype could be the cause of this finding, and higher numbers are required to give an appropriate interpretation. 
Nonetheless, the highest conserved DRACH motifs among the remaining subtype HA sequences; motifs-13, 
-11, and 7 are still observed (Table 1). These observations highlight that the putative m6A sites of this group 
of IAVs subtypes are conserved regardless of the low pathogenicity in the affected host species51 and might be 
connected to the influenza virus itself. However, functional testing is still required. The massive numbers of 
HA sequences analysed here revealed that the lowest DRACH motifs to encounter conservation are motifs 5 
and 10. It can be seen that these motifs in the PR8 reference sequence lack the full DRACH sequence identity 
on mRNA. Likewise the case in mRNA, motif 8 on HA vRNA that lacks the full DRACH sequence identity of 
PR8 were found be less conserved among H1 subtype (about 25,000 sequences). Notably, unlike PR8, motif 2 
was found to encounter conservation in 5 HA subtypes which harbour the correct DRACH sequences identity 
(Table 1). Intriguingly, cellular transcripts prediction software SRAMP34 also confirmed that 5 DRACHs are 
shared in PR8 conserved motifs described here; 6, 7, 11, 12, and 13 (data not shown). The 13th DARCH motif 
recorded the highest confidence site. However, other sites predicted in SRAMP did not match mostly with the 
publicly available PR8 mapped sites.

Reduction of the conserved DRACH motifs of interest among the newly emerged influenza viruses in bats 
the H17 and H18 and most influenza viruses characterized in wild birds (H13–16) remains in question. Nota-
bly, all HA subtypes share comparable numbers of total DRACH sites on the entire HA consensus sequences 
(36–47 DRACH sites) (Table 1). Additionally, the lower number of the total and DRACH sequences of interest 
in vRNAs compared with mRNAs might emphasize the importance of this signature on the translation and sta-
bility to mRNA, however, further functional validations are in need in near future. Further analysis to decipher 
the association with the level of m6A sites and the replication efficiency and pathogenicity in these species is 
required. Ultimately, future efforts to precisely map m6A sites on various viral transcripts coupled with the tar-
geted mutagenesis of m6A sites will be a valuable tool to modulate the fate of the virus-host battle, a step toward 
the intervention of critical pathogens. Additionally, will assist in the generation of viral m6A prediction software 
to unveil critical aspects in infection cell biology.
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Materials and methods
Determination of the reference viral transcript for comparative analysis.  Based on the pub-
lic IAV epitranscriptome-wide profiling data4, a comparative assessment was performed. Briefly, they utilized 
two different sequencing techniques to map various m6A sites across H1N1 A/Puerto Rico/8/34/Mount Sinai 
isolate20,23. Based on m6A-seq, a total of eight/nine m6A sites were identified across the entire hemagglutinin 
(HA) mRNA and vRNA, respectively (NCBI Accession # AF389118) and functionally confirmed their sequence 
analysis through synonymous mutation of 12 out of 14 short 5′-RAC-3′ motifs corresponding to the 8 identi-
fied m6A sites on the mRNA and the 9 identified m6A sites on the vRNA4 because the adopted sequencing 
approaches were not sensitive to identify the m6A sites in a single-nucleotide-resolution level. Herein, we utilized 
both the mRNA- and vRNA-HA from A/Puerto Rico/8/34/Mount Sinai as references for further computational 
comparative analysis to test the conservation patterns of putative m6A sites among all HA subtypes of IAVs.

HA dataset collection.  Nucleotide sequences of the entire HA gene of all IAVs were retrieved from the 
NIAID Influenza Research Database (IRD www.​FluDB.​org). We adopted in the settings that all HA subtypes 
from H1 through H18 were separately selected. In each HA subtype all possible neuraminidase (NA) subtyp-
ing, host species, date range, and geographic distribution were included. For further analysis, certain settings 
to include specific viruses within subtype(s) (i.e. H1N1, H1N2… etc.) or specific host species were adopted as 
stated later. Laboratory strains and duplicated sequences were excluded from the computational analysis. The 
influenza H1N1 A/Puerto Rico/8/34/Mount Sinai (AF389118) was added to each HA subtype to serve as a refer-
ence strain for subsequent comparison.

Multiple sequence alignment, generation of consensus sequences, and identification of the 
conserved DRACH sites.  Multiple sequence alignments (MSA) were generated to the long open reading 
frame of each tested HA subtype (i.e. H1-H18, separately) using the MUSCLE algorithm of the MSA tool imple-
mented in IRD44. The computed and visualized MSA results together with the derived consensus sequences 
downloaded in FASTA format. Geneious software (v9.1.4) was used to further confirm the alignment and the 
generated consensus sequences utilizing the same MSA algorithm52. The latter software can provide consensus 
sequences based on the given threshold frequency (TF) percentage and display the non-consistent bases as 
IUPAC degenerate nucleotides. Each HA subtype consensus sequence was aligned with the reference H1N1 
HA sequence using the Clustal W algorithm, Lasergene software package, version 3.18 (DNASTAR, Madison, 
WI) for identification of mutation hotspots, and prediction of nucleotide changes, then visualized using BioEdit 
program, v7.2.5 (Ibis Biosciences, Carlsbad, CA)53. A putative m6A site was considered specific and conserved 
if has the full 5′-DRACH-3′ motif sequence (D = A, G or T; R = A or G; H = A, C or T) when compared with the 
reference HA sequence and presented by the lowest conservation percentage of the total number sequences of 
the analysed subtype.

Conserveness of DRACH motifs.  Conserveness and diversity of all putative motifs were identified using 
WebLogo https://​weblo​go.​berke​ley.​edu/​logo.​cgi54, in which DRACH motifs (5 nucleotides) presented as stacks, 
each stack for a position in the sequence, the height of the stack indicates the sequence conservation at that posi-
tion, the height of symbols within the stack indicates the relative frequency of each nucleotide at this position.
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