Skip to main content
. 2021 Feb 23;7(2):e06298. doi: 10.1016/j.heliyon.2021.e06298

Table 2.

Models of ResNET-50, multi-layer CNN, and Xception along with their hyperparameters. The ResNET-50 and multi-layered CNN models were trained using 113 hpi embryo images. Accuracy and loss represent the validation accuracy and loss.

Model Layers between bottleneck and classification layer Learning rate Optimizer Decay Loss Accuracy
ResNET-50
113 hpi
1 Base architecture 0.001 Adam ND 0.8825 0.6011
2 Base architecture + dropout (0.5) 0.01 SGD ND 0.9665 0.6137
3 Base architecture + dropout (0.5) 0.005 Adam ND 0.9112 0.6039
4 Base architecture + dropout (0.5) 0.01 SGD DwS 0.9269 0.6000
5 Base architecture + dropout (0.5), additional layers 3 (1024, 1024, 512) + 20 trainable layers 0.001 Adam ND 1.6235 0.2058
6
Base architecture + dropout (0.5) + additional layers (1024)
0.001
SGD
DwS
0.9323
0.5847
CNN
113 hpi
1 2 layer3-3 + flatten + 1000 + 5 0.0005 SGD Decay 1.4641 0.3549
2 2 layer5-5 + flatten + 1000 + 5 0.0005 SGD Decay 1.4183 0.3843
3 2 layer3-5 + flatten + 1000 + 5 0.0005 SGD Decay 1.4198 0.3803
4 2 layer5-5 + BN-BN + flatten + 1000 + 5 0.0005 Adam Decay 1.3510 0.4058
5 2 layer5-5 + BN-BN + global average pooling + 32 + 5 0.0005 Adam Decay 1.5231 0.3333
6 2 layer5-5 + global average pooling + 32 + 5 0.0005 SGD Decay 1.5956 0.2588
7 2 layer5-5 + BN-BN + flatten + 1000 + 5 0.0005 SGD ND 1.4178 0.3647
8 2 layer5-5 + BN-BN + flatten + 1000 + 5 0.0005 Adam Decay 1.8889 0.3200
9 5 layer5-5 + BN + flatten + 64 + 5 0.005 Adam Decay 1.2799 0.4313
10 5 layer5-5 + BN + same padding + flatten + 512 + 5 0.0005 SGD Decay 1.2255 0.4294
11 5 layer5-5 + BN + global average pooling + 16 + 5 0.0005 SGD Decay 1.2730 0.4215
12 40 layer3-2 + global average pooling + flatten + dense 0.0005 SGD Decay 1.1581 0.4830
13
40 layer3-3 + global average pooling + flatten + dense
0.0005
Adam
ND
1.1689
0.5304
Xception
113 hpi
1 Base architecture 0.0005 SGD DwS 0.8601 0.6373
2 Base architecture + dropout (0.5) 0.001 SGD DwS 0.8866 0.6333
3 Base architecture 0.0001 SGD DwS 0.9087 0.6235
4 Base architecture + additional layers 3 (1024,1024,512) + dropout (0.5) 0.0005 SGD DwS 0.8732 0.6549
5 Base architecture + dropout (0.5) 0.0007 SGD DwS 0.8704 0.6078
6 Base architecture + additional layers (1024) + dropout (0.5) 0.001 Adam ND 0.8668 0.6372
7 Base architecture 0.006 SGD ND 0.8651 0.6588
8 Base architecture 0.0008 SGD ND 0.8850 0.6196

ND: No decay; DwS: Decay with scheduler; BN: Batch Normalization; SGD: Stochastic descent gradient.