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Abstract

Purpose: This work aims to study the generalizability of a pre-developed deep learning (DL) 

dose prediction model for volumetric modulated arc therapy (VMAT) for prostate cancer and to 

adapt the model, via transfer learning with minimal input data, to three different internal treatment 

planning styles and one external institution planning style.

Methods: We built the source model with planning data from 108 patients previously treated 

with VMAT for prostate cancer. For the transfer learning, we selected patient cases planned with 

three different styles, 14–29 cases per style, in the same institution and 20 cases treated in a 

different institution to adapt the source model to four target models in total. We compared the dose 

distributions predicted by the source model and the target models with the corresponding clinical 

plan dose used for patient treatments and quantified the improvement in the prediction quality for 

the target models over the source model using the Dice similarity coefficients (DSC) of 0% to 

100% isodose volumes and the dose-volume-histogram (DVH) parameters of the planning target 

volume and the organs-at-risk.

Results: The source model accurately predicts dose distributions for plans generated in the same 

source style, but performs sub-optimally for the three different internal and one external target 

styles, with the mean DSC ranging between 0.81–0.94 and 0.82–0.91 for the internal and the 
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external styles, respectively. With transfer learning, the target model predictions improved the 

mean DSC to 0.88–0.95 and 0.92–0.96 for the internal and the external styles, respectively. Target 

model predictions significantly improved the accuracy of the DVH parameter predictions to within 

1.6%.

Conclusion: We demonstrated the problem of model generalizability for DL-based dose 

prediction and the feasibility of using transfer learning to solve this problem. With 14–29 cases per 

style, we successfully adapted the source model into several different practice styles. This 

indicates a realistic way forward to widespread clinical implementation of DL-based dose 

prediction.

1. Introduction

Radiation therapy treatment planning is a complex process, as the target dose prescription 

and normal tissue sparing are conflicting objectives. The lowest achievable dose for each 

individual organ-at-risk (OAR) is unknown a priori. Multiple iterations between the planner 

and the physician may be required to reach the optimal balance between target coverage and 

OAR sparing. Recent planning tool developments have focused on improving the efficiency 

of the planning iteration process. Interactive multi-criteria optimization (MCO) allows the 

planner or the physician to explore the trade offs among the possible solutions and 

eliminates the communication lag in the plan iteration process [1–5]. Knowledge-based 

planning (KBP) takes a data-driven approach to learn from the past high-quality clinical 

plans and predicts a patient’s specific dose-volume histogram (DVH) and OAR dose 

constraints for new patients by using the relationship between geometric and dosimetric 

information derived from historical patient plans in the library [6–13].

Advancements in the field of artificial intelligence (AI), especially in data-driven machine 

learning (ML) and deep learning (DL) algorithms for many challenging computer vision 

problems, have inspired many researchers in radiation oncology. Deep learning and, more 

specifically, convolutional neural network (CNN) architectures have significantly improved 

imaging and vision tasks. In particular, UNet [14], a complex architecture initially designed 

for biomedical image segmentation, has notably improved the performance of predicting the 

radiation dose distribution in the body without going through a real planning process [15–

18]. The predicted dose distribution provides both visual input and DVH metrics to assist 

physician’s trade-off decision-making up front to provide more achievable planning 

objectives prior to the planning process.

While DL models holds promise as accurate predictors of the expected dose distribution 

prior to planning, the heterogeneity of data is a common challenge for AI modeling. Despite 

nationally-accepted practice guidelines that set the baseline of patient care, actual clinical 

practice is rarely clearly defined in black and white. Patient-specific medical reasons such as 

hip prosthesis and previous radiation can lead to deviation from the guideline. Strategies for 

solving a specific dosimetric trade-off problem will vary among different physicians and 

planners [19]. Treatment planning systems and optimization algorithms also introduce 

variations into clinical practice. Plans generated by different practice styles that meet the 

national guidelines, in terms of plan quality, can end up with different spatial dose 
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distributions. A DL dose prediction model built based on a particular dataset from one 

institution may not work well for different treatment planning styles even within the same 

institution. Therefore, the ability to adapt a pre-built DL dose prediction model to a given 

planning/practice style is desirable.

Furthermore, expertise in AI modeling is not widely accessible in various clinical settings in 

the field of radiation oncology. Although some AI solutions are commercially available and 

the vendor provides AI expertise, building an initial model still requires a clean and large 

dataset of treated patient cases. This requires a tremendous effort from the user to collect and 

curate enough data for modeling. Sharing models between institutions could alleviate the 

challenges associated with building an initial AI model, but the heterogeneity in practice 

mentioned above would still yield unsatisfactory performance. Thus, the ability to easily 

adapt a pre-built dose prediction model to a different practice style could lead to practical 

clinical implementation of DL dose prediction models in real-world clinical settings.

The goals of this work are to investigate the problem of generalizing DL-based dose 

prediction models and to utilize transfer learning to adapt a DL prostate VMAT dose 

prediction model to various planning/practice styles with minimal data from each individual 

style. We built a source model based on the 108 patients treated with VMAT for prostate 

cancer in a large institution. This work tests two types of practice heterogeneity: first, 

different planning styles in the same institution where we built the source model; and 

second, planning practices at a different institution. The source model was adapted to three 

internal planning styles and one external planning style with 14–29 training cases for each 

model. To our knowledge, this is the first work to study the DL-based dose prediction model 

generalizability problem and to utilize transfer learning to provide a practical solution.

2. Methods

2.1. Data Groups

For this study, we selected a total of 248 cases of prostate cancer treated with the VMAT 

technique. 188 cases from one institution, planned with the Eclipse treatment planning 

system (TPS) utilizing the progressive resolution optimizer for VMAT optimization and 

delivered with both Varian TrueBeam and Elekta Versa HD linear accelerators; and the 60 

cases from an external institution, planned with the Erasmus-iCycle TPS [20]a system for 

automated multi-criteria treatment planning, and delivered with Elekta Versa HD linear 

accelerators. Table 1 summarizes the datasets and shows the dose distributions of individual 

styles. Supplement document 1 illustrates the inherent plan quality variations among 

different training datasets.

The source model was trained with the ”Source” dataset, which consists of 108 plans in the 

‘conformal’ dose style, which is the most representative style of planning in our institution. 

In the same institution, we found three additional planning styles for different clinical 

indications, represented by three target datasets: ”Internal-A,” ”Internal-B,” and ”Internal-

C”. Internal-A style is slightly more aggressive approach than the Source style featuring 

lower femur head doses while keeping similar bladder and rectum sparing as the Source 

style. Internal-B style trades the femur head doses and bladder dose for lower rectum 
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sparing. The Internal-C style is a more extreme approach that allows a higher dose to femur 

heads to spare both the bladder and rectum. We use these three target datasets to demonstrate 

the problem of model generalizability and to test the feasibility of using a small dataset for 

transfer learning by using 14–29 cases from each target dataset. We use 2–5 test cases to 

evaluate the target model’s performance.

The ”External” style represents plans from a different institution. As one can see the dose 

distribution of the External style has many intermediate dose spikes in both the lateral and 

the anterior directions, which resulted from different TPS and planning approach. Given the 

large differences between the External and the Source styles, we trained the target model 

with 20 cases to examine the concept of small training dataset for the transfer learning and 

thoroughly evaluated the model performance with 40 cases.

2.2. Network

In this work, we implemented a 3D UNet for the model architecture, [14, 21], as UNet has 

been extensively used in radiation therapy for dose prediction [15–18]. The inputs to this 

architecture are the contours of the planning target volume (PTV) and the OARs, including 

bladder, rectum, left and right femoral heads, and body. We use a rule-based method to 

automatically rename the structure to AAPM TG-263 nomenclature and follow by manual 

quality check process to pick up and fix error of matching. After the cleaning, the structure 

regions of interest (ROIs) are segmented into binary structure masks to indicate what 

structures each voxel belongs to. The data are resampled to have voxel spacing of [5mm × 

5mm × 5mm] across all patients, and then a [120 × 120 × 64] volume was cropped to 

generate the base training data. Due to the memory limits of a 16 GB GPU (NVIDIA K80), 

we implemented patch-based training, with a patch size of [96 × 96 × 48]. At each training 

iteration, a random patient and plan is chosen, and then a [96 × 96 × 48] volumetric patch is 

randomly selected from the data volume based on a Gaussian sampling scheme proposed by 

[22]. This random patch selection process is done on-the-fly during training, so resampled 

[120 × 120 × 64] data is stored on the hard drive. The location of the patch is the same for 

input (anatomy) and output (dose) data for that given iteration, in order to correctly correlate 

the dose to the anatomy. We also implemented group normalization [23] after each set of 

convolution and rectified linear unit (ReLU) operations, which helps accelerate the 

convergence rate in the network. This model is trained to learn the mapping between the 

binary masks of the OARs and the clinical radiation dose distribution in the body. Mean 

Square Error (MSE) was the loss function, and the Adam optimizer with a learning rate of 

10−4 was used to minimize the MSE. The final network consists of 85 layers with 7,870,177 

trainable parameters.

2.3. Transfer learning

For both the internal Source dataset and the external institution dataset, the transfer learning 

method implemented for style transfer involves 3 components: 1) freezing the weights of the 

first half of the model, 2) training only the second half of the model, and 3) randomly 

reinitializing the weights of the very last layer of the model. Assuming that the major 

variations in dose distributions are owing to different planning styles across institutions, we 

can effectively freeze the first half of the UNet, which finds features from just the anatomy. 
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We can then train just the second half of the network to learn the dose distributions of a 

different planning style. Finally, to assist the network in converging and to prevent it from 

falling into a local minimum, we reinitialize the weights in the final layer of the network. 

The hyperparameters remain unchanged, except for the learning rate, which was reduced to 

one-tenth of the original value.

2.4. Model Evaluation

We first applied the Source model to the Source test cases to evaluate the model’s 

performance on its own planning style. We then applied the Source model to the test cases of 

the three internal and one external target styles to investigate the model’s performance on 

other planning styles and to set the baseline prediction quality before transfer learning. 

Individual target models trained via transfer learning were each applied to the test cases of 

their own planning style to investigate the prediction quality after adapting the Source model 

to the given target style. To further evaluate the improvement achieved by the transfer 

learning, we cross-compared each of the doses predicted by the Source and target models 

with the respective clinical plan dose.

The model was trained to predict the doses with their correct dose prescription values 

directly. We believe any kind of additional normalization would be hiding the true 

performance of the models, and potentially compromise any learned dose tradeoffs in the 

OARs. Comparing the direct predictions is the fairest assessment and comparison of the 

model performance. As far as clinical implementation, the clinical user can normalize the 

results to better suit their purpose.

We compared the absolute doses predicted by the DL models to the clinical plan doses 

without further normalization. We evaluated the spatial dose distributions and the dose-

volume histograms (DVH). We calculated DVH metrics including structure mean and 

maximum doses (i.e. D2), PTV D98, and PTV D95. The clinical plan dose served as the 

baseline for the dose comparison. We calculated the differences in the DVH metrics between 

the clinical plan dose and the predicted doses to quantify the DVH agreement. Gamma 

evaluation with 3%/3mm criteria was applied to the pixels with higher than 10% prescribed 

dose to quantify the agreement between the clinical plan dose and the predicted dose for 

both source and target models. In addition, we calculated the dice similarity coefficients 

(DSC), 2 A ∩ B
A + B  , from 0% to 100% of the prescribed dose to quantify the agreement of the 

spatial dose distribution between the clinical plan dose and the predicted doses. The Dice 

score examines the overlap as well as the volume similarity between the clinical plan dose 

and the predicted dose. We used a paired t-test to calculate the statistical significance of the 

results for the External style, which had enough test cases for a meaningful test.

3. Results

Figure 1 shows a typical example of the dose agreement between the clinical plan and the 

Source model prediction for the Source style test cases. Upon visually inspecting the dose 

distribution, percent dose difference, and the DVH, one can see that the Source model 

predicts the PTV dose correctly with minimal differences in the OAR doses. The violin plots 
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present the differences in the PTV and the OAR DVH metrics between the clinical plan and 

the Source model prediction. The differences in the PTV DVH metrics are mostly within 

3%, as reflected by the width of the individual data clusters. The median of the PTV dose 

differences are all within 2%. Similarly, the median of the mean and maximum OAR dose 

differences are within 1% and 2%, respectively.

Figure 2 illustrates the Source model and target model predictions on the test cases of 

individual target styles. The improvement in the model performance after transfer learning 

can be seen in the dose comparisons among the clinical plan, the Source model prediction 

and the target model prediction. The Source model fails to predict the style-specific dose 

distribution features. However, the target models have learned those dose distribution 

features via transfer learning, so they predict a distribution similar to the clinical plan and 

exhibit a better agreement in the DVH, especially for the Internal-C and External styles. The 

gamma evaluation distribution is shown in the supplement document 2.The source model on 

the source data achieves a gamma passing rate (mean ± s.d.) of 0.71 ± 0.08. On the internal 

target data, the source model achieves a gamma passing rate of 0.52 ± 0.10, while the target 

model achieves an improved rate of 0.61 ± 0.10. On the external data we have also found 

that the source and target model had achieved passing rates of 0.47 ± 0.05 and 0.84 ± 0.09, 

respectively. Using a two-sided t-test, the improved gamma passing rates for the target 

model over the source model for both the internal data and external data were found to be 

statistically significant (p < 0:01).

We compared each of the Source and target model predictions to the respective clinical plan 

dose and calculated the DSC of individual isodose volumes accordingly. The DSC values 

increased with the dose agreement with a coefficient of 1 considered to be a perfect match. 

As presented in Figure 3, the target models improved upon the Source model in term of DSC 

regardless of the planning style. However, the Internal and the External styles exhibit 

different trends. For the Internal styles, both the Source and the target models predict the 

high dose bath (70% to 100%) fairly well. The main improvements appear in the 

intermediate dose bath (60% to 30%). The mean DSC ranges between 0.81–0.94 for the 

three Source models and between 0.82–0.91 for the corresponding target models. The largest 

improvement may be seen in the Internal-C style, as the target model achieves a 7% 

improvement over the Source model (mean DSC is 0.80 for the Source model and 0.87 for 

the Internal-C target model) transfer learning. For the External style, the target model 

improves significantly upon the Source model throughout all isodose volumes (p < 0:05), 

with the improvement increasing as the isodose volume decreases. An average of 5% and 

8% mean DSC improvements were achieved in the high and the intermediate dose volumes, 

respectively. A systematic 10% improvement was seen in the low dose volume.

Figure 4 illustrates the Source and the External target model performances on predicting the 

DVH metric of the External style test cases. Overall, as indicated by the length of the data 

clusters, the Source model demonstrates a large variation in the prediction quality, while the 

External target model demonstrates more consistent and accurate predictions. The Source 

model overestimates the PTV doses, especially for the Dmean and the D2. The External 

target model significantly improved the predictions and resulted in mean differences within 

1.6% (Table 2) comparing to the treated plan approved by the medical doctor. In terms of the 
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OAR dose predictions, the target model achieved an agreement within 1.5%. The target 

model also results in satisfactory agreement in the clinical relevant DVH metric, V75 and 

V65 of bladder and rectum. In summary, the External target model improved upon the 

Source model by up to 6.4% and 6.0% in the PTV and the OAR DVH predictions, 

respectively (p < 0:05).

4. Discussion and Conclusion

There has been growing attention on leveraging AI-based decision support tools (DST) to 

improve the treatment planning process. Incorporating AI DST as a part of the clinical 

pathway [1] could standardize evidence-based practices to ensure high quality and cost-

effective medical care. AI algorithms, including the DL dose prediction model in this work, 

require large repositories of high quality data. This becomes one of the barriers to 

widespread deployment of AI-based solutions in the radiation oncology field. In this study, 

we utilized transfer learning to solve the data size problem and demonstrated the ability to 

adapt a source model to three different internal planning styles and one external planning 

style with minimal data input.

Heterogeneity in clinical practices, whether intra- or inter-institutional, is commonly seen. 

The clinical protocols and guidelines set the floor of treatment plan acceptance, but users set 

the ceiling for their own practice. Table 1 clearly shows that, even within the same 

institution, the individual trade-off preferences of different physicians and planners in 

combination result in a variety of dose distribution styles. On top of these differences in 

practice, the different treatment planning system employed in the External institution in this 

study yielded dramatically different dose distributions from the Source style. The treatment 

plans in the Source style were optimized with a specific objective function (normal tissue 

objective, NTO) to shape the dose fall-off conformally, whereas plans from the External 

institution were optimized with a unique 23-beam starting condition of the VMAT 

optimization that led to distinct spikes in the low dose bath. Regardless of the dose 

distribution style, they are all clinically accepted plans that comply with the clinical 

guideline. The AI model’s adaptation to the user’s practice style can achieve standardization 

with respect to the user’s prior experience. This would be practical and beneficial for 

implementing AI-guided planning in practice, because the user can precisely interpret the 

predicted dose for meaningful clinical use.

Directly deploying a model built in a different practice style may lead to unsatisfactory 

predictions. As shown in the Source model predictions on the cases planned with target 

styles in Figure 2, the predicted doses inherit the conformal dose distribution of the Source 

style. They meet the planning objectives, but they fail to represent the dose distribution 

features of the target styles. This reflects a common frustration of institutions that are trying 

to clinically implement a model provided by a vendor or developed by a different institution. 

In this work, we demonstrated the transfer learning can adapt a source model into various 

practice styles.

Transfer learning with an additional 14–29 cases in the target style, allowed the target 

models to learn the features of the new planning style quickly. Taking the External style as 
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an example, the distinct low dose spikes were precisely predicted by the External target 

model. We saw this improvement globally in all target styles, and it increased as the 

variation between the Source and target styles increased (Figure 2). For example, the 

Internal-A and Internal-B styles pull the dose from the rectum only slightly more 

aggressively than the Source style, so the inherent differences are small. Therefore, the 

Source model still achieved more than a 0.78 mean DSC, which the target models only 

slightly outperformed. In contrast, the Internal-C style turns off the NTO and intentionally 

trades femur doses for lower rectum and bladder doses, so it differs more substantially from 

the Source style. Accordingly, the Source model predictions on the Internal-C style cases 

demonstrated a significant dip in DSC in the intermediate dose levels, but the Internal-C 

target model improved the DSC to a satisfactory level. For the External style, which is 

fundamentally different from the Source style, the External target model improved upon the 

Source model’s DSC by up to 10% DSC and had a DSC higher than 0.87 among all test 

cases and isodose volumes.

The intermediate dose bath of the VMAT plan is more unpredictable because of its complex 

nature. The variations in trade-offs and planning approaches can tremendously polarize the 

spatial dose distribution in this dose range. Moreover, with the large numbers of beam angles 

in VMAT optimization, the optimizer has more options to pull the dose off a specific area, 

which makes the dose more uncertain to predict. Traditionally, the DL dose predictor has a 

hard time handling these style-specific features. This is reflected in figure 3, which shows 

that the DSC of the Source model prediction ranges between 0.80–0.94. However, with 

transfer learning, the target models can represent these dose features, and the DSC of target 

model prediction increased to 0.87–0.99, which is satisfactory.

The input data to the model are the structure contours of the PTV, bladder, rectum, femoral 

heads and body. The dose prediction is dependent on these structures, and the dose 

distribution may change with changes in the segmentation. However, assuming that the same 

set of contours that are used for planning are also used as input to the model (even if they are 

“poor” quality segmentation), we do not expect any larger prediction errors against a ground 

truth clinical dose, than what was reported in the study.

It is worth to mention that is is not guaranteed the model will produces the “best” possible 

dose distribution since the clinical training data is not guaranteed to be “optimal” either. 

However, since the clinical doses that were used for training the models have been approved 

by the physicians, the trained models can produce dose distributions that are meeting or 

close to meeting the acceptability criteria outlined by the physicians. This can provide a lot 

of benefits as well, which include improving planning efficiency and reducing plan quality 

variation. The doses predicted in the paper do not guarantee machine deliverability. 

However, we should note that the three internal styles and the external data that we have are 

all machine deliverable plans. Therefore, the model is expected be able predict overall 

realistic dose tradeoffs. The model is not striving to create a “perfect plan” but instead, 

create a “physician acceptable” plan.

There are several potential applications. The current product can be used as a decision 

support tool for the MDs or a driving guidance tool for the treatment planners, who then 
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create the deliverable plan. Second application is MD decision support between different 

treatment modalities, such as 3D versus IMRT. Third application is efficient plan quality 

check for peer-review. In addition, the dose prediction can be used for education and training 

for residents and students. Our institution implemented the dose prediction tool as the 

physician’s planning directive assist. Physician triggers the prediction upon the time of 

contour completion. Physician will be presented the predicted dose distribution, the 

predicted dose-volume histogram, and a predicted objective metrics. Physician will review 

the predicted objective and make adjustment as needed (ex. prior radiation) before 

submitting the directive to the medical dosimetrist.

In light of the barriers to accessing the expertise of AI modeling, collecting sufficient data to 

train a model, and sharing data among institutions, a broad AI tool that can easily adapt a 

maturely built model to different practice styles could allow more practices to access and 

clinically implement an AI model for dose prediction. We used prostate VMAT as an 

example to demonstrate the feasibility of leveraging transfer learning for model adaptation. 

However, this methodology can be employed for other AI tools in the field of radiation 

oncology and allow for widespread application of such tools.As future work, we plan to 

develop an approximate Bayesian method in order to have the deep learning model produce 

uncertainties within its voxel-wise prediction. This uncertainty can converted to confidence 

intervals in other dose-related metrics, such as the DVH. This can be used to flag the users 

on the reliability or achievability of the prediction. In addition, we plan to investigate the 

addition of this uncertainty measure to the uncertainty of anatomy and tradeoff options. For 

example, the model can create prediction based on base model and various tradeoff styles, to 

provide the options with uncertainties for the MDs to make their best clinical judgment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Performance analysis of the source model including the dose distributions with the structure 

contours outlined in white dotted lines; the percentage dose difference; the DVH of the 

clinical plan (solid lines) and the predicted dose (dotted lines)l and the violin plots of the 

target and the OAR DVH metrics.
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Figure 2: 
Dose comparison between the clinical plan and the predicted plan using the source and the 

target models including the dose distributions, the percentage dose difference, and the DVH 

comparisons.
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Figure 3: 

Dice similarity coefficients analysis, 2(A ∩ B
A + B . Comparing the isodose volumes between the 

clinically planned dose and the predicted dose. One standard deviation represented the error 

in the graphs. The 30%-70% range is indicated in the figure by vertical dotted lines.
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Figure 4: 
Quantitative performance evaluation of the error in the DVH metric in target model dose 

prediction vs the source model dose prediction in respect to the clinically planned dose for 

the external data.
† Represents p < 0:05
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Table 1:

Patient datasets used for building the source model (Source) and for testing the model generalizability and 

then for adapting model (Internal-A, Internal-B, Internal-C, and External). First column shows a typical dose 

distribution of the planning style represented by each dataset.

Dose Style Name Dataset Training Testing

Source 118 108 10

Internal-A 34 29 5

Internal-B 16 14 2

Internal-C 20 17 3

External 60 20 40
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Table 2:

Quantitative performance evaluation based on the error in target model dose prediction vs the source model 

dose prediction for the ’External’ style. The comparison was made between the clinically approved plans and 

the predicted dose from the source and the target models, respectively, and normalized to the prescription dose.

ROI DVH Metric Source Model Target Model

PTV Dmean %6.90 ±0.40 %1.60±0.55†

D95 %2.60±1.15 %0.40±0.60†

D98 %2.80±2.65 %0.90±1.00†

Dmax %8.00±0.50 %1.55±0.70†

Bladder Dmean %7.75±3.80 %1.80±1.60†

Dmax %6.55±1.25 %1.35±0.95†

V75 %9.94±8.18 0.9±1.04†

V65 %13.55±7.91 1.09±1.18†

Rectum Dmean %2.80±1.95 %1.25±0.95

Dmax %5.55±1.80 %1.10±0.80†

V75 %5.14±3.23 0.48±0.51†

V65 %5.7±3.37 0.78±0.71†

Rt Femur Head Dmean %1.55±1.20 %1.25±0.70†

Dmax %2.55±1.85 %1.55±1.45†

Lt Femur Head Dmean %2.60±1.45 %1.05±0.65†

Dmax %3.65±2.50 %1.50±1.35†

Radiother Oncol. Author manuscript; available in PMC 2021 December 01.


	Abstract
	Introduction
	Methods
	Data Groups
	Network
	Transfer learning
	Model Evaluation

	Results
	Discussion and Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Table 1:
	Table 2:

