Algorithm: Improved whale-optimization algorithm (IWOA) |
Objective: |
Minimize and maximize the objective function , |
Parameters: |
iter-iteration number. |
Maxiter-the maximum number of iteration. |
I-a population pop. |
p-the switch probability |
1. /*Initialize a population |
2. WHILEiter < Maxiter |
3. FORi = 1 to I Update , , l and p |
4. IFp > 0.5 |
5. IF |
6. Update the position of the current solution by Equation (14) |
7. ELSE IF |
8. Randomly choose a search agent |
9. Update the position of the current search agent by Equation (16) |
10. END IF |
11. ELSE IFp > 0.5 |
12. Update the position of the current search by Equation (15) |
13. END IF |
14. END FOR |
15. /*Jump out of local optimum by using chaotic local search. */ |
16. Calculate |
17. Calculate the next iteration chaotic variable by Equation (16) |
18. Transform for the next iteration |
19. /*Evaluate replace by if the newly generation is better. */ |
20. /*Find the current best solution gbest*/ |
21. |
22. END WHILE |