Skip to main content
. 2021 Jan 24;18(3):1024. doi: 10.3390/ijerph18031024

Table 6.

Comparison of prediction performances with existing models.

Dataset Indicator MAE RMSE MAPE TIC Error Mean Error STD
Beijing ARIMA 26.4865 36.2374 92.8296 0.3176 −0.1317 36.3334
RBFNN 17.0813 21.7653 62.7264 0.1751 −11.9703 18.2263
SSA-ENN 14.8237 18.7182 56.8534 0.1593 −6.4266 17.6271
EEMD-GRNN 11.3569 13.8575 41.9101 0.1176 −6.0212 12.5142
EEMD-WOA-BPNN 6.3748 7.7832 18.0544 0.0647 −5.2481 5.7629
Pro. Ensemble 1.6843 2.3367 5.5600 0.0202 0.0577 2.3422
Tianjing ARIMA 17.4613 24.6957 35.4034 0.2059 −1.6273 24.7075
RBFNN 12.5062 16.2787 26.4680 0.1376 −2.2933 16.1591
SSA-ENN 12.4636 16.4413 26.2710 0.1335 −5.6593 15.4776
EEMD-GRNN 7.6808 9.7881 16.3186 0.0815 −2.8509 9.3886
EEMD-WOA-BPNN 3.2047 3.9304 6.6289 0.0328 −0.8012 3.8581
Pro. Ensemble 1.4745 2.0918 2.7869 0.0176 0.0061 2.0973
Baoding ARIMA 20.0634 26.7218 31.9956 0.1888 −3.9880 26.4927
RBFNN 15.0370 19.2877 25.5808 0.1376 −5.4023 18.5648
SSA-ENN 13.4114 17.4316 24.1157 0.1275 −4.2010 16.9627
EEMD-GRNN 9.5818 12.4331 17.2851 0.0902 −4.2821 11.7035
EEMD-WOA-BPNN 5.0988 6.7604 9.2280 0.0495 −2.2183 6.4030
Pro. Ensemble 1.4926 2.1029 2.4427 0.0156 −0.0498 2.1079
Shijiazhuang ARIMA 15.5991 19.9363 25.4303 0.1541 1.9553 19.8929
RBFNN 13.4980 17.7899 23.6275 0.1310 −5.9717 16.8022
SSA-ENN 11.1319 15.3624 18.5469 0.1204 0.9266 15.3752
EEMD-GRNN 15.5582 18.5484 29.2907 0.1326 −11.1552 14.8584
EEMD-WOA-BPNN 11.9964 15.2740 22.6224 0.1093 −9.8333 11.7187
Pro. Ensemble 1.4004 1.8717 2.3930 0.0143 −0.0449 1.8762