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Abstract

Singular value decomposition-based clutter filters can robustly reject tissue clutter, allowing for 

detection of slow blood flow in imaging microvasculature. However, to identify microvessels, high 

ultrasound frequency must be used to increase the spatial resolution at the expense of shorter depth 

of penetration. Deconvolution using Tikhonov regularization is an imaging processing method 

widely used to improve spatial resolution. The ringing artifact of Tikhonov regularization, though, 

can produce image artifacts such as non-existent microvessels, which degrade image quality. 

Therefore, a deconvolution method using total variation is proposed in this study to improve 

spatial resolution and mitigate the ringing artifact. Performance of the proposed method was 

evaluated using chicken embryo brain, ex ovo chicken embryo chorioallantoic membrane and 

tumor data. Results revealed that the reconstructed power Doppler (PD) images are substantially 

improved in spatial resolution compared with original PD images: the full width half-maximum 

(FWHM) of the cross-sectional profile of a microvessel was improved from 132 to 83 μm. Two 

neighboring microvessels that were 154 μm apart were better separated using the proposed method 

than conventional PD imaging. Additionally, 223 FWHMs measured from the cross-sectional 

profiles of 223 vessels were used to determine the improvement in FWHM with the proposed 

method statistically. The mean ± standard deviation of the FWHM without and with the proposed 

method was 233.19 ± 85.08 and 172.31 ± 75.11 μm, respectively; the maximum FWHM without 

and with the proposed method was 693.01 and 668.69 μm; and the minimum FWHM without and 

with the proposed method was 73.92 and 45.74 μm. There were statistically significant differences 

between FWHMs with and without the proposed method according to the rank-sum test, p < 

0.0001. The contrast-to-noise ratio improved from 1.06 to 4.03 dB with use of the proposed 

method. We also compared the proposed method with Tikhonov regularization using ex ovo 
chicken embryo chorioallantoic membrane data. We found that the proposed method outperformed 
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Tikhonov regularization as false microvessels appeared using the Tikhonov regularization but not 

with the proposed method. These results indicate that the proposed method is capable of providing 

more robust PD images with higher spatial resolution and higher contrast-to-noise ratio.
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INTRODUCTION

Tissue backscatter signal reveals higher spatiotemporal coherence and power than blood 

signal and can be conveniently separated from blood signals in the domain of singular 

values. Through the use of ultrafast plane wave excitation and spatial–temporal filtering, a 

large number of power Doppler (PD) ensembles can be obtained to improve the detection of 

slow blood flow signals of small vessels for microvessel imaging. Recently, singular value 

decomposition (SVD)-based clutter filters (Mauldin et al. 2011; Demene et al. 2015; Song et 

al. 2017b) have been proposed and found to have superior blood signal detectability 

compared with conventional PD imaging. Although SVD-based clutter filtering is highly 

sensitive, a major drawback of the technique is the expensive computational cost associated 

with SVD calculations on a large number of ensembles. Therefore, we have proposed 

randomized SVD (Song et al. 2017b) and randomized spatial downsampling to speed up the 

SVD process; the real-time potential was reported in our previous study (Lok et al. 2018). 

Another issue of the ultrasound microvessel imaging (UMI) technique is the presence of 

background noise, which manifests as a ramp-shaped background noise profile (Song et al. 

2017c), hampering flow detection performance. We have previously proposed an effective 

noise suppression method (Huang et al. 2019a, 2019b) to reduce background noise power, as 

well as a noise equalization method (Song et al. 2017a) to improve the image quality of 

UMI.

To further improve UMI performance in identifying small vessels, high ultrasound frequency 

is required, which increases spatial resolution at the expense of shorter depth of penetration. 

To minimize the trade-off between ultrasound frequency and penetration depth, we proposed 

using deconvolution to improve spatial resolution, which is well known in imaging or optical 

processing. The problem of deconvolution can be categorized into non-blind deconvolution 

and blind deconvolution. The difference between these two is knowledge of the system point 

spread function (PSF). In the present study, we focused on non-blind deconvolution to 

improve spatial resolution.

The simplest way to apply non-blind deconvolution is through inverse filtering. In the 

inverse filtering method, an inverse filter is used to eliminate the effect of the PSF to achieve 

object function. For PD imaging, the relationship between the object x(i,j) and received PD 

image y(i,j) at location (i,j) is

y i, j = x i, j ∗ p i, j + n i, j (1)
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where p(i,j) and n(i,j) are the required PSFs of the PD image and background noise at 

location (i,j), respectively. The matrix form can be written as

y = Ax + n (2)

where x is the object PD image, y is the ultrasound PD image, n is the background noise and 

A is the linear convolution operator (Toeplitz matrix), which consists of the PD PSF. In 

inverse filtering, the inverse matrix of A is applied to the PD image. However, background 

noise will be enhanced by directly applying the inverse matrix. For this reason, a non-blind 

deconvolution algorithm based on Tikhonov regularization (Rangarajan et al. 2008) has been 

proposed to mitigate the background noise enhancement through choice of the appropriate 

regularization parameter. This has been reported to improve spatial resolution in ultrasonic 

imaging (Jensen et al. 1993). The cost function of Tikhonov regularization can be expressed 

as

C x = min
x ∈ X

σ x 2
2 + Ax − y 2

2 , (3)

where x and y are the reconstructed image and original image, respectively. . 2
2 and σ are 

the L2 norm and regularization parameter, respectively. Tikhonov regularization provides a 

closed analytic matrix form for deconvolution, which can be expressed as

x = AHA + σI −1AHy (4)

where (.)H and (.)−1 are the complex conjugate transpose and matrix inversion. In addition, 

the reconstruction can be optimized by using the fast Fourier transform-based method. 

However, the major disadvantage of Tikhonov regularization is the ringing artifact, which is 

problematic in ultrasound PD imaging, because the reconstructed PD image will reveal 

blood vessels that do not exist in the original image.

To reduce the ringing artifact, total variation (TV) regularization (Dey et al. 2006; Yang et al. 

2016) was adopted in this study because of its good edge preservation in the field of image 

processing. In this study, we used the primal–dual model (Chambolle and Pock 2011) to 

solve the TV-constraint problem to mitigate the ringing artifact and improve UMI spatial 

resolution. The proposed method was used on the PD images of chicken embryo brain, 

chorioallantoic membrane (CAM) and chicken embryo tumor data to determine the 

improvement in spatial resolution and detectability of small vessels.

METHODS

Deconvolution using primal–dual algorithm with TV

The cost function of deconvolution using TV regularization can be expressed as

C x = min
x ∈ X

Dx 1 + λ
2 Ax − y 2

2
(5)
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where x and y are the reconstructed PD image and input PD image, respectively. A is the 

linear convolution operator of the required UMI PSF. ‖p‖1 and p 2
2 are the L1 and L2 norms 

of p, respectively. λ is the regularization parameter. D is the finite difference operator 

consisting of horizontal and vertical finite differences and is known as the regularization 

kernel. The iteration method can be optimized by using the fast Fourier transform-based 

method iteratively as described in Chambolle and Pock (2011).

Ultrasound imaging of chicken embryo brain, CAM and tumor

To image the chicken embryo brain and CAM, a Verasonics Vantage 256-channel ultrasound 

system (Verasonics Inc., Kirkland, WA, USA) equipped with an L35-16 vX high-frequency 

linear array transducer (Verasonics Inc.) operating at a center frequency of 25 MHz was used 

for scanning. Fifteen-angle compounding plane-wave imaging was performed (−7° to 7°, 

step angle = 1 °), and the transmit voltage was set as 40 V (one-side voltage). The post-

compounded frame rate was nearly 500 Hz. A total of 200 ensembles were used to construct 

the output PD image. In-phase quadrature phase (IQ) data were first captiued from a chicken 

embryo (brain and CAM data). To image the chicken embryo tumor, the same settings were 

used, and IQ data were captiued from another chicken embryo with the injection of renal 

cell carcinoma that was generated with Renca cancer cells (Huang et al. 2019a, 2019b). The 

deconvolution process was conducted on a workstation with Intel Gold 6130 2.1 GHz CPU 

and 32 GB RAM running MATLAB. No IACUC approval was necessary to perform the 

chicken embryo experiments described in this article, because avian embryos are not 

considered to be live vertebrate animals according to National Institutes of Health (NIH) 

public health service policy.

Point spread function estimation

Lumason microbubble (MB) suspension (Bracco Diagnostics Inc., Monroe Township, NJ, 

USA) was diluted with saline to approximately 1/1000 times the original concentration in a 

water tank. The same ultrasound system, center frequency and compounding angles were 

used in this experiment. Then, an SVD-based clutter filter was applied to the IQ data to 

extract MB signals. A threshold was set to the clutter-filtered IQ data to suppress 

background noise signals. A system PSF was derived based on observed MB signal 

dimensions and shape ((FWHM in Fig. 1a). A multivariate Gaussian model was used to fit 

the PSF observed from the MB signals in different locations, as illustrated in Figure 1b. 

Finally, the required PSF of the PD image can be derived by computing the square of the 

system PSF, as illustrated in Figure 1c.

Vessel phantom

To illustrate the utility of the proposed method at clinically relevant frequencies, a clinical 

linear array transducer 9 L-D (General Electric Healthcare, Wauwatosa, WI, USA) operating 

at a center frequency of 6.25 MHz was used to image a customized vessel phantom 

(Gammex, Middleton, WI; diameter = 2 mm). Ten-angle plane-wave compounding imaging 

was used (−5° to 4°, angle step = 1°), and the post-compounding frame rate was 500 Hz. The 

number of ensembles was 200, and the flow speed was set at 10 mm/s.
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Ultrasound data processing and evaluation metric

After IQ data for a chicken embryo were acquired, a spatiotemporal SVD-based clutter filter 

was applied to the IQ data to reject background tissue signals and stationary signals. The 

powers of clutter-filtered data were computed to form a PD image. A noise equalization 

method (Song et al. 2017a) was applied to the output PD image to improve the image 

quality. Then, the proposed deconvolution approach was applied to the PD image to achieve 

the final image using the pre-estimated PSF.

To evaluate spatial resolution, a cross-sectional profile was interpolated with a pixel 

resolution 10 times higher than the original cross-section profile (MATLAB function 

“interpl”), and then the FWHM was evaluated by measuring the −6-dB width of the 

interpolated cross-section profile of a single vessel. Additionally, we used the chicken 

embryo CAM data set [(axial, lateral): (223,180) pixels] to illustrate the improvement in 

FWHM statistically. Two hundred twenty-three FWHMs acquired from the cross-sectional 

profiles of 223 blood vessels (corresponding to 223 pixels in the axial direction) were used 

to compute the maximum, minimum and mean ± standard deviation of FWHM in this study. 

Each FWHM was measured from a vessel that had the maximum intensity within a cross-

sectional profile.

To investigate the improvement in image quality, the confiast-to-noise ratio (CNR) was used 

as the performance evaluation. The CNR was defined as

CNR = 20 log I1 − I2

σ1
2 + σ2

2 1/2 (8)

where I1 and I2 are the mean intensities of the selected vessel region of interest (ROI) and 

background ROI, respectively; and σ1
2 and σ2

2 are the variances of the selected vessel ROI and 

background ROI, respectively.

RESULTS

Chicken embryo brain

Power Doppler images of chicken embryo brain with and without the proposed 

deconvolution method are provided in Figure 2a and 2b, respectively. Qualitatively, a sharper 

PD image and lower background noise level can be achieved with the proposed method. 

Figure 2c, 2d display a region of interest to illustrate image detail with and without the 

proposed method. Considering a vessel’s lateral position and axial position as around 2.4 

and 5.5 mm, respectively, the thinner vessel is observed after applying the proposed method. 

The cross-sectional profile of the microvessels is provided in Figure 2e. Without the 

proposed deconvolution method, the vessel with the highest intensity exhibited an FWHM of 

123 μm, whereas the proposed deconvolution method allowed for the imaging of the same 

vessel with a FWHM of 88 μm. Thus, a nearly 1.4 times improvement in spatial resolution 

can be achieved with the proposed method. The average computational times used to obtain 

a PD image with and without the proposed method were around 3.04 and 2.86 s, 

respectively. The mean and standard deviation of the computational time of the proposed 
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deconvolution method were around 0.18 and 0.04 s, respectively. All computational time 

results were averaged from 10 repeated measurements. The demonstration MATLAB codes 

(link) are available online as well.

Chicken embryo CAM

Figures 3a and 3b are chicken embryo CAM images with and without the proposed 

deconvolution method, respectively. The optical microscopy image from the same region of 

the CAM surface vessel was used as the ground truth, as illustrated in Figure 3c. The 

zoomed regions of Figure 3a–c indicated by the white dashed boxes are illustrated in Figures 

3d–f, respectively). The spatial resolution with and without the proposed method was 

quantitatively evaluated by plotting a vessel profile along the white dashed line as indicated 

in Figure 3d, 3e. As illustrated in Figure 3g, the microvessel cross-sectional profile has an 

FWHM of 132 μm using conventional PD and 83 μm with the proposed deconvolution 

processing. The microvessel size, measured on the zoomed optical image, was around 67 

μm, as illustrated in Figure 3f. This result confirmed the improvement in spatial resolution 

using the proposed technique. Additionally, 223 FWHMs from 223 axial positions were 

measured, and the corresponding FWHMs with and without the proposed method are 

illustrated in Figure 4a. The mean ± standard deviation of FWHM without and with the 

proposed method was 233.19 ± 85.08 and 172.31 ± 75.11 μm; the maximum FWHM 

without and with the proposed method was 693.01 and 668.69 μm; and the minimum 

FWHM without and with the proposed method was 73.92 and 45.74 μm, respectively. In 

Figure 4b is the boxplot of FWHMs with and without the proposed deconvolution method. 

The 25th percentile, median and 75th percentile values of all 223 FWHMs were 184.8, 

212.52 and 254.1 μm, respectively, without the proposed deconvolution method and 110.8 

μm, 138.6 μm, and 196.4 μm, respectively, with the proposed method. A statistical 

significance was observed for differences between FWHMs with and without the proposed 

method, using the rank-sum test, p < 0.0001. These results indicate that FWHMs with the 

proposed method provide better resolution than those without the proposed method. In 

addition, we compared the performance of the proposed method with Tikhonov 

regularization, as illustrated in Figure 5. The optical microscopy image was used as the 

ground truth, as illustrated in Figure 5a. Figure 5b is the CAM image reconstructed by 

Tikhonov regularization. Because of the ringing artifacts, false blood vessels near large 

vessels appeared using Tikhonov regularization, as indicated by the white arrows in Figure 

5b. On the other hand, the proposed method exhibits fewer ringing artifacts in Figure 5c, and 

false blood vessels did not appear. The results illustrate that the proposed deconvolution 

method performs better than Tikhonov regularization.

Chicken embryo tumor

Chicken embryo tumor images with and without the proposed deconvolution method are 

provided in Figure 6a, 6b. Qualitatively, a sharper PD image can be obtained with the 

proposed deconvolution method. The magnified PD images of a tumor xenograft on the 

chicken embryo are provided in Figure 6c, 6d. The cross-sections of interest indicated by the 

white dashed lines in Figure 6c, 6d are illustrated in Figure 6e. Two branching microvessels 

(indicated by green arrows), 154 μm apart, can be distinguished using both methods, but the 

proposed method provides better separation than conventional PD imaging.
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In addition, the CNR with and without the proposed method was evaluated as illustrated in 

the green solid and dashed boxes in Figure 6a, 6b. The green solid boxes were used to 

compute the mean intensity of the selected vessel ROI, while the green dashed boxes were 

used to compute the variance of the selected noise ROI. CNR improved from 1.06 to 4.03 

dB with use of the proposed method.

The PD images with and without the proposed deconvolution method are provided in Figure 

7a, 7b. The dynamic ranges in Figures 7a, 7b were set at 40 dB to provide better 

visualization of the output PD images. In Figure 7c–e are the corresponding cross-sectional 

profiles from the three locations indicated by the dashed lines in Figure 7a, 7b. The FWHMs 

decreased by approximately 0.17, 0.15 and 0.11 mm at the three locations, which illustrates 

the feasibility of the proposed method at the clinical imaging frequency.

DISCUSSION

In this study, we found that the spatial resolution of PD images can be improved by 

deconvolution with the single PSF estimated using experimental MB signals. Because the 

PSF varies spatially and is system dependent, image quality can be further improved with 

the spatially variant PSF. To achieve deconvolution with the spatially variant PSF, the PSF 

estimation and the deconvolution algorithm should be modified. First, for the PSF 

estimation, one method to estimate the spatially variant PSF is to measure and average MB 

signals from different locations over multiple frames. Another method to estimate the 

required PSF is the use of simulation (Shin et al. 2009). The input parameters of the 

simulation, such as width, height and kerf of each transducer element, radius of the 

elevational focus, sound speed and system impulse response, should be set to match the 

desired transducer and ultrasound system. Second, as the spatially variant PSF is modeled, a 

spatially variant PSF matrix (S) can be used to solve the cost function to improve 

deconvolution performance, as indicated by

C x = min
x ∈ X

Dx 1 + λ
2 Sx − y 2

2
(9)

However, as the matrix S is no longer spatially invariant, the fast Fourier transform-based 

method (Chambolle and Pock 2011) cannot be used to solve this optimization problem 

iteratively, and thus, the computational complexity of the deconvolution process increases. 

Therefore, the proposed deconvolution method using a spatially invariant PSF is preferable 

because of the feasibility of real-time PD imaging.

Several issues should be addressed. The first is the need to identify the appropriate 

regularization parameter (λ), estimated system PSF and number of iterations. For clinical 

application, the regularization term and system PSF for different applications should be 

tuned according to system parameters, such as center frequency and number of pulse cycles. 

Second, the number of iterations should be tuned to achieve a reasonable result. Twenty 

iterations were used in this study; however, better results may be achieved by increasing the 

iterations at the expense of longer computational time. Another limitation of the proposed 

method is that PD intensity values are altered and no longer represent the power of red blood 

cell backscattering signals. Therefore, it is not possible to use the deconvolved images from 
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the proposed method to calculate the backscattering-related quantifications such as fractional 

moving blood volume estimation. Although the computation time of the proposed method 

was approximately 0.18 s using MATLAB, the processing time can be significantly reduced 

by using parallel processing with either multicore CPUs or GPUs (Pock et al. 2007) to make 

the real-time deconvolution feasible.

In the present study, only positive values were of concern after reconstruction of the PD 

image; thus, a pixel value lower than zero will be removed (set as zero). Instead of 

discarding negative values, non-negative constraints could be applied to eqn (5) to further 

improve reconstruction performance in future studies. Moreover, only the finite difference 

operator D was applied to the regularization kernel in this study. Other kernels, such as 

wavelet (Khare and Shanker Tiwary 2005) and curvelet (Starck et al. 2002), can be used to 

adapt the regularization kernel to different applications. The performance of the curvelet 

transform is promising, as it (Bal et al. 2019) can represent an image at different scales and 

different angles. Regularization kernels could be investigated to further improve 

reconstruction performance in future studies. Consequently, non-negative constraint and 

different regularization kernel can be used to further improve the performance of the 

proposed method. On the other hand, we evaluated the CNR only to illustrate the 

improvement in contrast resolution with the proposed method; to further improve the 

evaluation metric, the generalized CNR (Rodriguez-Molares et al. 2020) can be used in 

future studies because of its robustness against the dynamic range and its ability to provide a 

quantitative measurement for contrast.

CONCLUSIONS

In this study, we use a proposed deconvolution method to improve spatial resolution without 

increasing ultrasound frequency. Chicken embryo brain, CAM and tumor data were used to 

illustrate the feasibility of the proposed method. Compared with original PD images, the PD 

images reconstructed by the proposed method provided better spatial resolution, higher 

CNRs and sharper microvessel imaging. In addition, the proposed deconvolution method 

revealed fewer ringing artifacts and smoother background noise compared with the 

Tikhonov regularization method.
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Fig. 1. 
(a) Received microbubble signals, (b) estimated system point spread function using a 

multivariate Gaussian model and (c) estimated ultrasound microvessel imaging point spread 

function for the power Doppler image.
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Fig. 2. 
(a) Original power Doppler image. (b) Power Doppler image reconstructed using the 

proposed deconvolution approach. The dynamic range for both (a) and (b) is 50 dB. (c, d) 

Regions of interest indicated by the white box in (a) and blue box in (b), respectively. The 

white lines in (c) and (d) represent the cross-sectional profile at a depth of 5.47 mm. (e) 

Corresponding full width half-maximums with and without the proposed method, illustrating 

the improved spatial resolution performance with the proposed approach.
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Fig. 3. 
(a) Original power Doppler image of the chorioallantoic membrane (CAM) vasculature. (b) 

Power Doppler image of the CAM vasculature reconstructed by the proposed deconvolution 

method. The dynamic range for both (a) and (b) is 70 dB. (c) Microscopic image of the 

CAM model. (d–f) Regions of interest indicated by the white boxes in (a)–(c). (g) 

Corresponding cross-sectional profile with measurements of the full width at half-maximum.
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Fig. 4. 
(a) Full width at half-maximum (FWHM) with respect to axial position, where each FWHM 

was measured from a vessel that has maximum intensity within a cross-sectional vessel’s 

profile. (b) Boxplot of the distributions of FWHMs with and without the proposed 

deconvolution method.
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Fig. 5. 
(a) Microscopic image of the chorioallantoic membrane (CAM) model. (b) Power Doppler 

image of the CAM vasculature reconstructed by Tikhonov regularization. (c) Power Doppler 

image of the CAM vasculature reconstructed by the proposed method. The dynamic range 

for all images is set at 70 dB.
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Fig. 6. 
(a) Original power Doppler image of the chicken embryo tumor vasculature. (b) Power 

Doppler image of the chicken embryo tumor vasculature reconstructed using the proposed 

approach. The dynamic range for both (a) and (b) is 70 dB. (c, d) Regions of interest 

indicated by the white boxes in (c) and (d). The white lines represent the cross-sectional 

profile at a lateral position of 2.39 mm. (e) The corresponding cross-sectional profiles with 

and without the proposed method indicate two branching vessels, approximately 0.154 mm 

apart.
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Fig. 7. 
(a) Power Doppler image of the flow phantom. (b) Power Doppler image of the flow 

phantom reconstructed with the proposed deconvolution approach. (c–e) Cross-sections 

indicated by dashed lines in (a) and (b). The dynamic range was set as 40 dB.
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