
Computer Vision in the Operating Room: Opportunities and 
Caveats

Lauren R. Kennedy-Metz,
Medical Robotics and Computer-Assisted Surgery (MRCAS) Laboratory, affiliated with Harvard 
Medical School in Boston, MA 02115 and the VA Boston Healthcare System in West Roxbury, MA 
02132.

Pietro Mascagni,
ICube at the University of Strasbourg, CNRS, IHU Strasbourg, France and Fondazione Policlinico 
Universitario Agostino Gemelli IRCCS, Rome, Italy

Antonio Torralba,
Computer Science and Artificial Intelligence Laboratory (CSAIL) at Massachusetts Institute of 
Technology in Cambridge, MA 02139.

Roger D. Dias,
Harvard Medical School in Boston, MA 02115 and STRATUS Center for Medical Simulation in the 
Department of Emergency Medicine at Brigham and Women’s Hospital in Boston, MA 02115.

Pietro Perona,
Computer Vision Laboratory at CalTech and Amazon Inc. in Pasadena, CA 91125.

Julie A. Shah,
Computer Science and Artificial Intelligence Laboratory (CSAIL) at Massachusetts Institute of 
Technology in Cambridge, MA 02139.

Nicolas Padoy,
ICube at the University of Strasbourg, CNRS, IHU Strasbourg, France.

Marco A. Zenati
Medical Robotics and Computer-Assisted Surgery (MRCAS) Laboratory, affiliated with Harvard 
Medical School in Boston, MA 02115 and the VA Boston Healthcare System in West Roxbury, MA 
02132.

Abstract

Effectiveness of computer vision techniques has been demonstrated through a number of 

applications, both within and outside healthcare. The operating room environment specifically is a 

setting with rich data sources compatible with computational approaches and high potential for 

direct patient benefit. The aim of this review is to summarize major topics in computer vision for 

surgical domains. The major capabilities of computer vision are described as an aid to surgical 

teams to improve performance and contribute to enhanced patient safety. Literature was identified 

through leading experts in the fields of surgery, computational analysis and modeling in medicine, 

Lauren.Kennedy-Metz@va.gov. 

HHS Public Access
Author manuscript
IEEE Trans Med Robot Bionics. Author manuscript; available in PMC 2022 February 01.

Published in final edited form as:
IEEE Trans Med Robot Bionics. 2021 February ; 3(1): 2–10. doi:10.1109/tmrb.2020.3040002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and computer vision in healthcare. The literature supports the application of computer vision 

principles to surgery. Potential applications within surgery include operating room vigilance, 

endoscopic vigilance, and individual and team-wide behavioral analysis. To advance the field, we 

recommend collecting and publishing carefully annotated datasets. Doing so will enable the 

surgery community to collectively define well-specified common objectives for automated 

systems, spur academic research, mobilize industry, and provide benchmarks with which we can 

track progress. Leveraging computer vision approaches through interdisciplinary collaboration and 

advanced approaches to data acquisition, modeling, interpretation, and integration promises a 

powerful impact on patient safety, public health, and financial costs.

Index Terms

Artificial intelligence; computer vision; patient safety; surgery; robotics; vigilance

I. INTRODUCTION

Advancements in operative techniques, multidisciplinary management, and the introduction 

of multiple technologies make modern operating rooms (ORs) more effective but also more 

complex and error prone than they used to be [1]. Indeed, modern ORs are complex 

sociotechnical systems with many people (surgeons, anesthesiologists, perfusionists, nurses), 

tools and technologies (scalpel, patient monitors), tasks (cutting, communicating, 

monitoring), environmental features (patient table, lighting), and organizational aspects 

(unspoken hierarchy, rules, policies) interacting with each other. All of these system 

complexities affect healthcare professionals’ performance, which then influences patient 

safety and patient outcomes [2].

Efforts to improve OR surgical safety have recently shifted from the individual to the team, 

and the awareness of surgical team quality and its impact on OR safety has considerably 

increased [3]. Teamwork is critical for safe patient care and interventions like team training 

or the introduction of cognitive aids (e.g. checklists) to improve teamwork and safety; 

however, their impact is limited by the lack of systematic sensor-based (e.g. video recording) 

measurement approaches of team performance [4]. Cognitive engineering approaches in 

surgery focus on integrating multiple data sources to understand cognitive demands on 

providers to minimize their impact [5]. Because of the recent emphasis on quality 

measurements, data acquisition needs to be systematic, mandatory, and automated to allow 

for subsequent detailed prospective analysis in a learning healthcare system [2].

In the current practice of surgery however, the only data that are routinely collected for the 

record of an operation come from the dictated, subjective, post-hoc report. For the most part 

the operative report lacks objective data such as images, video sequences, time sequences, or 

real-time annotations. Unlike conventional approaches to team performance measurement, 

sensor-based measurement is automated and objective activity in which data are collected in 

real-time. In addition, understanding task performance and team behavior is crucial to the 

success of the procedure and may influence the optimal design, development, and operations 

of next-generation OR. Current surgical safety research relies on trained human observers 
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collecting potentially biased data manually during the surgical procedure; this model is 

poorly scalable for delivering just-in-time information and improving real-time vigilance 

and situational awareness.

In addition to the need for more advanced and comprehensive data acquisition, there is 

tremendous utility in algorithmic manipulation and transformation of these data into a 

tangible source of cognitive support for clinical individuals and teams. To date, various 

cognitive aids have been developed and deployed with the goal of supporting clinician 

cognition (most notably the surgical safety checklist [6]), but these tools are largely static 

and agnostic to the data-rich context of the operating room. Computer vision techniques 

provide a transformative opportunity to leverage computational and technological advances 

to not only support human cognition and performance in healthcare, but to augment it 

through the acquisition, manipulation, and delivery of data to incite behavioral change in a 

meaningful way.

There is a clear need for novel approaches to help bridge this safety and quality gap. The 

purpose of this review is to highlight opportunities and limitations of computer vision 

technology, with implications for surgical and patient safety.

II. COMPUTER VISION AND OR VIGILANCE

Computer vision is the engineering discipline aiming to give sight to machines. Recent 

advances in algorithms and computer speed have catalyzed much progress in this area and 

the number of practical applications is exploding – examples are self-driving cars and trucks 

[7], precision agriculture [8], the analysis of satellite images [9], robotic assembly of 

mechanical parts [10], surveillance and security systems [11], and food inspection and 

quality control [12]. Computer vision has transformative potential in medicine – methods 

have been developed for application in pathology [13], [14], radiology [15], [16], cell 

counting [17], skin lesion classification [18], [19], and medical image enhancement [20]. In 

the endoscopic suite, computer vision applications for early stage cancer diagnosis have 

already shown expert-like performance in both upper and lower gastrointestinal endoscopy 

[21], [22].

Computer vision is an excellent sensory modality to detect, measure and study human 

behavior [23], [24], and to interface flexibly and naturally with people and machines. This is 

because cameras can be small non-contact passive sensors that work well in the human 

environment without impeding human motion, do not require complex ad hoc set-up and 

calibration, and provide a rich signal which may be used to capture a great number of 

informative variables, such as facial expression [25], body pose [26], skin tone and color, 

motion, gestures, and identity.

The study of behavior analysis from video or tracking data is also an area of increasing 

interest in the machine learning community. Behavior analysis, especially human behavior 

analysis, is a topic of great interest across a wide range of disciplines from psychology to 

personal robotics. Recent work in machine learning has focused on addressing challenges 
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such as inferring and anticipating intent [27], identifying “hotspots” or strategic locations 

[28], and coordination between different agents [29].

Automated computer vision systems that can understand complex human behavior are not 

yet available and are the object of intense research in the computer vision community. Such 

systems offer, in principle, significant advantages over using human observers with pencil 

and clipboard [30], [31]. First: automated systems can deal with a much larger volume of 

data, permitting the scaling of the size of the typical study from tens of hours of video to 

thousands of hours. Second, automated systems are not subject to the vagaries of human 

attention. Third, computer vision analysis is reproducible, while the analysis by human 

observers is intrinsically subjective. Fourth, it is much easier to maintain privacy when the 

data is not handled by people. Fifth, behavior traces across thousands of instances may be 

compared to each other to detect repeated patterns and inconsistencies, which human 

observers easily miss. Sixth, it is much easier to benchmark the performance of computer 

systems than humans and, if the system is found to be wanting, it is possible to improve it 

with systematic collection and annotation of data representing difficult cases and the 

improvements may be quickly propagated to all instances of the system, unlike humans who 

need to be retrained individually. Seventh, a single system may often benefit from multiple 

cameras that can observe the scene simultaneously from a diverse set of viewpoints, while a 

human observer only has one viewpoint. Lastly, the cost and the timeliness of analysis by 

automated systems is much improved with respect to using human experts.

The growing availability of recorded behavior in the OR is crucial to the development of 

new techniques for behavior analysis, especially related to surgical flow disruptions, in 

machine learning and artificial intelligence more broadly [32]. Furthermore, the new 

challenges posed by analyzing behavior in the OR will generate new research questions 

downstream for the machine learning community. Ultimately, computerized vigilance in the 

OR could lead to more timely and nuanced recognition of deviations from standard 

behaviors, providing the opportunity for individuals and teams to correct these behaviors and 

thereby avoid the commission of a patient-threatening medical error.

III. COMPUTER VISION AND ENDOSCOPIC VIGILANCE

Surgeons’ manipulation of patients’ anatomy remains central to surgical care. Indeed, recent 

evidence suggest that intraoperative technical performance predicts patient’s outcomes and 

correlates with non-technical skills both at an individual and team level [33]. Understanding 

the intraoperative course of events can thus offer insights into how to improve surgical safety 

and efficiency. Furthermore, a reliable representation of the intraoperative context and 

workflow is necessary to design intelligent computer assistance systems and surgical robots 

with various degrees of autonomy [34]. Surgical videos are the most informative data source 

to study intraoperative technical performances. In minimally invasive and robotic surgery, 

endoscopic cameras natively guide procedures, and videos can be easily recorded. Video 

recording of open surgery is not similarly intuitive given the lack of ad hoc cameras; 

however, videos using cameras mounted on the surgeon’s head or on the OR light can still 

be acquired with modest efforts.
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Computer vision offers a unique opportunity to understand, quantify, and provide feedback 

on surgeon-patient interactions captured by endoscopic videos (Fig. 1). Technically, 

machine-learning pipelines are set to extract visual features from endoscopic images and 

then classify those using techniques such as support vector machines, random forests, and 

hidden Markov models. More recently, the field was boosted by deep-learning approaches 

based on multilayer architectures capable of progressively extracting higher-level features 

from raw inputs [35]. Semantically, low-level features (e.g. tool usage and anatomy) are 

usually extrapolated to represent higher-level surgical concepts (e.g. phase of the procedure) 

with the final aim of embodying the “language of behavior” or, more specifically, the 

“language of surgery”, a meaningful representation of surgical activities [36].

Detecting which tool is present in each given image—one of the first tasks algorithms need 

to master in order to understand the surgical context—has been achieved with average areas 

under the ROC curve above 0.99 with models simultaneously deploying convolutional 

neural networks (CNNs) to extract visual features and recurrent neural networks (RNNs) to 

add the temporal context [37]. Furthermore, temporal dependencies of tool usage can be 

harnessed to infer the phase of a surgical procedure, as successfully achieved with a bi-

directional long short-term memory (Bi-LSTM) [38]. Similarly, tracking tool movements in 

the surgical field can be used to extrapolate surgical skills metrics such as tool usage 

patterns, range, and economy of movements [39]. These works train models in a supervised 

fashion, i.e. using datasets of endoscopic images annotated with the information we want the 

model to output.

A key step towards the advent of surgical data science is collecting and publishing large and 

well-annotated datasets of surgical video, such as datasets of robotic and endoscopic images 

like Cholec80 [40] and M2CAI16 [41]. Indeed, fully supervised approaches are difficult to 

scale since manual annotations of large surgical databases is time-consuming and costly, 

requiring physicians to review and consistently annotate large sets of images. To overcome 

this limitation, approaches using less supervision to train models are being investigated. For 

instance, deep-learning algorithms capable of reliably localizing [42] and tracking [43] tools 

in endoscopic scenes have been trained on videos with only tool binary presence annotation. 

These models were trained in a weakly supervised manner since they learned to output the 

tool’s position in space (i.e. tool coordinates frame by frame) by looking at videos on which 

only the tool’s presence or absence was indicated, a much easier feature to annotate. Weakly 

or semi-supervised training approaches have also shown promising results in tool 

segmentation [44], prediction of remaining surgery duration [45], [46], and phase detection 

[47].

If adequately built and translated in the OR, these machine-learning information-extraction 

methods have the potential to substantially benefit surgical care in a number of ways. The 

most intuitive application of these extraction methods is in providing recommendations for 

alternative surgical instruments dependent upon the current surgical phase detected. 

Trainees, including surgical trainees and OR nurses, may not appreciate subtle distinctions 

in surgical instruments. Enhanced guidance at an early stage of learning could foreseeably 

minimize frustrations associated with teaching loads for attending surgeons and reduce total 
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procedure duration. In the case of an expert, such recommendations could be helpful 

reminders to correct an otherwise undetected mistake.

Offline, automated multimedia content analysis could enable easy browsing of videos for 

intraoperative “near miss” events analysis [48] and video-based surgical coaching [49], 

video summarization of surgical procedures for objective postoperative documentation and 

patient’s briefing [50], and sensor-free surgical technical skills assessment in the OR [51]. 

Real-time prediction algorithms could be used to assist surgeons and OR staff 

intraoperatively. For example, one could build a model capable of notifying the surgeon 

about risky deviations from the normal course of events or safety boundaries [52] and 

suggest implementation of best practices and evidences in surgery [53] by merging a 

thorough understanding of intraoperative decision-making processes, computer vision 

quantification of surgical workflow, and patient outcomes. Furthermore, continuous 

automated monitoring of the procedure and OR status could help inform staff of the optimal 

timing to call the next patient, allowing better resource allocation and scheduling to decrease 

costs. A mock-up of the above and other possible intraoperative feedback types is shown in 

Fig. 2. In addition, computer vision methods could enable the intraoperative use of advanced 

imaging technologies [54]. For instance, the spectral signature acquired through multi- and 

hyperspectral imaging can be analyzed for automated intraoperative tissue recognition [55] 

and residual tumor identification [56]. Altogether, these methods could feasibly contribute to 

the realization of a surgical “control tower” to monitor and augment surgical care with the 

final aim of improving patient outcomes [35], [57].

IV. COMPUTER VISION DETECTING AND AFFECTING BEHAVIOR

Behavioral sensing and video recording in the OR have many potential applications for 

research, quality improvement, and education [58], [59]. As opposed to reliance on 

individuals to report safety issues during a procedure, video technology can passively and 

objectively record how healthcare personnel perform their jobs. The faster intraoperative 

data can be analyzed, interpreted and presented to the clinician, the more useful it can be. 

Armellino described third-party remote video auditing and real-time feedback to evaluate 

healthcare personnel’s hand hygiene [60]: during the 16-week pre-feedback period, hand 

hygiene rates were less than 10% (3,933/60,542) and in the 16-week post-feedback period it 

was 81.6% (59,627/73,080). These data suggest that video auditing combined with real-time 

feedback can produce significant and sustained improvement in human behavior.

Guerlain and colleagues at the University of Virginia developed a customizable digital 

recording and analysis system for studying human performance in the operative environment 

[58]. Their Remote Analysis of Team Environment (RATE) tool is a digital audiovisual data 

collection and analysis system that automates the ability to digitally record, score, annotate 

and analyze team performance. In ten laparoscopic cholecystectomy cases, the RATE tool 

allowed real-time, multi-track data collection of all aspects of the operative environment, 

while permitting digital recording of the objective assessment data in a time-synchronized 

and annotated fashion during the procedure. Interestingly, measures of situational awareness, 

an important non-technical skill, varied widely among team members, with the attending 
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surgeon typically the only team member having comprehensive knowledge of critical case 

information [58].

Similarly, Grantcharov and colleagues have developed a multi-source acquisition system, the 

OR Black Box™, to capture intraoperative data from patients, providers, and the 

environment [59]. Analysis of these data to date has highlighted the high frequency of 

intraoperative distractions, including the observation of 138 auditory distractions per case 

[61]. Nara measured the position of medical personnel in the OR using ultrasonic sensor 

markers affixed on them [62] with the intent of estimating automatically the main patterns of 

motion (e.g. two nurses exchanging places), and found that the trajectories of the personnel 

were clustered.

Capturing behaviors of human agents through video recordings, however, may not reflect 

their typical behavior. The Hawthorne effect, first observed by French in 1953, posits that 

awareness of being observed induces behavioral change, often in the desired direction of the 

intervention and thereby conflating observed outcomes. Inconclusive evidence of the 

Hawthorne effect, however, has been documented through mixed results in fields such as car 

accidents as a result of traffic cameras, police aggression with body-worn cameras [63], and 

physician consultation behavior [64]. A recent systematic review investigating the presence 

and characteristics of the Hawthorne effect in health sciences research concluded that while 

evidence does support existence of the Hawthorne effect, evidence of its effect size and 

magnitude is largely inconclusive [65].

Despite the uncertainties surrounding the impact of the Hawthorne effect in the healthcare 

field, measures can be taken to overcome potential confounding effects. As an example, the 

research group implementing the OR Black Box™ built in a one-year lead-in period where 

cameras were installed in the OR, but analysis was not conducted on these data. Authors 

state that this was an attempt to habituate participants to new technology and minimize the 

potential influence of the Hawthorne effect on results collected during the project period 

[61]. Furthermore, the presence of video monitoring equipment is already ubiquitous in the 

many hospital settings and the recordings are protected by the Health Insurance Portability 

and Accountability Act (HIPAA) law that requires only those who need to know to have 

access. According to Section 164.514(a) of the HIPAA Privacy Rule, “Health information is 
not individually identifiable if it does not identify an individual and if the covered entity has 
no reasonable basis to believe it can be used to identify an individual”.

To address the issue of potential patient and staff privacy concerns, video recordings may be 

processed with several methods of de-identification. Silas recorded OR videos using the 

Kinect 2.0 system (Microsoft Corp., Redmond, WA) through regular red green blue (RGB) 

video recording and infrared depth sensing. They used three de-identification modalities: (a) 

“blurred faces” was RGB video altered using a post-processing algorithm to blur out skin 

tone color spectra, while keeping the rest of the footage unaltered; (b) “infrared” was 

unedited data collected with the infrared depth-sensing camera, and (c) “point cloud” was 

the infrared data processed with an algorithm that assigns a point cloud and skeleton 

structure for each individual [66]. An additional technique involves replacing or merging the 

individual’s face with a generic face to remove their identity [67].
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An alternative approach, referred to as ambient sensing, provides the opportunity to detect 

behavior and behavioral deviations by triangulating data sources which do not necessarily 

include capturing identifiable information through video streams [68]. This approach 

capitalizes on the convergence among incoming data sources, including inputs from depth, 

thermal, radio, and acoustic sensors to detect human behavior [69]. One specific application 

in healthcare has included monitoring and intervening with hand hygiene behavior [70]. This 

approach could readily be extended to detect unanticipated patient states derived from 

technical missteps (e.g. bleeding due to suboptimal anastomosis) or to notify OR staff of 

potential surgical flow disruptions (e.g. detection of missing equipment) pre-emptively.

A. People Detection and Tracking

The state of the art in detecting people and objects may be currently achieved with deep 

networks [71], [72]. Key issues are detection rates and processing speed. Current detection 

rates approach 90% in cluttered environments, while processing speeds range between 10Hz 

and 100Hz.

The state of the art in tracking is achieved either by direct matching [73] or by concatenating 

the detector with a combinatorial evaluation of the optimal continuation of each trajectory 

[74]. Person identification may be carried out by face analysis [75], [76] or by exploiting 

differences in clothing and ad-hoc individual markings in top-down views where the face 

may not be visible [77]. Accurate detection, tracking and identification have recently 

become available as inexpensive cloud-based services from a number of commercial 

providers (AWS, Google, Microsoft and others).

B. Pose Analysis and Action Detection

The state of the art in pose analysis may be achieved by hourglass deep networks [26]. The 

state of the art in action detection and classification in continuous video is currently 

achieved by time-series classifiers that are applied to the position and pose trajectories of the 

actors’ bodies [78].

OpenPose [79] is an open-source, deep-learning enabled computer vision system capable of 

detecting multiple humans and labeling up to 25 key body points using 2D video input from 

conventional cameras. The architecture of this system uses a two-branch multi-stage CNN in 

which each stage in the first branch predicts confidence 2D maps of body part locations, and 

each stage in the second branch predicts Part Affinity Fields (PAF) which encode the degree 

of association between parts. Training and validation of the OpenPose algorithms were 

evaluated on two benchmarks for multi-person pose estimation: the MPII human multi-

person dataset and the COCO 2016 keypoints challenge dataset. Both datasets had images 

collected from diverse real-life scenarios, such as crowding, scale variation, occlusion and 

contact. The OpenPose system exceeded previous state-of-the-art systems [79].

C. Team Interactions

The dynamics of robotic surgical team activities may provide relevant information for 

understanding the multitude of factors that impact surgical performance and patient safety 

outcomes [80]. Measures extracted through computer vision, such as robotic team centrality, 
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team proximity, and face-to-face communication may provide important insights into team 

coordination and dynamics metrics, with the advantage of being automatically generated, 

instead of human-annotated [81].

The integration of team motion analysis through computer vision with psychophysiological 

data (e.g. heart rate variability) has also been proposed as measure of team dynamics in the 

context of cognitive load monitoring, a valuable component of cognitive engineering 

approaches in the surgical context [5]. Fig. 3 shows an integrated visualization of motion 

tracking data and cognitive load (heart rate variability) during a real-life cardiac surgery.

D. Situational Awareness (SA)

Through computer vision, not only low-level semantics can be extracted from the OR (e.g. 

workflow segmentation, instrument identification) but also contextual information can be 

inferred from body motion, eye movement data, and head poses [82]–[84]. For instance, a 

surgeon’s gaze entropy and velocity have been shown to be related to surgical procedure 

complexity and can differentiate expert from novice surgeons [85], [86]. However, although 

computer vision may provide useful inferences about the perception component (e.g. visual 

attention via eye gaze) of the SA construct, the other SA components (comprehension and 

projection) are more difficult to be inferred based only on visual data [87]. Multi-source 

approaches that integrate visual, audio and physiological data may be more successful in 

extracting automated measures of SA in the OR. Although computer vision per se has some 

limitations in measuring SA, it may provide useful information to support the surgical team 

during situations that require a high SA. For example, if a computer vision application can 

detect bleeding in the surgical site that was not perceived by the surgeon, it can alert the 

surgical team and even pinpoint the exact site of bleeding, enhancing the SA in the OR. This 

is an example of augmented cognition in a distributed cognitive system composed by human 

(surgical team) and non-human (computer vision application) teammates [88]. While the 

computer vision application can augment human performance, however, it cannot 

automatically achieve OR safety in its current state.

V. CHALLENGES OF COMPUTER VISION IN SURGERY

Computer vision in surgery is still in its infancy and, even if highly promising, a number of 

challenges need to be addressed to fully exploit the potential benefits coming from the 

intersection of these disciplines (Table I).

First, granular OR data need to be acquired, moved, stored, annotated, and queried in an 

efficient way. Though medicine and surgery are data-intensive disciplines, high-quality, 

structured and diverse information is rarely available. Various groups are proposing data 

acquisition systems, shared standards for device integration, and scalable infrastructures for 

data transmission and information generation. For example, the CONDOR (Connected 

Optimized Network and Data in Operating Rooms) project has promoted the DICOM-RTV 

(Digital Imaging and Communications in Medicine Real-Time Video) standard for surgical 

videos, an over-IP system for data streaming and methods for knowledge extractions (https://

condor-project.eu/). Similarly, the OR Black Box™ (Surgical Safety Technologies Inc, 

Toronto, ON) enables synchronized acquisition through cameras, microphones, and digital 
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monitors providing valuable insights to optimize surgical safety [59]. Once acquired, these 

data need to be processed and consistently labeled, a burdensome task especially if surgical 

knowledge needs to be annotated. To take this duty off of surgeons’ shoulders and decrease 

cost, in addition to the above discussed methods needing less supervision to train, crowds’ 

annotation is being investigated with promising results [89]. Crowdsourcing methods based 

on trained workforces are increasingly becoming commercially available.

When it comes to methods development, computer vision in surgery faces domain-specific 

challenges. Environmental and endoscopic cameras don’t always capture all the meaningful 

information needed to answer a specific question. Endoscopy-specific limitations include 

fast changing scenes due to rapid camera movements, changes in luminosity, and organ 

deformation. Furthermore, patient-specific anatomical variations and the act of performing 

surgery itself significantly contribute to inter- and intra-endoscopic scenes variability. In 

environmental OR videos, the staff is typically in scrubs and wearing masks, making 

recognition tasks more challenging, a limitation that can be overcome by identifying and 

tracking distinguishing features. Additionally, the state of the art in human detection, pose 

computation, tracking, and action classification are far from perfect when humans are 

crowded together [90], which is common in the OR. Thus, current methods will have to be 

validated in the specific scenarios of interest for surgeons and further technical progress is 

likely to be needed for accurate performance.

Factors including the enthusiasm surrounding artificial intelligence in medicine, the inherent 

complexity of machine learning models, and the naïve surgical audience targeted could 

hamper the critical appraisal of the literature on computer vision in surgery and lead to 

hyped claims. A framework for evaluating computer vision in surgery has not yet been 

elaborated, however lessons can be drawn from white papers and guidelines developed for 

related fields [91]–[93]. Main indications include careful description of the data the model 

has been built upon, selection of performance metrics meaningful to the expected clinical 

use, evaluation of clinical value of the models’ success and error cases, and validation on 

external dataset sets to verify generalizability of findings. It must be stressed that with 

current machine-learning approaches large, diverse, and well-annotated datasets are crucial 

to success. Aside from the more obvious pitfalls of data, including failing to represent reality 

and be inclusive, datasets may contain subtle subclasses affecting model performances [94] 

or may incorporate unexpected elements to infer outcomes. For example, a deep-learning 

melanoma detection model was found to recognize skin markers as signs frequently used to 

flag worrisome lesions instead of melanomas, with a 40% false-positive rate in this subset of 

images [95].

Another domain-specific challenge is to more fully understand the model’s logic [96]. 

Explainable machine-learning algorithms, capable of outputting both predictions and the 

logic behind those, follow various approaches; for example, disease markers can be 

sequentially removed from the model function to evaluate the weight of each single one, 

segmentation could be used to highlight region of interest in images, and verbal explanations 

may be generated automatically [97].
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Finally, patients, surgical teams, computer scientists, and healthcare systems alike need to 

set up a constructive communication strategy to define values, bridge needs, and cross 

cultural barriers. For this to happen, privacy, legal liability, and ethical concerns must be 

resolved [98]. Patients and surgeons should be at the center through reciprocal education in 

order to define valuable use-cases, share data, and critically understand models’ 

performances. Similar to what happens in aviation, computer vision vigilance to improve 

surgical safety should be deployed in a non-punitive but constructive environment for 

widespread adoption. Furthermore, deep understanding and consistent definition of team 

dynamics [99] and intraoperative events [100], collaboration, and consensus are needed to 

scale the approach and impact surgical practices.

To realize the ultimate goal of enhanced patient safety, it is critical that researchers and 

clinicians across disciplines work closely to overcome these engineering and clinical 

challenges. Resolving technical obstacles related to data acquisition and algorithm 

development is not sufficient to improve workflows and instill positive changes in safety-

enhancing behavior. To achieve optimal OR safety, computer vision models must also be 

interpreted appropriately and adopted reliably by end users.

VI. CONCLUSIONS

Effectiveness of computer vision approaches and techniques has been widely demonstrated 

through a number of applications, both within and outside of the realm of healthcare. The 

opportunity to apply these principles to surgery specifically is underexplored, but has the 

potential for significant public health, patient safety, and economic impact. As the fields 

contributing to the interdisciplinary domain of computer vision continue to advance, 

collaboration and coordination will be paramount to ensuring the highest levels of success.
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Fig. 1. 
Workflow schematization. Surgical videos are recorded and processed to extract meaningful 

information that can be fed back to surgeons in real-time (i.e. online) or postoperatively (i.e. 

offline).
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Fig. 2. 
Mockup of intraoperative (A) and postoperative (B) assistance. Intraoperatively, surgeons 

can enable smart notifications to foster OR staff awareness and readiness (A, bottom left of 

the screen). Furthermore, surgeons and trainees can benefit of intraoperative guidance by 

overlying no-go areas on endoscopic images. Postoperatively, surgeons and trainees can 

review critical steps, generate video summaries and have their technical performance 

assessed.
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Fig. 3. 
Integrated visualization of team motion tracking, cognitive load, and team dynamics in 

cardiac surgery.
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TABLE I

Challenges of Computer Vision in Surgery

Domain Challenges Examples of proposed solutions

Data

Capture Systematic acquisition of endoscopic and OR videos OR Black Box™[55]

Access Transmission, storage and access of surgical images from 
multiple terminals

DICOM-RTV protocol, CONDOR infrastructure,
in-hospital data centers

Label Consistent annotation of relevant information Annotation ontologies and software, crowdsourcing 
[75], automatic annotations

Models

Surgical contingencies Tissue manipulation, scrubbed staff, patient’s variability, 
occluded views Large, shared datasets [41], novel methods

Critical appraisal Description of training data, evaluation of performances, 
case-studies, generalizability, validity

Guidelines on how to evaluate and read medical ML 
papers[79]

Interpretability Understand factors influencing predictions, user interface 
design, correlation/causation dependencies Explainable AI [82], causal inference

Cultural

Legal Health data privacy, regulatory clearance, medical liability Legislation [84], ad-hoc protocols

Collaboration Effective clinical-technical communication, definition of use-
cases

Reciprocal education, interdisciplinary conferences 
and journals

Acceptance Patients’ and surgeons’ acceptance of AI technologies, 
reimbursement frameworks Surveys, incentives, long-term surveillance

An overview of factors contributing to current barriers in the implementation of computer vision approaches to surgery.

OR = operating room; DICOM-RTV = digital imaging and communications in imaging real-time video; CONDOR = Connected Optimized 
Network and Data in Operating Rooms; ML = machine learning; AI = artificial intelligence
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