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Abstract

Methods are proposed for measuring affective valence and arousal in speech. The methods apply 

support vector regression to prosodic and text features to predict human valence and arousal 

ratings of three stimulus types: speech, delexicalized speech, and text transcripts. Text features are 

extracted from transcripts via a lookup table listing per-word valence and arousal values and 

computing per-utterance statistics from the per-word values. Prediction of arousal ratings of 

delexicalized speech and of speech from prosodic features was successful, with accuracy levels not 

far from limits set by the reliability of the human ratings. Prediction of valence for these stimulus 

types as well as prediction of both dimensions for text stimuli proved more difficult, even though 

the corresponding human ratings were as reliable. Text based features did add, however, to the 

accuracy of prediction of valence for speech stimuli. We conclude that arousal of speech can be 

measured reliably, but not valence, and that improving the latter requires better lexical features.
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1. INTRODUCTION

Computational research on affect has focused more on affect classification (e.g., the 2009–

2013 Interspeech Emotion Challenges) than on affect dimensions, specifically the arousal 
(degree of excitement) and valence (pleasant vs. unpleasant) dimensions that have deep roots 

in behavioral research (e.g., [1]). Our interest in dimensional approaches stems from our 

research on automated measures of behavioral manifestations of neural underconnectivity in 

Autism Spectrum Disorders (ASDs), prompted by recent findings of functional 
underconnectivity as measured via temporal correlations between signals (EEG and fMRI) 

from different parts of the brain (e.g., [2]) and for morphological underconnectivity (e.g., 

[3]). Neural underconnectivity is expected to have behavioral counterparts via reduced 

temporal correlations between the behavioral streams in the facial, gestural, and speech 

modalities. However, in our research, it became clear that discrete affect labels were too 

unreliable and uninformative (lacking, e.g., affective intensity) to yield stable correlations, 

while dimensional approaches had the required robustness.

This paper reports on our work on measuring valence and arousal in the speech modality by 

creating automatic methods that optimally predict “gold standard” human ratings. To better 

understand the roles of speech contents and speech prosody, we use arousal and valence 
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ratings of three types of stimuli, all based on a corpus of utterances from children: speech, 

delexicalized speech (prosody), and text transcripts (contents). As a further important 

methodological detail, we use two approaches that differ in both overall strategy and details 

in order to demonstrate that results are robust, unlikely to be due to a “lucky” match between 

data and method.

2. METHODS

2.1. Data

Twenty-eight children ages 8–11 participated: 10 with Typical Development, 11 with ASD, 

4 with Specific Language Impairment, and 3 with Unspecified Developmental Delay. 

Children were trained to re-enact a brief story, pretending to be an actor/actress. Each 

produced between 19 and 46 utterances (median: 27), 835 utterances in total. The resulting 

video recordings were split into the (835) per-utterance files. For each of these, five 

modality-specific versions were produced, for a total of 4175 stimuli: Speech; delexicalized 
speech (speech rendered unintelligible by methods described in [4]); face (no sound, gesture 

blanked out); gesture (no sound, face blanked out); and text (produced by human 

transcribers). Eleven undergraduate students rated arousal and valence of these stimuli on 5-

point scales.

Correlations between raters ranged from 0.46 to 0.63, with a median of 0.52. To obtain a 

measure of the reliability of pooled ratings (which will be our “gold standard”), we one-

hundred times randomly split the raters into two sub-groups and computed the (two) sub-

group averages for each stimulus. The correlations between these averages ranged from 

0.825 to 0.875, and are broken down by affect dimension and modality in Table 1. This 

establishes that ratings pooled over all 12 raters have adequate reliability.

2.2. Moments+FDA features: features based on statistical moments and Functional Data 
Analysis

2.2.1. F0 tracking and clean-up—We extracted F0 contours using Snack [5], with 20 

ms window length and 10 ms shift, initially tracking F0 with a child-appropriate frequency 

range of 100–1200 Hz, estimating the frequency range, and tracking the F0 curve again with 

this range. We calculated the frequency range based on De Looze and Rauzy [6], shown by 

Keelan et al. [7] to optimize performance of diverse F0 tracking algorithms to almost the 

same level. For post-processing (which proved helpful only for the Functional Data Analysis 

approach; see 2.2.3), we automatically identified jumps (halvings and doublings) in the F0 

curves and corrected them by multiplying or dividing the F0 values to confirm to the 

neighboring segments; this step improved the performance significantly. We smoothed the 

result by applying a median filter with a window size of 5, similarly to Ahmadi and Spanias 

[8]. We automatically removed silence from the start and end of utterances, based on 

absence of voicing or very low root mean squared (RMS) values (<40%-ile of the RMS of 

all unvoiced parts), keeping parts with large intensity (>95%-ile of silence parts) as speech. 

We transformed both F0 and intensity into the log-domain for feature extraction.

Asgari et al. Page 2

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Features considered are based on earlier work on ASD detection from prosodic features 

([9]).

2.2.2. Statistical moments based features—We calculated 34 per-utterance 

statistical moments for F0 and intensity. Non-robust variants were: minimum, mean, 

maximum, standard deviation, variance, coefficient of variation, skewness, and the logarithm 

of excess kurtosis. The corresponding robust variants were: 10%-ile, median, 90%-ile, 

median absolute deviation from the median (MAD), inter-quartile range (IQR), robust 

coefficient of variation (IQR/median), robust skewness ([10], SK2), and logarithm of robust 

kurtosis ([10], KR2). We also used the numbers of voiced frames and total speech frames as 

features, to help the model weigh higher order moments, requiring more analysis frames 

than lower order moments. The performance does not change significantly if we exclude the 

location statistics (such as minimum, median, etc.) from the intensity features, which 

suggests that we need not assume constant microphone-speaker distance.

2.2.3. Functional Data Analysis based features—We used Functional Data 

Analysis (FDA [11]) utilizing the fda R package to characterize the shape of the F0 and 

intensity curves, calculating the first 10 functional principal component analysis (fPCA) 

coefficients for F0 and RMS, resulting in 20 features per utterance.

Consider the F0 (or RMS) curve for an utterance y consisting of n time points tj, j = 1..n, and 

a set of basis functions ϕk. We express y as a weighted sum of K basis functions, capturing 

the important details of the curve:

y = ∑
k = 1

K
ck ⋅ ϕk . (1)

It suffices to know the values of the basis functions at the time points tj, which we represent 

as a matrix

Φ = ϕk(tj) . (2)

We use the least squares error function, assuming Gaussian noise on sample y, and refine the 

solution by adding to the error function the integral of the second derivative of y(t) with 

respect to t as a roughness penalty, to avoid close fit to the noise. This gives us the 

regularized least squares solution, with the following estimate for the coefficient vector:

c = (ΦTΦ + λR)−1ΦTy where (3)

R = ∫ D2Φ(t) ⋅ D2ΦT(t)dt . (4)
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For a set of N curves, fPCA identifies the first M orthogonal eigenfunctions capturing most 

variation. We represent curve i as a weighted sum of eigenfunctions ξm, with a set of 

coefficients that maximizes

∑
i = 1

N ∫ ξm(t) ⋅ yi(t)dt (5)

subject to

∫ ξm
2 (t)dt = 1 and ∫ ξm(t) ⋅ ξl(t)dt = 0, ∀l < m . (6)

The functional principal component coefficients are given by

ci, m = ∫ ξm(t) ⋅ (yi(t) − y(t))dt, i = 1..N, m = 1..M (7)

for utterance i, eigenfunction m, and mean curve y(t).

We used 1000 B-splines as basis functions, and calculated the first 10 eigenfunctions and 

corresponding coefficients for both F0 and RMS on the whole training set, so as to have 

enough utterances for training a robust model, and calculated the same coefficients for the 

test utterances using these eigenfunctions, resulting in 20 features per utterance.

2.3. HM features: features based on the Harmonic Model

Alternatively, we extracted prosodic features using the harmonic model [12, 13, 14, 15], a 

variant of the sinusoidal model where the frequencies of the sinusoidal components are 

multiples of F0. Per-utterance features are based on F0 jitter, shimmer, harmonic to noise 

ratio (HNR), and the energy ratio of the first and second harmonics (H12). In previous work, 

we found that these features detect voiced segments and estimate F0 more accurately than 

other algorithms and that they are useful in rating the severity of a subjects Parkinsons 

disease [16]. Jitter and shimmer (and, of course, F0) have been used previously for emotion 

detection (e.g., [17]); however, few if any studies on emotion detection have used the 

harmonic model or have used it for estimating F0, jitter, or shimmer.

2.3.1. Harmonic Model—Briefly, in the harmonic model, the speech samples are 

represented as follows. Let y =[y(t1), y(t2), …, y(tN)]T denote the speech samples in a voiced 

frame, measured at times t1, t2, …, tT. The samples can be represented by the harmonic 

model with additive noise n =[n(t1), n(t2), …, n(tN)]T as follows:

s(t) = a0 + ∑
ℎ = 1

H
aℎcos(2πf0ℎt) + bℎsin(2πf0ℎt)

y(t) = s(t) + n(t)
(8)

where H denotes the number of harmonics and 2πf0 stands for the fundamental angular 

frequency. Assuming the noise distribution is constant during the frame and is given by 
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N(0, σn2), estimation of the unknown parameters Θ = [f0, aℎ, bℎ, σn2, H] can be cast into a 

maximum likelihood (ML) framework [14]. However, ML estimation of the pitch period 

may lead to pitch halving and doubling errors. We addressed this problem in our previous 

work and improved the robustness of the pitch estimates by smoothing the likelihood 

function [18]. Given the estimates of Θ, we can reconstruct the speech signal for the further 

analysis.

2.3.2. Jitter and Shimmer—Traditionally, computation of jitter and shimmer assumes 

that these parameters are constant during the frame. Alternatively, we employ a harmonic 
model with varying amplitudes (HM-VA) [19] that allows within-frame sample-to-sample 

variations. Our approach for estimating shimmer assumes that speech can be considered as 

an amplitude modulated (AM) and frequency modulated (FM) signal. To compute shimmer, 

we first represent the speech waveform using both the HM and the HM-VA. We then use 

both model parameters for extracting the AM component as a temporal function that 

represents the amplitude fluctuations [18]. We use its standard deviation over frames as a 

summary statistic for shimmer.

To estimate jitter, we create a matched filter using a one pitch period long segment from the 

reconstructed signal and convolve it with the original speech waveform [18]. The distance 

between the maxima in the convolved signal defines the pitch periods. The perturbation of 

the period is normalized with respect to the given pitch period and its standard deviation is 

an estimate of the jitter. Thus, this method allows the computation of jitter within the 25ms 

analysis window.

2.3.3. Harmonic to noise ratio (HNR)—Once the parameters of the harmonic model 

are estimated for a frame, the noise can be computed by subtracting the reconstructed signal 

from the original speech signal. Given the estimated HM parameters for each frame, the 

HNR and the ratio of the energy in the first and the second harmonics (H12) can be 

computed as follows.

cℎ = ∑
ℎ = 1

H
aℎ

2 + bℎ
2

HNR = log ∑
ℎ = 1

H
cℎ

2 − log ∑
t = 1

N
(y(t) − s(t))2

H12 = logc1 − logc2

(9)

2.3.4. Per-Utterance Feature Vectors—We extract 25 ms long frames using a 

Hanning window with a 10 ms shift. We first detect voiced frames robustly by calculating 

the likelihood of voicing under the harmonic model. The voicing decision at the segment 

level is computed by formulating a one-state hidden Markov model (HMM). The state could 

either be voiced or unvoiced, with likelihood given by the per-frame harmonic model. The 

transition model consists of a simple zero-mean Gaussian. We compute voicing decision 

over the utterance using Viterbi alignment. Subsequently, we compute various voicing 

related features for voiced frames, including F0, HNR, H12, jitter, and shimmer. These 

Asgari et al. Page 5

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pitch-related features are combined with standard features including energy, spectral 

entropy, and MFCCs. Per-utterance features are computed by applying standard summary 

statistics such as mean, median, variance, minimum and maximum to the per-frame features, 

generating a 252-dimensional per-utterance feature vector.

2.4. Features for prediction of text ratings

To extract features from text, we used a published table of valence and arousal ratings by 

Warriner et al. [20] to tag each word in an utterance with an arousal and a valence rating, 

and computing their per-utterance mean, standard deviation, minimum, and maximum. For 

missing words we imputed valence and arousal by randomly drawing 5 words from the table 

and computing their average. We computed these features from manual and automated 

transcripts.

For the latter, we built a context-dependent HMM-GMM system with 39-dimensional 

MFCC features with delta and delta-delta coefficients, using the Kaldi speech recognition 

toolkit [21]. We used the OGI Kids Speech Corpus, consisting of 27 hours of spontaneous 

speech from 1100 children, from kindergarten through grade 10 [22]. After cepstral mean 

and variance normalization, and LDA, we employed model space adaptation using 

maximum likelihood linear regression (MLLR). Also, speaker adaptive training (SAT) of the 

acoustic models were performed by both vocal tract length normalization (VTLN) and 

feature-space adaptation using feature-space MLLR (fMLLR). A trigram language model 

was built using the SRILM toolkit ([23]). The WER on a 2-hour test corpus was about 26%.

2.5. Features for prediction of speech ratings

The acoustic features described in subsection 2.3 were concatenated with features extracted 

from text transcriptions (subsection 2.4) for predicting the speech ratings.

2.6. Prediction Engine

We used Support Vector Regression with an RBF kernel (except that a linear kernel was 

used for valence in the HM based approach). We used a five-fold cross validation scheme, 

setting all model parameter using four of the five sets as training set, and using the fifth ones 

only for reporting the performance estimates below. Parameters of the optimal SVR model 

were determined on the training set separately for each fold, via grid search and cross-

validation. For the Moments+FDA based approach we used the e1071 R package, and for 

the harmonic-based approach, we employed the open-source scikit-learn toolkit [24].

3. RESULTS

Table 2 indicates that arousal ratings of speech and delexicalized speech can be predicted 

equally well by the two alternative sets of prosodic features, and are not far from the limits 

set by the reliability of the human ratings (0.85). In contrast to prediction of valence ratings 

for delexicalized speech, for speech the HM features (even without text features) performed 

substantially better than the Moments+FDA features. FDA based features did not add to 

performance for arousal, but possibly did so for valence, suggesting that curve shape may 

matter more for valence than for arousal.
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Predicting arousal proved challenging for text, with slightly better but still modest results for 

valence. As expected, ASR transcripts yielded worse results than manual transcripts. 

Obviously, the word-based approach is simplistic and would miss cases such as “not too 

bad”.

Surprisingly, incorporating text features did not help in the prediction of the arousal rating 

for speech, and helped very little for valence.

Permutation tests, permuting the predicted values randomly with respect to the observed 

values, were highly significant (p<0.0001), even for the smallest correlation (0.22).

4. DISCUSSION

We conclude the following. First, to the degree that arousal of speech can be reliably 

measured, prosodic features appear sufficient. Adding text features did not improve 

performance in the least, despite the fact that prediction of arousal of text, while modest, was 

statistically significant. A similar trend existed for the human ratings, based on a multiple 

regression analysis predicting speech ratings from text ratings and delexicalized speech 

ratings: for arousal, the effect on speech ratings of the latter was four times that of the 

former, while for valence both had equal effects. Yet, it is clear that better text based features 

are needed, especially in the light of the very high reliability of the valence ratings (0.93)

Second, the differences in predictive performance as a function of stimulus type (speech, 

delexicalized speech, text) and dimension (arousal, valence) are not due to differences in 

reliability of the corresponding human ratings. For example, valence ratings and arousal 

ratings of speech were equally reliable, yet prediction of the former proved far harder than 

prediction of the latter. Thus, these differences in predictive accuracy substantially reflect the 

relevance of the information contained in the respective feature vectors.

Third, for arousal ratings of either speech or delexicalized speech, a ceiling in performance 

was reached at 34 features. This may be due to the low data-to-parameter ratio being 

suboptimal for the HM features or to the Moments+FDA features having been more 

carefully engineered [9].

Our results are near the top of recently reported correlations for arousal predictions (0.62 

([25]) to 0.85 ([26]), but less so for valence (0.29 ([25]) to 0.65 ([27]). These studies used 

neither delexicalized speech ratings nor text ratings, and are thus inconclusive as to the roles 

of prosody and lexical contents in the prediction of arousal and valence.

As mentioned, others have used jitter and shimmer for affect classification (e.g., [17]), but 

not for predicting arousal and valence. The same holds true for usage of Functional Data 

Analysis (e.g., [28])
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Table 1.

Average reliability of human group ratings.

Modality Arousal Valence

Speech 0.88 0.91

Delexicalized Speech 0.85 0.75

Text 0.75 0.93
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Table 2.

Average product-moment correlations between observed and predicted ratings. K is the number of features.

K Arousal Valence

Delexicalized Speech

FDA 20 0.50 0.31

Moments 34 0.78 0.35

Moments+FDA 54 0.77 0.39

HM 252 0.79 0.42

Text

Manual Transcript 8 0.36 0.57

ASR Transcript 8 0.26 0.35

Speech

FDA 20 0.59 0.22

Moments 34 0.83 0.28

Moments+FDA 54 0.83 0.34

HM 252 0.83 0.47

HM + Manual Transcript 260 0.83 0.51

HM + ASR Transcript 260 0.83 0.49

HM + ASR + Moments 294 0.86 0.53
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