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Abstract

With the arrival of the internet of things, smart environments are becoming increasingly ubiquitous 

in our everyday lives. Sensor data collected from smart home environments can provide 

unobtrusive, longitudinal time series data that are representative of the smart home resident’s 

routine behavior and how this behavior changes over time. When longitudinal behavioral data are 

available from multiple smart home residents, differences between groups of subjects can be 

investigated. Group-level discrepancies may help isolate behaviors that manifest in daily routines 

due to a health concern or major lifestyle change. To acquire such insights, we propose an 

algorithmic framework based on change point detection called Behavior Change Detection for 

Groups (BCD-G). We hypothesize that, using BCD-G, we can quantify and characterize 

differences in behavior between groups of individual smart home residents. We evaluate our BCD-

G framework using one month of continuous sensor data for each of fourteen smart home 

residents, divided into two groups. All subjects in the first group are diagnosed with cognitive 

impairment. The second group consists of cognitively healthy, age-matched controls. Using BCD-

G, we identify differences between these two groups, such as how impairment affects patterns of 

performing activities of daily living and how clinically-relevant behavioral features, such as in-

home walking speed, differ for cognitively-impaired individuals. With the unobtrusive monitoring 

of smart home environments, clinicians can use BCD-G for remote identification of behavior 

changes that are early indicators of health concerns.
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I. INTRODUCTION

SENSOR technology is becoming a commonplace aspect of everyday lives. With the internet 

of things, persons can wear sensors on their bodies and install sensors in their environments. 

Specifically, for smart environments, sensors are often installed in a residence to create a 

smart home, in a workplace to create a smart office, and even on and around streets to create 

smart cities. These sensors continuously and unobtrusively collect time series data reflecting 

a person’s everyday behavior, both in and out of the home. Such time series data consist of 

sensor state values and associated timestamps, reported when a change in state occurs. Using 

machine learning, time series data can be analyzed to detect changes in our everyday 

behavior over short or long time periods [1], [2]. Often changes in an individual’s behavior 

patterns are attributed to changes in health [3], [4], such as breaking a bone or catching a 

cold. Health changes can begin abruptly with an isolated event, such as a fall in the home, or 

can slowly manifest over time [5], such as the onset of dementia. For all such health 

changes, sensor data collected from smart environments can provide unprecedented, 

naturalistic insight about how different individuals and groups experience the onset of and 

recovery from a health concern.

In this paper, we propose an algorithmic framework for comparing the daily behavior 

patterns of groups of individuals living in smart environments. Our framework is called 

Behavior Change Detection for Groups (BCD-G). This framework represents a novel 

expansion of our prior work, BCD, that analyzes changes within time series collected from a 

single smart home resident [6], [7]. BCD and BCD-G are change point detection-based 

methods for analyzing changes in time series data. Change point detection algorithms 

compute a change score value that quantifies how much change is surrounding a candidate 

point in time. We propose BCD-G as a novel approach to detect and compare behavior 

differences between groups of individuals by treating a health or behavior trait like a 

candidate change point. We hypothesize that these differences can provide behavioral 

insights into a specific health trait that will allow earlier detection and recovery.

To perform BCD-G-based comparison, one group contains individuals with the same health/

behavioral trait that is under investigation (e.g. a “trait” group). The second group contains 

age-matched individuals who do not exhibit the same health/behavioral trait as the first 

group. This second group serves as a control group (e.g. a “no-trait” group). BCD-G extends 

beyond simply classifying “trait” or “no-trait”. This process is different than traditional 

supervised learning. Applying BCD-G to these two groups provides a description and 

statistical significance of the differences in everyday behavior that are consistent with the 

trait under scrutiny.

We evaluate our BCD-G approach with two groups of seven individuals, each living in smart 

homes. All smart home residents in the first group have a cognitive impairment and are 

diagnosed with mild cognitive impairment (MCI) or mild dementia. The second group 

consists of cognitively-healthy smart home residents who are age-matched to the first group. 

Using our BCD-G framework, we are able to describe behavioral differences that manifest in 

cognitively-impaired individuals. More specifically, our results describe differences in terms 

of common activities of daily living, mobility, and sleeping patterns. This information can be 
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leveraged by clinicians, caretakers, and the residents to detect onset of a health condition and 

enable earlier care.

II. RELATED WORK

Identifying health differences between groups has been a topic of considerable research 

because of its many applications. Recent approaches have applied machine learning 

techniques to explore characteristics that can be used as predictors for group classification, 

such as for diagnosing cancer and predicting related outcomes. Researchers predicted 

persistent pain in post-mastectomy patients using a rules-based classifier that included 

physical and behavioral health features [8]. Support vector machine and neural network 

classifiers were used to determine cancer types impacted by sepsis [9]. Convolutional neural 

networks were also used to classify pathology images [10] and random forest, logistic 

regression, neural network, and support vector machines were used for diagnosing cancer 

[11], [12].

Also using machine learning techniques, researchers have investigated the connection 

between behavior and health. While in the past, such investigations have relied on 

observation and self-report, the recent ability to unobtrusively collect large amounts of 

sensor data opens the pathway to quantifying and understanding this connection in an 

ecologically-valid manner. Sensors provide information on a wide array of physiological and 

behavioral features. Wearable sensors are embedded in mobile phones, smartwatches, and 

even clothes, and are typically used to monitor and track movement-based activities such as 

sit, stand, walk, ran, and he down. Using these mobile packages, researchers have quantified 

the relationship between cognitive health and specific targeted behavior components such as 

sleep [13], [14], gait [15], [16], time out of the home [17], and amount of phone-based social 

interaction [18].

In other studies, researchers assessed behavior parameters in home settings using ambient 

sensors. While many studies were performed in controlled conditions with scripted 

activities, significant correlations were discovered between behavioral factors and 

neuropsychological test scores [19]–[21]. These behavior parameters also correlated with 

other health components, including fall risk, cognitive function, motor function, and 

dyskinesia “on” states [20]–[24]. A few recent studies monitored individuals in their homes 

over multiple months or years [25], [26]. In these cases, walking speed, time out of the 

home, time spent in specific rooms, and variation in daily routine were predictors of 

cognitive health [26]–[29].

One aspect that characterizes most of these studies is that scientists sought to understand the 

connection between a specific behavioral characteristic and a component of cognitive or 

physical health. In contrast, the study we present in this paper takes the opposite view. We 

collect sensor-based behavior data for individuals from multiple subgroups. We then 

introduce data mining techniques that find the behavior differences that can be used to 

predictively characterize the health differences between the groups. This way, we can 

quantify the amount of difference in overall routine that exists between individuals within 

the same diagnosis category and between different diagnosis categories. Furthermore, we 
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can characterize the nature of these differences. These insights can be used to better 

understand the behavior impacts of cognitive impairment and to inform the design of 

assessment measures.

III. METHODS

In this paper, we analyze smart home data collected from 14 single-resident apartments 

instrumented with the CASAS “smart home in a box” [30]. Each CASAS smart home 

contains several ceiling-installed passive infrared motion sensors, combined with ambient 

light sensors, in each major room of the house. Additional two-piece magnetic sensors, 

which also monitor ambient temperature, are attached to exterior doors as well as selected 

kitchen and bathroom cabinets. The CASAS system logs events from each sensor when a 

state change occurs (e.g., from “motion” to “no motion” or door “open” to “closed”). For 

each of the 14 subjects, we analyzed one month (30 days) of continuously and 

unobtrusively-collected sensor event data. Subjects were selected to form two groups of 

seven residents each: the “cognitive impairment” group, denoted CI, and the “healthy 

control” group, denoted HC. The cognitive impairment group members were diagnosed with 

MCI or dementia before data collection began. The groups are matched for age and 

education, as summarized in Table I.

A. Activity Recognition

To provide context for what the resident is doing in the smart home, we use activity 

recognition (AR) to label each sensor event with an activity label. To do this, we employ the 

CASAS-AR algorithm which has demonstrated high labeling accuracy in our previous work 

[31]. The CASAS-AR algorithm assigns each sensor event with one of 40 activity labels, 

such as “Eat”, “Enter Home”, and “Sleep”. Ground truth labels are provided by external 

staff. Annotators label each sensor data reading with a corresponding activity label based on 

the home’s floor plan, sensor layout, and a resident-provided description of the common 

times and locations for routine activities.

Many of the activity labels represent predefined basic or instrumental activities of daily 

living, while other labels are based on individualized smart home resident routine behavior. 

There is one activity label, “Other Activity”, that is assigned when the detected resident 

behavior does not match a predefined behavior. Because not all participants performed all 40 

activities at some point during the month of data collection, in a post-processing step we 

combine specific activity labels into more general activity labels to form a common activity 

set. To do this, we combine activities based on similarity. For example, “Cook”, “Cook 

Breakfast”, “Cook Dinner”, and “Cook Lunch” are all combined into the single activity label 

“Cook.” This reduces the initial set of activities from 40 to 18 labels. We then remove any 

labels from this set of 18 if a participant did not perform the activity at least once during the 

one month of data we are analyzing. Two activities, “Exercise” and “Housekeeping”, did not 

meet the criteria and were removed from analysis. Our final activity label set contains the 

following 16 labels (with the combined activity labels for a final label in parentheses):

1. Bathe

2. Bed to Toilet Transition
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3. Cook (Cook, Cook Breakfast/Lunch/Dinner)

4. Dress

5. Eat (Eat, Eat Breakfast/Lunch/Dinner, Drink)

6. Enter Home

7. Leave Home (Leave Home, Step Out)

8. Meds (Take Medicine, Evening Meds, Morning Meds)

9. Other Activity

10. Personal Hygiene (Personal Hygiene, Groom)

11. Relax (Relax, Watch TV, Read)

12. Sleep (Sleep, Sleep Out of Bed, Go to Sleep, Nap, Wake Up)

13. Socialize (Entertain Guests, Phone)

14. Toilet

15. Wash Dishes (Wash Dishes, Wash Breakfast/Lunch/Dinner Dishes)

16. Work (Work, Work at Desk/Table/Computer)

B. Feature Extraction

Using the activity-labeled time series data, we perform several transformations of the data to 

prepare it for input to our BCD-G algorithm. First, we compute the probability of each 

activity occurring at each horn of the day. These hourly probabilities form a multivariate 

time series of size 24D x 16, where 24 is the number of horns in a day, D is the number of 

days of analyzed smart home data, and 16 is the number activity labels. For our analysis, D 
= 30 days because we are analyzing one month of daily behavior data. Secondly, we extract 

features from the smart home event and activity data in order to provide context for 

analyzing behavioral changes. We utilize features that quantify daily behavior and are 

straightforward to interpret. Within a 24-hour period, we define the day subperiod to be 

7:00am to 6:59pm. We define the night subperiod to be 7:00pm to 6:59am. Specifically for 

nighttime sleep, we calculate the sum of sleep during two periods: the first period beginning 

the previous day at 7:00pm and ending at 11:59pm, and the second period beginning on the 

current day at 12:00am and ending at 6:59am. In total, we extract 57 features describing 

daily behavior. These features are summarized in Table II.

C. Behavior Change Detection

Given the aforementioned hourly activity probabilities and daily behavior features, we aim 

to describe the differences between the CI and HC groups using change point detection. In 

our prior work, we proposed a window-based change detection approach called Behavior 

Change Detection (BCD) [6], [7]. BCD processes time series data from a single participant, 

outputting detected changes between two time periods, or windows, within the data. BCD 

output consists of a list of change scores computed between equal-size time windows (e.g. 

between two days, weeks, months, etc.). For large scores representing a significant change 
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between two windows, BCD also provides information to interpret the source of the detected 

change. To summarize, BCD is comprised of four main steps:

1. Segment the data into windows

2. Compute change scores between windows

3. Test the significance of the detected changes

4. Analyze the source of significant changes

BCD is a framework that supports alternative change detection algorithms to be “plugged 

in” for step #2. In our previous work, we utilized several different algorithms, including 

Relative Unconstrained Least-Squares Importance Fitting (RuLSIF) [33], Permutation-based 

Change Detection in Activity Routine (PCAR) [34], small window adaption of PCAR (sw-

PCAR) [35], texture dissimilarity [36], [37], and virtual classifier (VC) [38]. In this paper, 

we utilize the PCAR and VC algorithms, as well as a new change detection algorithm for 

BCD, SEParation change point detection (SEP) [39]. We use the PCAR algorithm because it 

was designed for analyzing longitudinal smart home data. We use the VC algorithm because 

it provides a test for significance based on the binomial distribution that is applied to step #3 

of BCD, as well a decision tree that is informative for step #4 of BCD. We include SEP 

because it is a new change point detection algorithm that has demonstrated superior 

performance on smart home time series data [39], [40]. SEP also supports multi-dimensional 

time series data, which allows us to apply SEP to daily feature matrices. In the following 

three sections, we briefly describe each of these three change point detection algorithms.

1) Permutation-based Change Detection in Activity Routine—The PCAR 

algorithm detects changes in smart home data using an activity curve model. The activity 

curve model represents activity probability distributions for each time interval in a day (m 
time intervals per day), aggregated over a window of n days. The algorithm detects change 

between two activity curves by first aligning the two curves using dynamic time warping 

(DTW). A distance function is used to quantify the dissimilarity of the DTW-aligned curves 

for each time interval. To produce a single change score from this vector of m distances, the 

two windows are concatenated to form a window of 2n total days. The activity curve 

extraction, DTW-alignment, and distance computation process are repeated N times for 

random permutations of the days in the concatenated windows. This procedure produces a N 
× m permutation matrix. The ratio of permutation-based distances exceeding the original 

distance is computed for each time interval, producing a list of ratios. These ratios represent 

p-values, or the probability the original distance was sampled from the same distribution 

produced by the permutations for a given time interval. A Benjamini-Hochberg correction is 

applied for α < 0.05 to account for the multiple comparisons [41]. Finally, PCAR counts the 

remaining p-values that are significant at the given α level. This count forms the PCAR 

change score representing the change between the two activity curves.

2) SEParation Change Point Detection—A group of non-parametric change point 

detection algorithms, called likelihood ratio estimators, compute a change score by 

estimating the ratio of probability distributions between two time series windows 

surrounding a suspected change point. The higher the ratio, the more likely the windows are 
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different and there is a valid change point between them. One of the most common 

likelihood ratio estimation algorithms is called RuLSIF [33]. RuLSIF uses the Pearson 

divergence dissimilarity measure to estimate the probability distribution. Like RuLSIF, we 

introduced SEP in prior work as a non-parametric change point detection algorithm that uses 

a separation distance function [39]. Both RuLSIF and SEP require computing a parameter 

threshold value to determine if a computed change score is significant or not based on 

whether it is above or below the threshold. We are interested in using SEP over RuLSIF 

because of its increased performance in prior work and because it supports both one-

dimensional and two-dimensional time series data [39], [40]. Furthermore, we found in prior 

work that SEP outperformed RuLSIF in detecting true behavior transitions from smart home 

data [40].

3) Virtual Classifier—Hido and colleagues proposed the VC algorithm as part of their 

change analysis framework [38]. Change analysis computes a change score, while providing 

context to identity the features that contributed to the change. The approach begins with two 

n × z feature matrices, where n is the time series window size (e.g. a number of days) and z 
is the number of features extracted from each day in the window. Feature vectors (rows) in 

the first matrix are labeled with a hypothetical “positive” class, while feature vectors in the 

second matrix are labeled with a hypothetical “negative” class. A decision tree is trained 

using k-fold cross validation to distinguish between these two classes. The mean 

classification accuracy is then compared to a significance threshold, which is based on the 

expected accuracy of a binary classifier trained on random samples. Using the binomial 

distribution’s inverse survival function, a probability value pcritical is computed using the two 

window sizes and a significance level, α (α < 0.05). If the VC accuracy is greater than or 

equal to pcritical, then the VC accuracy is considered to be significant [38]. For example, if 

the two window sizes are both five days and α < 0.05, then using the inverse survival 

function of the binomial distribution, pcritical = 0.8. This would mean a VC accuracy 

acquired by training using only 10 days would have to be greater than or equal to 0.8 in 

order to be determined significant. If the VC accuracy is significant, then retraining a 

decision tree on the entire dataset produces a tree with the features most responsible for the 

change between the two windows towards the top of the tree.

D. BCD for Group Analysis

In previous work, we developed BCD to find points in time with detected behavior changes 

that could be indicative of health events [6]. Here, we introduce a novel method to expand 

the BCD framework for comparing populations (e.g. groups) instead of comparing behavior 

for one individual at different time points. To describe BCD-G, let G1 and G2 represent time 

series data sampled from two different groups. Our goal is to compare behavior between the 

groups and characterize the differences. Let G1 contain behavior data for N participants 

while G2 contains behavior data for M participants. The changes between G1 and G2, 

denoted G1ΔG2, can be quantified using BCD-G by setting the “windows” to be 

“participants”. BCD-G compares two data windows from two different participants, rather 

than two windows from two different timepoints. Additionally, we design BCD-G to 

perform comparisons in two different configurations: group-to-group and pair-to-pair.
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1) Group-to-Group Comparisons—Suppose G1 and G2 both contain the same 

number of participants. We concatenate equal-length time series for all participants, p ∈ G1, 

to form a new time series window, W1. This process is repeated for all participants q ∈ G2, 

to form W2. W1 and W2 are then concatenated to form a time series that is input to BCD-G 

with window size set to |W1|, where |W1| = |W2|. Each day in the W1 window is labeled as a 

positive class, while each day in the W2 window is labeled with a negative class. Figure 1 

shows an example of these two groups, each containing seven participants. A single 

comparison is made between W1 and W2 using a virtual classifier trained to discriminate 

between positive and negative days.

2) Pair-to-Pair Comparisons—We compute change scores for all possible pairs of 

participants within each group and between groups. To elaborate, there are three 

distributions of pairwise change scores for two groups G1 and G2, intragroup pairwise 

change scores and intergroup pairwise changes scores. Intragroup pairwise change scores are 

computed between all possible pairs of participants within a group (see Figure 2a for a 

diagram of pairs in a general group). If there are multiple groups, as is the case in this paper 

with the two groups CI and HC, intragroup pairwise change scores are computed separately 

for each group. Intergroup pairwise change scores are computed between all possible pairs 

of participants in G1 and G2; one participant in the pair from the G1 group and the other 

participant in the pair from the G2 group (see Figure 2b for a diagram of pairs).

IV. RESULTS

In this paper, we examine the differences between two groups of participants, which are 

labeled as follows:

1. G1: CI (Cognitive Impairment group): 7 participants with mild cognitive 

impairment or mild dementia

2. G2: HC (Healthy Control group): 7 healthy, age-matched participants

Additionally, we denote the intergroup change scores between CI and HC with the label IN. 

We use BCD-G to compute the changes CIΔHC in two different configurations: group-to-

group VC change scores and pair-to-pair participant change scores. The results can be 

further categorized into comparisons using all features and comparisons using individual 

activities.

A. Group-to-Group VC Comparisons

First, BCD-G compares behavior for cognitively impaired and control participants using all 

of the activity time series data and using all of the extracted features. We perform a group-

to-group comparison of CI to HC using BCD-G with VC. All 30-day time series in the CI 

group are concatenated to form window W1 and all 30-day time series in the HC group are 

concatenated to form window W2. The window size was set to 210 days (30 days multiplied 

by 7 participants in each group). The group-to-group CIΔHC VC change score is 0.826, 

which is the mean accuracy of leave-one-out-cross-validation. This result is significant 

because the score exceeds the significance threshold of pcritical = 0.541 (calculated with α < 

0.05). The resulting VC decision tree is shown in Figure 3. A decision tree is an ideal choice 
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for VC because it provides accurate classification and human-interpretable models. 

However, we also performed leave-one-out-cross-validation using three other types of 

classifiers. These classifiers and their mean accuracies include K-nearest-neighbors with K = 

5 (0.855), naïve Bayes (0.781), and a neural network (0.824). We tested the K-nearest-

neighbors accuracy compared to the VC decision tree accuracy and found the improvement 

was not significant α < 0.05).

While change scores using all activities provides an overview of changes between groups, 

zooming in to investigate the changes in each individual activity provides a closer look at the 

source of the changes. For each of the 16 activities, we apply BCD-G to investigate which 

activities exhibit the greatest differences between the two groups. We utilize BCD-G with 

the VC approach to compare participants in each group, but for this comparison we use only 

features related to each activity. For example, for the Cook activity, the features included are 

Cook duration, time of Cook first occurrence, and time of Cook last occurrence. Table III 

lists each activity’s VC change score and whether the score is significant or not. Only the 

VC change score for the Other Activity label does not exceed the significance threshold 

(pcritical = 0.541).

B. Pair-to-Pair Comparisons

Next, we quantify the CIΔHC change within groups and the change between groups at an 

individual subject level. To do this, we compute change scores for all possible pairs of 

participants within the CI and HC groups and between these two groups. To elaborate, there 

are three distributions of pairwise change scores (91 total pairs):

• Intragroup pair-to-pair change scores (CI and HC, 42 pairs): computed as all 

possible combinations of two participants sampled from a group of seven 

participants (2 * 7C2 = 42 pairs).

• Intergroup pairwise change scores (IN, 49 pairs): computed between pairs of 14 

participants, one participant in the pair from the CI group and the other 

participant from the HC group (7 * 7 = 49 pairs).

Initially, PCAR processed all hourly probability time series data for all activities, while SEP 

and VC processed all features. The BCD-G results for all features are shown in Figure 4. 

Figures 4a–c show the distribution of change scores for each group (within CI, within HC, 

and within both groups) as box plots. Figures 4d–f show the individual mean pairwise 

change scores for each participant in the CI group as bars with standard deviations 

highlighted as error lines. For reference, horizontal lines show percentile-based control 

group scores. Lastly, we perform pairwise comparisons again, but this time utilizing only 

data related to each individual activity. Of the 48 algorithm configurations (16 activities for 

each of the three algorithms, respectively), we include results for the three activities with the 

most distinct observed changes for each algorithm. These are the Bed to Toilet Transition 

PCAR change scores, Bathe SEP change scores, and Enter Home VC change scores. These 

results are shown as box plots and bar charts in Figure 5.
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V. DISCUSSION

In this paper, we introduce a novel method to compare behavior differences between two 

subject groups, called BCD-G, based on the BCD change point detection framework. We 

apply BCD-G to two groups, a group of smart home residents with MCI and/or dementia 

(CI) and a healthy, age-matched control group of smart home residents (HC). To explain the 

source of detected change, we analyze the activity and feature differences between the two 

groups.

A. Feature-based Change Analysis

The tree in Figure 3 shows the most discriminating features VC used to compute group-to-

group CIΔHC. At the top of the tree is walking speed, which is commonly listed in the 

literature as a strong predictor of mortality [42]. Walking speed for the CI group averaged 

over all participants’ days is 2.344 ± 1.903 m/s, while walking speed for the HC group is 

5.182 ± 2.997 m/s. This large disparity explains why the first rule of the tree queries whether 

walking speed is less than or equal to 4.714 m/s. Activities that are near the top of the tree 

include Bed to Toilet Transition, Dress, and Leave/Enter Home, implying healthy smart 

home residents tend to dress quicker, transition from the bed to the toilet quicker, and leave 

the home later in the day (see Figure 3 for the decision tree).

There are additional features that produce large differences between the two groups but are 

not necessarily discriminatory enough to be included near the top of the decision tree. These 

include activity duration variance, activity entropy, daytime sleep duration, and nighttime 

sleep duration. The cognitively impaired group has greater variance in the duration of the 

activities they perform (CI 9642.894 seconds; HC 8985.282 seconds) and in the entropy of 

those activities (CI 1.745 ± 0.291; HC 1.579 ± 0.473). The CI participants sleep more than 

the HC participants, with a higher daytime sleep duration (CI 1.348 ± 1.357 hours; HC 1.001 

± 1.350 hours) and nighttime sleep duration (CI 4.777 ± 2.125 hours; HC 4.129 hours ± 

2.450 hours). Features that do not seem to differ much between the two groups include the 

number of unique activities (CI 13.724 activities per day; HC 13.657 activities per day), the 

number of nighttime sleep interruptions (CI 2.629 per night; HC 2.524 per night), and 

circadian rhythm strength, or CRS (CI 0.745; HC 0.717). This last result is particularly 

interesting because of how informative the CRS values have been found to be in similar 

research comparing cognitively healthy and cognitively impaired groups. Paavilainen el al. 
found a CRS of ~0.3 was common for nondemented nursing home residents, while a CRS of 

~0.5 was common for demented nursing home residents [43]. The CI and HC groups both 

have CRS values above 0.5, indicating a high variability of activity from night to previous 

day. However, our results are not directly comparable to Paavilainen et al. because while 

they use wearable actigraphs to quantify activity counts, in this paper we use activity labels 

from smart home sensors.

B. Activity-based Change Analysis

Combining BCD-G with VC, we can investigate the strength of the behavior differences 

between the CI and HC groups for each activity. Of the 16 activities, all but one activity 

yields statistically-significant changes between CI and HC. The Other Activity is a catch-all 
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label for behavior in the home that does not fit one of the original 40 activities. Considering 

this, it seems logical that behavior classified as Other Activity is likely somewhat random, 

regardless of which group a participant belongs to. The activities with the largest VC-

detected change scores include Dress (0.710), Leave Home (0.698), Enter Home (0.695), 

and Meds (0.695). With the exception of Meds (which is not included in the decision tree at 

all), these features all appear near the top of the decision tree (see Figure 3) that is generated 

using all activities.

Unlike the group-to-group comparison results which provide single change score values, the 

pair-to-pair comparison results provide a distribution of change scores for three different 

groups, CI, HC, and IN (CI and HC combined). These distributions are visualized in Figure 

4 (all activities included in BCD-G) and Figure 5 (three samples of single activity BCD-G 

results). Figure 4 shows that using PCAR for change detection captures change between the 

two groups, with the CI group exhibiting a higher median change score and lower spread 

(see Figure 4a). Of the three algorithms, PCAR detects the most CI individual change 

compared to the distribution of the HC group (see Figure 4b). This is likely due to PCAR 

analyzing the hourly activity probability time series directly, instead of using summary 

feature values as input, like SEP and VC. The boxplot distributions for SEP (see Figure 4c) 

and VC (Figure 4d) do not show as much difference as PCAR (see Figure 4a) between the 

groups. Comparing the bar charts across all three algorithms does not show the algorithms 

agree about which participants exhibit the most change. Because of this ambiguity, we next 

look at each individual activity to narrow in on the individual participant’s greatest source of 

behavior change.

Of the 16 activities, we included box plots and bar plots in Figure 5 for Bed to Toilet 

Transition (PCAR scores), Bathe (SEP scores), and Enter Home (VC scores). The CI group 

exhibits a large amount of variability in their routines for these three activities compared to 

the HC group (see Figures 5a–c). At the individual participant level, 4/7 CI smart home 

residents exceeded the 75th percentile of HC group change for these three activities; 

however, this is not a consistent set of 4 participants across all three activities. Furthermore, 

a CI participant with change scores outside the HC 75th percentile for all three activities 

does not exist. To investigate this further, we found that on average participants 

demonstrated behavior changes greater than the HC 75th percentile for about three activities 

(4.286, 3.143, and 3.000 activities for PCAR, SEP, and VC-detected changes, respectively). 

This suggests the CI participants exhibit radically different change from the healthy 

population on only a handful of activities at a time.

For commercial products focusing on extending independence in persons with cognitive 

impairment, our research suggests that change point detection for the clinically-relevant 

activities of walking speed (from bed to toilet), bathing routines, and enter/exit home 

activities for CI persons should be included in smart home product design. Activities 

representing the milieu of symptoms associated with cognitive decline may require varied 

algorithmic approaches. Products detecting these changes can facilitate a type of “clinical 

triage” to support clinicians, caregivers, and patients. Early interventions are key to reducing 

premature transition to residential memory care and reducing health impairment-associated 

healthcare costs [44].
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VI. CONCLUSION

Our Behavior Change Detection for Groups provides a unique algorithmic framework to 

compare behavior for two or more groups. Unlike standard supervised learning approaches 

that can predict group membership based on behavior parameters, BCD-G identifies key 

behavior differences between groups by leveraging state-of-the-art change point detection 

and machine learning algorithms. Using BCD-G and activity-labeled smart home data, 

differences are detected that include changes in duration, complexity, and pattern of 

common activities of daily living. We also analyze changes in clinically-relevant behavior 

features, such as quantifying how much slower cognitively-impaired subjects walk in their 

home as compared to age-matched healthy subjects.

Limitations of tins work include the small sample size of seven cognitively impaired smart 

home participants and seven age-matched smart home participants. Also, the expansion to 

BCD-G that performs pairwise comparisons does not scale due to its exponential time 

complexity. The approach is best for comparing small groups in an offline setting; however, 

for large groups and/or an online deployment of the algorithm, we can overcome this 

limitation by using a K-nearest-neighbors approach to sampling which participants within a 

group are most important to compare with. In the future, we plan to move BCD-G to an 

online setting to support clinician-in-the-loop and preventative healthcare. With BCD-G, we 

are able to compare the in-home behavior of a single participant to a cognitively impaired 

subgroup and a healthy control subgroup to identify similarities and differences. With this 

information, clinicians can remotely determine at-risk behavior and provide timelier and 

more precise medical and social interventions.
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Fig. 1. 
Window representation of group-to-group comparisons between two groups, G1 and G2, 

each containing 7 participants. Each pi is an equal-length behavior time series collected from 

participant i.
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Fig. 2. 
Graphical representation of pair-to-pair comparisons.
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Fig. 3. 
Top virtual classifier decision tree rules for group-to-group comparisons using all activities. 

Rectangles are decision nodes and rounded rectangles are leaf nodes. Left branches are true 

and right branches are false. Orange vertical hatch represents participant subgroups 

containing mostly individuals from the cognitive impairment (CI) group and blue cross 

hatch represents participant subgroups containing mostly individuals from the healthy 

control group (HC).
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Fig. 4. 
CIΔHC pairwise change score results for PCAR, SEP, and VC. Top: Distribution of change 

scores shown as box plots. Bottom: Pairwise changes for each participant in the CI group 

shown as bar plots. Bars show mean pairwise change scores while error lines on the bars 

show +/− one standard deviation of pairwise change scores within the CI group. Three 

different values of the control group scores (using only HC participants) are shown to 

provide context for significant changes. CI = cognitive impairment group, HC = healthy 

control group, IN = intergroup, Q3 = third quartile (75th percentile), IQR = interquartile 

range.
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Fig. 5. 
CIΔHC pairwise change score results for the activities with distinct differences observed 

between the two groups. Top: Distribution of change scores shown as box plots. Bottom: 

Pairwise changes for each participant in the CI group shown as bar plots. Bars show mean 

pairwise change scores while error lines on the bars show +/− one standard deviation of 

pairwise change scores within the CI group. Three different values of the control group 

scores (using only HC participants) are shown to provide context for significant changes. CI 

= cognitive impairment group, HC = healthy control group, IN = intergroup, Q3 = third 

quartile (75th percentile), IQR = interquartile range.
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Table I

SMART HOME RESIDENT PARTICIPANT CHARACTERISTICS

Group Participant ID Age (years) Education (years) Health problems

Cognitive Impairment (CI)

hh101 87 16 MCI

hh104 83 16 Dementia

hh116 79 20 MCI

hh118 83 16 MCI

hh119 81 18 MCI

hh122 82 18 MCI, early dementia

hh123 89 18 Dementia

Healthy Control (HC)

hh103 79 20 N/A

hh105 83 16 N/A

hh106 73 16 N/A

hh108 80 16 N/A

hh109 90 16 N/A

hh111 81 20 N/A

hh114 93 12 N/A

MCI = mild cognitive impairment.
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Table II

FEATURES EXTRACTED FOR CHANGE ANALYSIS

Type Daily Feature

Activity

Total duration of each activity

First occurrence of each activity (measured as seconds past midnight)

Last occurrence of each activity (measured as seconds past midnight)

Sleep

Total duration of sleep during the day

Total duration of sleep during the night

Number of nighttime sleep interruptions (measured as number of non-sleep activity sequences between sleep sequences during the 
night)

Mobility
Total movement in the home (measured as distance in meters)

Average walking speed (measured as meters per second during bouts of movement)

Routine

Circadian rhythm strength (ratio of nighttime duration of activity (e.g. non-sleep and non-relax activities) divided by the previous 
day daytime duration of activity) [32]

Complexity of routine (measured as entropy of activity probabilities)

Number of different daily activities

Variability in activity durations (measured as the standard deviation of activity sequence durations)
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TABLE III

GROUP-TO-GROUP ACTIVITY CIΔHC VC CHANGE SCORES

Activity Virtual Classifier Score

Bathe 0.595*

Bed to Toilet Transition 0.600*

Cook 0.581*

Dress 0.710*

Eat 0.610*

Enter Home 0.695*

Leave Home 0.698*

Meds 0.695*

Other Activity 0.529

Personal Hygiene 0.652*

Relax 0.645*

Sleep 0.633*

Socialize 0.571*

Toilet 0.650*

Wash Dishes 0.643*

Work 0.581*

*
denotes a significant change score with significance threshold pcritical = 0.541, α < 0.05.
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