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Abstract

Event-related potentials (ERPs) are noninvasive measures of human brain activity that index a 

range of sensory, cognitive, affective, and motor processes. Despite their broad application across 

basic and clinical research, there is little standardization of ERP paradigms and analysis protocols 

across studies. To address this, we created ERP CORE (Compendium of Open Resources and 

Experiments), a set of optimized paradigms, experiment control scripts, data processing pipelines, 

and sample data (N = 40 neurotypical young adults) for seven widely used ERP components: 

N170, mismatch negativity (MMN), N2pc, N400, P3, lateralized readiness potential (LRP), and 

error-related negativity (ERN). This resource makes it possible for researchers to 1) employ 

standardized ERP paradigms in their research, 2) apply carefully designed analysis pipelines and 

use a priori selected parameters for data processing, 3) rigorously assess the quality of their data, 

and 4) test new analytic techniques with standardized data from a wide range of paradigms.
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1. Introduction

The event-related potential (ERP) technique is a widely used tool in human neuroscience. 

ERPs are primarily generated in cortical pyramidal cells, where extracellular voltages 

produced by thousands of neurons sum together and are conducted instantaneously to the 
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scalp (Buzsáki et al., 2012; Jackson and Bolger, 2014). ERPs therefore provide a direct 

measure of neural activity with the millisecond-level temporal resolution necessary to isolate 

the neurocognitive operations that rapidly unfold following a stimulus, response, or other 

event. Indeed, many ERP components have been identified and validated as measures of 

sensory, cognitive, affective, and motor processes (for an overview, see Luck and 

Kappenman, 2012). In recent years, the ERP technique has become accessible to a broad 

range of researchers due to the development of relatively inexpensive EEG recording 

systems and both commercial and open source software packages for processing ERP data.

Although some aspects of EEG recording and processing have become relatively 

standardized (Keil et al., 2014; Pernet et al., 2018), many others vary widely across 

laboratories and even across studies within a laboratory. For example, the P3 component has 

been measured in thousands of studies using the oddball paradigm (Ritter and Vaughan, 

1969), but the task parameters, recording settings, and data processing methods vary widely 

across studies. In many cases, the protocols are based on decades-old traditions that include 

confounds in the experimental design (such as a lack of counterbalancing) and analysis 

procedures that are now known to be flawed or suboptimal (Luck, 2014). When improved 

protocols are developed, there are no widely accepted methods for demonstrating their 

superiority or for disseminating them so they become broadly adopted. In addition, many 

important methodological details are often absent from published journal articles. As a 

result, a researcher who wishes to start using a given ERP paradigm has no standardized 

protocol to use and no standardized method for assessing whether the quality of the EEG 

data falls within normative values and whether the ERP components have been properly 

quantified.

We addressed these issues by creating the ERP CORE (Compendium of Open Resources 

and Experiments), a freely available online resource consisting of optimized paradigms, 

experiment control scripts, data from 40 neurotypical young adults, data processing 

pipelines and analysis scripts, and a broad set of results (https://doi.org/10.18115/D5JW4R). 

Following extensive piloting and consultations with experts in the field, we developed six 

10-minute optimized paradigms that together isolate seven ERP components spanning a 

range of neurocognitive processes (see Figure 1): 1) a visual discrimination paradigm for 

isolating the face-specific N170 response (for reviews, see Eimer, 2011; Feuerriegel et al., 

2015; Rossion and Jacques, 2011); 2) a passive auditory oddball paradigm for isolating the 

mismatch negativity (MMN; for reviews, see Garrido et al., 2009; Näätänen and Kreegipuu, 

2011); 3) a visual search paradigm for isolating the N2pc component (for a review, see Luck, 

2012); 4) a word-pair association paradigm for isolating the N400 component (for reviews, 

see Kutas and Federmeier, 2011; Lau et al., 2008; Swaab et al., 2012); 5) an active visual 

oddball paradigm for isolating the P3 component (for reviews, see Dinteren et al., 2014; 

Polich, 2007; Polich, 2012); and 6) a flankers paradigm for isolating the lateralized readiness 

potential (LRP; for reviews, see Eimer and Coles, 2003; Smulders and Miller, 2012); and the 

error-related negativity (ERN; for reviews, see (Gehring et al., 2012; Olvet and Hajcak, 

2008). Each of these ERP components can be isolated from overlapping brain activity using 

the difference wave procedure (Kappenman and Luck, 2012; Luck, 2014).
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The ERP CORE paradigms were implemented in a widely used experiment control package 

(Presentation; Neurobehavioral Systems) and have been extensively tested. They can be run 

with a free trial license, and many of the parameters can be adjusted from the user interface 

so that researchers can create variations on the basic paradigms without editing the code 

(thus minimizing the potential for programming errors). We expect that data from hundreds 

of additional participants will be added to our current database of 40 participants by other 

laboratories. We also anticipate the creation of experiment control scripts that can be run 

with open source software (e.g., Peirce, 2019).

We also developed optimized signal processing and data analysis pipelines for each 

component using the open source EEGLAB (Delorme and Makeig, 2004) and ERPLAB 

(Lopez-Calderon and Luck, 2014) MATLAB toolboxes. Archival copies of the analysis 

scripts, raw and processed data for all 40 participants (including BIDS-compatible data), and 

a broad set of results are available online on the Open Science Framework (https://doi.org/

10.18115/D5JW4R). The analysis scripts are also hosted on GitHub (https://github.com/

lucklab/ERP_CORE), where updated code can be provided and bugs can be reported.

We anticipate that the ERP CORE will be used in at least eight ways. First, researchers who 

are setting up a new ERP lab can use the standardized CORE paradigms to test their 

laboratory set-up and data quality. Second, researchers who are new to the ERP technique 

may use the CORE paradigms and analysis scripts to enhance their understanding of ERP 

experimental design and analysis methods, which will serve as a starting point for the 

development of new paradigms. Third, researchers who would like to add a standardized 

ERP measure to a multi-method study can take our experiment control scripts and data 

processing pipelines and “plug them in” to their study with relative ease and confidence. 

Moreover, they could use the a priori analysis parameters that we provide (e.g., time 

windows for amplitude and latency quantification), reducing researcher degrees of freedom 
(Simmons et al., 2011). Fourth, we have provided a participant-by-participant quantification 

of the noise levels in the data, which both new and experienced researchers can use as a 

comparison against the noise levels in their data. ERP papers rarely provide information 

about noise levels, making it difficult to know which data collection protocols yield the 

cleanest data, and the ERP CORE provides a first step toward standardized reporting of 

noise levels.

Fifth, researchers who would like to create a new variant of a standard ERP paradigm could 

use our experiment control scripts and data processing pipelines as a starting point, saving 

substantial time and reducing uncertainty and error. Sixth, researchers could test new 

hypotheses by reanalyzing the existing data in novel ways. For example, because we have 

data from seven different ERP components in each participant, it would be possible to ask 

how the timing and amplitude of one component is correlated with the timing and amplitude 

of other components. Seventh, newly developed data processing procedures could be applied 

to the ERP CORE data to test the effectiveness of these procedures across a broad range of 

paradigms. Finally, educators could use these resources to teach students about the design, 

implementation, and analysis of ERP experiments. For example, the ERP CORE is already 

being integrated into a formal curriculum for teaching human electrophysiology (Bukach et 

al., 2019).
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2. Material and Methods

This study was approved by the Institutional Review Board at the University of California, 

Davis, and all participants provided informed consent. All materials are freely available at 

https://doi.org/10.18115/D5JW4R.

2.1. Participants

We tested 40 participants (25 female, 15 male; Mean years of age = 21.5, SD = 2.87, Range 

18-30; 38 right handed) from the University of California, Davis community. Each 

participant had native English competence and normal color perception, normal or 

corrected-to-normal vision, and no history of neurological injury or disease (as indicated by 

self-report). Participants received monetary compensation at a rate of $10/hour.

In our research with typical young adults, we always exclude participants who exhibit 

artifacts on more than 25% of trials (Luck, 2014). To maximize the amount of data we were 

able to retain in each experiment, this criterion was applied separately for each task. We also 

excluded participants from a task if their accuracy was below 75%, or if fewer than 50% of 

trials remained in any single experimental condition. To ensure an adequate number of error 

trials for the ERN, participants were excluded from the error-related negativity (ERN) 

analysis if fewer than 6 error trials remained after artifact rejection (Boudewyn et al., 2018). 

These criteria resulted in the exclusion of 1–6 participants per component. The final sample 

size for each component is listed in Table 1. Additional details of participant exclusions are 

available in the online resource. All analyses were performed using the final sample for each 

task, except where noted. The individual-participant data files for excluded participants are 

provided in the online resource.

2.2. Stimuli and Tasks

Figure 1 shows example trials in each of the six tasks. Here we provide a brief overview of 

each task; details are provided in the Supplementary Materials and Methods. The N170 was 

elicited in a face perception task modified from Rossion & Caharel (2011) using their 

stimuli (which are available in the online resource; see Figure 1A). In this task, an image of 

a face, car, scrambled face, or scrambled car was presented on each trial in the center of the 

screen, and participants responded whether the stimulus was an “object” (face or car) or a 

“texture” (scrambled face or scrambled car). The MMN was elicited using a passive auditory 

oddball task modeled on Naatanen et al. (2004; see Figure 1B). Standard tones (presented at 

80 dB, with p = .8) and deviant tones (presented at 70 dB, with p = .2) were presented over 

speakers while participants watched a silent video and ignored the tones. The N2pc was 

elicited using a simple visual search task based on Luck et al. (2006; see Figure 1C). 

Participants were given a target color of pink or blue at the beginning of a trial block, and 

responded on each trial whether the gap in the target color square was on the top or bottom. 

The N400 was elicited using a word pair judgment task adapted from Holcomb & Kutas 

(1990; see Figure 1D). On each trial, a red prime word was followed by a green target word. 

Participants responded whether the target word was semantically related or unrelated to the 

prime word. The P3 was elicited in an active visual oddball task adapted from Luck et al. 

(2009; see Figure 1E). The letters A, B, C, D, and E were presented in random order (p = .2 
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for each letter). One letter was designated the target for a given block of trials, and the other 

4 letters were non-targets. Thus, the probability of the target category was .2, but the same 

physical stimulus served as a target in some blocks and a nontarget in others. Participants 

responded whether the letter presented on each trial was the target or a non-target for that 

block. The lateralized readiness potential (LRP) and the error-related negativity (ERN) were 

elicited using a variant of the Eriksen flanker task (Eriksen and Eriksen, 1974; see Figure 

1F). A central arrowhead pointing to the left or right was flanked on both sides by 

arrowheads that pointed in the same direction (congruent trials) or the opposite direction 

(incongruent trials). Participants indicated the direction of the central arrowhead on each 

trial with a left- or right-hand buttonpress.

2.3. EEG Recording

The continuous EEG was recorded using a Biosemi ActiveTwo recording system with active 

electrodes (Biosemi B.V., Amsterdam, the Netherlands). We recorded from 30 scalp 

electrodes, mounted in an elastic cap and placed according to the International 10/20 System 

(FP1, F3, F7, FC3, C3, C5, P3, P7, P9, PO7, PO3, O1, Oz, Pz, CPz, FP2, Fz, F4, F8, FC4, 

FCz, Cz, C4, C6, P4, P8, P10, PO8, PO4, O2; see Supplementary Figure S1). The common 

mode sense (CMS) electrode was located at PO1, and the driven right leg (DRL) electrode 

was located at PO2. The horizontal electrooculogram (HEOG) was recorded from electrodes 

placed lateral to the external canthus of each eye. The vertical electrooculogram (VEOG) 

was recorded from an electrode placed below the right eye. Signals were incidentally also 

recorded from 37 other sites, but these sites were not monitored during the recording and are 

not included in the ERP CORE data set. All signals were low-pass filtered using a fifth order 

sinc filter with a half-power cutoff at 204.8 Hz and then digitized at 1024 Hz with 24 bits of 

resolution. The signals were recorded in single-ended mode (i.e., measuring the voltage 

between the active and ground electrodes without the use of a reference), and referencing 

was performed offline, as described below.

2.4. Signal Processing and Averaging

Signal processing and analysis were performed in MATLAB using EEGLAB toolbox 

(version 13_4_4b; Delorme and Makeig, 2004) and ERPLAB toolbox (version 8.0; Lopez-

Calderon and Luck, 2014). Here we provide a detailed conceptual description of the analysis 

procedures; further details of each data processing step are provided in comments within the 

online MATLAB scripts, which can be used to exactly replicate our analyses.

The event codes were shifted to account for the LCD monitor delay, and the EEG and EOG 

signals were downsampled to 256 Hz to increase data processing speeds (this decreased 

sampling rate is well within normative values for these paradigms). For analysis of the 

MMN, N2pc, N400, P3, LRP, and ERN, the EEG signals were referenced offline to the 

average of P9 and P10 (located adjacent to the mastoids). We find that P9 and P10 provide 

cleaner signals than the traditional mastoid sites, but the resulting waveforms are otherwise 

nearly identical to mastoid-referenced data; for analysis of the N170, the EEG signals were 

referenced to the average of all 33 sites (because the average reference is standard in the 

N170 literature). A bipolar HEOG signal was computed as left HEOG minus right HEOG. A 

bipolar VEOG signal was computed as lower VEOG minus FP2.
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The DC offsets were removed, and the signals were high-pass filtered (non-causal 

Butterworth impulse response function, half-amplitude cut-off at 0.1 Hz, 12 dB/oct roll-off). 

In preparation for artifact correction, portions of EEG containing large muscle artifacts, 

extreme voltage offsets, or break periods longer than two seconds were identified by a semi-

automatic ERPLAB algorithm and removed. Independent component analysis (ICA) was 

then performed, and components that were clearly associated with eyeblinks or horizontal 

eye movements—as assessed by visual inspection of the waveforms and the scalp 

distributions of the components—were removed (Jung, et al., 2000). Corrected bipolar 

HEOG and VEOG signals were computed from the ICA-corrected data. The original (pre-

correction) bipolar HEOG and VEOG signals were also retained to provide a record of the 

ocular artifacts that were present in the original data.

The data were segmented and baseline-corrected for each trial using the time windows 

shown in Table 1. Channels with excessive levels of noise as determined by visual inspection 

of the data were interpolated using EEGLAB’s spherical interpolation algorithm. Note that 

interpolation was not performed on any channels that were subsequently used to quantify the 

ERP components and only impacted the topographic maps shown in Supplementary Figure 

S2.

Segments of data containing artifacts that survived the correction procedure were flagged 

and excluded from analysis using automated ERPLAB procedures with individualized 

thresholds set on the basis of visual inspection of each participant’s data (see justification for 

individualized thresholds in Luck (2014)). This included excluding trials with large voltage 

excursions in any channel. Because ICA does not always correct eye movements perfectly, 

especially in participants who rarely make eye movements, we also discarded any trials with 

evidence of large eye movements (greater than 4° of visual angle) in the corrected HEOG. 

Because horizontal eye movements are more likely to occur in tasks that present stimuli 

away from fixation, as in the visual search task we used to elicit the N2pc component, we 

also removed trials that contained horizontal eye movements larger than 0.2° of visual angle 

that could have impacted the N2pc (i.e., that occurred between −50 and 350 ms relative to 

stimulus onset). To ensure that blinks and horizontal eye movements did not interfere with 

perception of the visual stimuli, an additional procedure was performed for the tasks 

examining stimulus-locked responses to visual stimuli (i.e., N170, N2pc, N400, and P3). 

Specifically, we excluded trials on which an eyeblink or horizontal eye movement was 

present in the original (uncorrected) HEOG or VEOG signal during the presentation of the 

stimulus.

Trials with incorrect behavioral responses were excluded from all analyses, except for the 

ERN. Trials with excessively fast or slow reaction times (RTs) were also excluded from all 

analyses, with the acceptable RT range determined by visual inspection of RT probability 

histograms averaged across participants for each task. This resulted in an acceptable 

response window of 200 to 1000 ms after the onset of the stimulus in the N170, N2pc, P3, 

LRP, and ERN analyses, and an acceptable response window of 200 to 1500 ms after the 

onset of the target word in the N400 analysis; the MMN task required no responses and 

therefore no exclusions were made on the basis of RT. Accuracy was defined as the 

proportion of correct trials within the acceptable RT range prior to artifact rejection. Note 
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that future studies with these tasks can use these time ranges as a priori windows (assuming 

that a similar population is being tested).

2.5. Component Isolation with Difference Waves

The tasks were designed so that each ERP component could be isolated from overlapping 

brain activity by means of a difference waveform. Although difference waves have 

limitations in some contexts (Meyer et al., 2017), they are often valuable because they 

eliminate any brain activity that is in common to the two conditions, allowing precise 

assessment of the time course and magnitude of the small set of processes that differ 

between conditions (see Kappenman and Luck, 2012; Luck, 2014). A difference waveform 

was created for each component using the procedures specified in the Supplementary 

Materials and Methods. All amplitude and latency measurements were then performed on 

the difference waves using measurement procedures described later.

2.6. Quantification of Signals and Noise

2.6.1. Electrode Site Determination—For each component, we determined the 

electrode site at which that component was largest in the difference wave, and we used that 

site for all analyses. Data from the other electrode sites are provided in the online resource. 

Table 1 shows the electrode site chosen to quantify each component. The P3 showed similar 

amplitudes at CPz and Pz, and we chose to quantify the P3 at Pz because this is the site most 

widely used in the literature. We recommend the electrode sites in Table 1 as a priori 

measurement sites for future research using these tasks.

Ordinarily, it would be inappropriate to choose the site at which the effect is largest, because 

this “cherry picking” would bias the data in favor of the presence of an effect, inflating the 

Type I error rate (Luck and Gaspelin, 2017). However, the effects examined in the present 

study are already known to exist, and our goal was to characterize these effects rather than to 

test for their existence. Researchers often avoid cherry picking by averaging across a cluster 

of sites rather than choosing a single site. This may also improve data quality (Luck, 2014). 

However, the cluster approach may decrease the size of the effect, and we know of no formal 

analyses demonstrating which approach leads to the greatest statistical power. The ERP 

CORE data would provide an excellent test bed for assessing which approach is best across 

a range of components, but such an analysis is beyond the scope of the present paper. For the 

sake of simplicity, and to avoid arbitrary decisions about cluster sizes, the present analyses 

are based on the single electrode site with the largest amplitude; data from the other sites 

(see Supplementary Figure S1) are available in the online resource.

2.6.2. Time Window Determination.—The present study also provided an opportunity 

to determine optimal time periods for each component that can be used as a priori 

measurement windows in future studies. To accomplish this, we used the Mass Univariate 

Toolbox (Groppe et al., 2011) to find a cluster of statistically significant time points at the 

electrode site shown in Table 1. Our procedure began by comparing the mean voltage from 

the relevant difference wave to zero using a separate one-sample t test at each time point. 

The algorithm then found the largest cluster of consecutive time points that were 

individually significant and computed the mass of this cluster (the sum of the single-point t 
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values for the cluster). A permutation test with 2,500 iterations was then used to verify that 

each of these cluster masses was larger than the 95th percentile of values that would be 

expected by chance. The cluster obtained for each component greatly exceeded this 95th 

percentile (the lowest value was greater than the 99.99th percentile). The time ranges of 

these clusters are provided in Table 2.

Although the mass univariate approach does not provide strict control of the Type I error rate 

for individual time points (Groppe et al., 2011; Sassenhagen and Draschkow, 2019)—and 

using it to define time windows for subsequent analyses of the same data set would 

ordinarily be considered “double dipping” (Kriegeskorte et al., 2009)—our goal was simply 

to provide a set of empirically justified time windows for use in subsequent studies. We used 

the resulting windows to measure the amplitudes and latencies from the present study, which 

would generally be inappropriate. However, our goal in these analyses was not to determine 

whether real differences between conditions were present (because these differences have 

already been widely replicated). Instead, the goal of these analyses was to provide amplitude 

and latency values that can be used for comparison by future researchers. Note that, because 

the data and analysis scripts are available online, researchers can easily measure the 

amplitudes and latencies in the CORE data using other time windows.

In many studies, multiple components may be present in the same difference wave, and a 

narrower time window may help isolate the component of interest. We therefore performed 

an extensive literature review to determine the time windows that are most commonly used 

in analysis of these components. For each component, we then chose a final time window 

that (a) was within the range of the statistically significant cluster obtained from the mass 

univariate approach, and (b) was also within the range of commonly used values. The 

resulting time windows are shown in Table 2. As in the case of our procedure for 

determining the channel for measurement, this procedure for choosing time windows would 

not be appropriate in most studies. However, the present effects are known to exist, and our 

goal was to determine the best windows for future research. We recommend these as a priori 

time windows for future studies using these specific tasks or other similar tasks (assuming 

that a similar population is tested).

2.6.3. EEG Amplitude Spectrum Quantification.—We computed amplitude spectra 

from the EEG. Specifically, fast Fourier transforms were computed on zero-padded 5-s 

segments of the continuous high-pass filtered EEG with 50% overlap. The data were 

analyzed separately for each of the seven components using the data from the relevant task 

at the measurement site for that component. Break periods and segments containing large 

artifacts were excluded, and the amplitude spectra were averaged across segments and 

participants using the full sample (N = 40).

2.6.4. Noise Quantification.—Our first measure of noise focused on the baseline 

period (see Table 1) in the averaged ERP waveforms. To quantify the baseline noise, we 

calculated the point-by-point SD of the voltage across the baseline period in the averaged 

ERP waveform for each component, separately for each participant. Low-pass filtering is 

often but not always applied to ERPs prior to measuring components (see below), so we 

performed these calculations before and after applying a 20 Hz low-pass filter (non-causal 
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Butterworth impulse response function, half-amplitude cut-off at 20 Hz, 48 dB/oct roll-off). 

We quantified the baseline noise in both the parent waveforms and the difference waves. 

Note that some systematic activity was present during the baseline periods of the parent 

waveforms (reflecting preparatory activity and/or overlapping activity from the previous 

trial), and this systematic activity also contributes to this measure of baseline noise. 

However, given our experimental designs, all systematic variation was eliminated during the 

baseline period in the difference waves, so our baseline noise measure is a pure measure of 

noise for the difference waves.

Our second measure of noise was analogous to the baseline noise measure, but applied 

during the measurement period for each component. The point-by-point SD during the 

measurement window would ordinarily reflect both the signal and the noise, so we used 

plus-minus averaging (Schimmel, 1967) to eliminate the signal but retain the noise. This 

method eliminates the signal by inverting the polarity of half the single-trial EEG epochs 

prior to averaging. Specifically, plus-minus averages were computed by dividing the artifact-

free EEG epochs for each participant into even-numbered trials and odd-numbered trials 

separately for each condition, and then applying an algorithm that was mathematically 

equivalent to inverting the polarity of the even-numbered trials and then averaging the odd-

numbered trials together with the inverted even-numbered trials. To quantify the noise in the 

plus-minus averages, we calculated the standard deviation (SD) of the plus-minus 

waveforms for each participant during the measurement window for each component. Note 

that this measure of noise includes trial-by-trial variability in the signal of interest, whereas 

the baseline noise measure does not. Thus, two these measures of noise provide 

complementary information.

Our final measure of noise used the plus-minus averages to estimate the amount of noise at 

each individual time point in the waveforms. In the absence of noise, the plus-minus average 

for a given participant would be zero at all time points, and any deviation from zero reflects 

variability (noise) in the data. However, the polarity of this deviation is random, so one 

cannot quantify the noise by simply taking the mean across participants (which would have 

an expected value of zero). Instead, we computed the SD across participants at each time 

point. This yielded a waveform showing noise level at each time point for each of the ERP 

components.

2.6.5. Amplitude and Latency Measures.—Using the electrodes shown in Table 1 

and the time windows shown in Table 2, we measured the mean amplitude, peak amplitude, 

peak latency, and 50% area latency (the time point that divides the area under the curve into 

subregions of equal area) from each of the seven difference waves. We also quantified the 

onset latency of each difference wave with the fractional peak latency measure (the time at 

which the voltage reaches 50% of the peak amplitude; see Kiesel et al., 2008); the 

measurement windows were shifted 100 ms earlier for these onset measurements. As 

secondary analyses, we also quantified the mean amplitude of the individual parent 

waveforms that were used to create the difference waveforms. The other measurements are 

typically valid only for difference waveforms (see Luck, 2014), so these measures were not 

obtained from the parent waveforms. For example, it would be difficult to measure the peak 

latency of the MMN from the parent waveforms given that many other components are also 
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present in the same time window. Because peak amplitude, peak latency, and fractional peak 

latency are all sensitive to high-frequency noise, a low-pass filter (non-causal Butterworth 

impulse response function, half-amplitude cut-off at 20 Hz, 12 dB/oct roll-off) was applied 

to the waveforms prior to obtaining these measures.

3. Results

Figure 2 shows the grand average “parent” ERP waveforms from each relevant condition and 

the ERP difference waveforms between conditions (including the standard error of the mean 

across participants). Behavioral data are summarized in Supplementary Table S1 in the 

supplementary materials. The experiment control scripts, raw data, analysis scripts, 

processed data, and a broad set of results are available in the online resource (https://doi.org/

10.18115/D5JW4R).

3.1 Basic ERP Effects

The ERP waveforms in Figure 2 show that the expected experimental effects were observed 

for all seven components. The N170 component was larger and earlier for faces than for 

cars, with a maximum effect over right inferotemporal cortex; the latency difference may 

seem surprising, but it is commonly observed (Carmel, 2002; Itier, 2004; Sagiv and Bentin, 

2001). Auditory deviants in the MMN paradigm elicited a negativity peaking near 200 ms 

with a maximum over medial frontocentral cortex. The N2pc paradigm yielded a more 

negative (less positive) voltage from 200-300 ms over the hemisphere contralateral to the 

target compared to the ipsilateral hemisphere. In the N400 paradigm, the second word in a 

pair elicited a larger negativity from approximately 200-600 ms when it was semantically 

unrelated to the first word than when it was related, with a maximum over medial 

centroparietal cortex. The visual P3 paradigm yielded a larger positive voltage for the rare 

stimulus category than for the frequent stimulus category, with a maximum effect at the 

parietal midline electrode. In the flankers paradigm, both the lateralized readiness potential 

(LRP) and the error-related negativity (ERN) were observed. The LRP was a more negative 

voltage over the motor cortex contralateral to the response hand compared to the ipsilateral 

side, and the ERN was a more negative voltage over midline frontocentral cortex for 

incorrect responses compared to correct responses. Topographic maps of each effect are 

provided in Supplementary Figure S2.

3.2 ERP Quantification

We quantified the magnitude and timing of each component in several different ways. All 

measurements were performed on the difference waveforms, which was necessary for 

components that are only well defined in difference waves (e.g., the N2pc and LRP 

components). Mean amplitude measures for the parent waveforms are provided in 

Supplementary Table S2. The time windows used for measuring each component are listed 

in Table 2, and the procedures used for determining the time windows are described in the 

Materials and Methods. The mean values for each component are provided in Table 3, along 

with standard deviations (SDs) to quantify the variability across participants. Histograms of 

the single-participant values are provided in Supplementary Figure S3 so that future studies 

can compare their single-participant values to the range observed in our data. The range, first 
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and third quartiles, and the interquartile range are provided in Supplementary Table S3. As 

shown in Table 3 and Supplementary Figure S3, the size and timing of the ERP effects 

varied widely across participants, even within this relatively homogenous sample of 

neurotypical young adults.

We quantified the magnitude of the components using mean amplitude and peak amplitude. 

The effect sizes are provided in Table 3 (i.e., Cohen’s dz for a one-sample comparison 

against zero) to aid future researchers in performing a priori statistical power calculations. 

Both the mean amplitude and peak amplitude measures showed very large effect sizes (dz > 

1) for all components, demonstrating the robustness of the CORE paradigms. Although the 

observed effect sizes appear larger for peak than mean amplitude, it should be noted that 

using 0 μV as the chance value would be expected to overestimate the true effect size for 

peak amplitude, because peaks are statistically biased away from zero (Luck, 2014). Future 

research is needed to establish the ideal method for quantifying effect sizes for peak 

amplitude measures.

We quantified the midpoint latency of each effect using the peak latency and the 50% area 

latency techniques. Peak latency is much more widely used to quantify midpoint latency, but 

50% area latency has several advantages (although it is mainly useful when a component is 

measured from a difference wave; see Luck, 2014). For most components, there was close 

agreement between the means of these two measures, but the standard deviations were 

substantially lower for the 50% area latency measure. We also calculated the onset latency1 

of each effect, using the fractional peak latency technique (see Kiesel et al., 2008). Future 

research could use the ERP CORE data to compare the effect sizes yielded by different 

algorithms for quantifying ERP amplitudes and latencies.

3.3 EEG Spectral Quantification

Researchers who use the ERP CORE paradigms may wish to compare the frequency-domain 

characteristics of their data with the CORE data (e.g., to compare alpha-band activity as an 

index of attentional engagement). We therefore computed the amplitude density of the EEG 

signal at each frequency ranging from 1 to 100 Hz (see Materials and Methods for details). 

Figure 3 (left panel) shows the amplitude spectra at the electrode site of interest for each 

component, averaged across all 40 participants. As usual, the spectra exhibited a gradual 

falloff as the frequency increased (approximately 1/f) along with a peak in the alpha band at 

posterior scalp sites and a small spike at 60 Hz reflecting electrical noise.

3.4 Noise Quantification

In addition to measuring the components (as is standard in ERP studies), we also quantified 

the noise level of the data (which is not typically provided in ERP papers). The point-by-

point standard errors shown in Figure 2 do not provide a good measure of the noise level, 

because they reflect a combination of EEG noise and true individual differences among 

1Onset latencies can be distorted by low-pass filters (Luck, 2014; Rousselet, 2012), which spread the signal in time (symmetrically for 
noncausal filters and asymmetrically toward longer latencies for causal filters). However, the measure of onset latency used in the 
present study is only minimally affected by low-pass filtering (see Figure 12.8C in Luck, 2014). Extreme high-pass filters can also 
impact onset latencies, but the mild 0.1 Hz cutoff frequency used here has very little impact (Rousselet, 2012, Tanner et al., 2015).
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participants. We therefore used three other methods to quantify noise (a detailed justification 

and explanation of each method is provided in the Materials and Methods). Note that noise 

is typically defined relative to the signal of interest, and here we define noise as any source 

of variability that impacts the averaged ERP waveforms, even if some of that variability 

reflects neural signals that might be the focus of study in other contexts (e.g., phase-random 

alpha-band oscillations).

First, we quantified the noise in the baseline of each averaged ERP waveform by calculating 

the point-to-point variability (SD) of the voltage across the baseline period listed in Table 1 

(separately for each participant). This provides an overall measure of the amount of noise 

that survives averaging, without influence from the actual ERP signals. Because many 

researchers would apply a low-pass filter prior to measuring component amplitudes or 

latencies, we performed this analysis both before and after applying a 20 Hz low-pass filter. 

Table 4 provides the mean of the baseline noise values across participants, and Figure 3 

(middle panel) provides probability histograms to show the range of single-participant noise 

levels in the baseline of the unfiltered averaged ERP waveforms. The range, first and third 

quartiles, and the interquartile range in the unfiltered ERP waveforms are provided in 

Supplementary Table S4. Interestingly, the baseline noise levels varied markedly across 

participants for some of the components. The baseline noise was only slightly reduced in the 

filtered waveforms, reflecting the fact that most of the EEG energy was below 20 Hz (see 

Figure 3, left panel). As expected, the noise level was inversely related to the number of 

trials being averaged together (for the parent waveforms; e.g., higher for the rare than for the 

frequent stimuli in the P3 paradigm) and was typically larger for the difference waveforms 

than for the parent waveforms.

Second, we quantified the noise during the measurement time window of each component. 

Because the SD across time points in the measurement window would include the signal as 

well as the noise, we performed plus-minus averaging (Schimmel, 1967) before measuring 

the SD. This procedure inverts the EEG for half of the trials prior to averaging, which 

eliminates the signal while retaining the noise (including any variability in the signal itself). 

The plus-minus averages are shown in Supplementary Figure S4. Table 4 provides the mean 

noise level across participants during the measurement window for each component, and 

Figure 3 (right panel) provides probability histograms to show the range of single-participant 

noise levels in the measurement window. The range, first and third quartiles, and the 

interquartile range in the unfiltered ERP waveforms are provided in Supplementary Table 

S5.

Finally, we estimated the noise level at each individual time point in the waveform, 

quantified as the SD across participants at that time point in the plus-minus averages. These 

point-by-point estimates of noise are shown in Figure 4. For several components (e.g., P3, 

N400, MMN), the noise tended to increase over the course of the epoch. For the ERN 

waveform, noise increased dramatically following the execution of the response (see also the 

bottom row in Supplementary Figure S4).

Together, these three measures of noise will allow researchers to determine how their noise 

levels compare to the noise levels in our data. Researchers who are developing new signal 
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processing procedures can also apply these procedures to the ERP CORE data and assess 

their impact on the noise level. In addition, our data analysis scripts can be used as a starting 

point for computing these metrics of noise in other paradigms.

4. Discussion

The ERP CORE—a Compendium of Open Resources and Experiments for human ERP 

research—consists of optimized paradigms, experiment control scripts, EEG data, analysis 

pipelines, data processing scripts, and a broad set of results. All materials are freely available 

at https://doi.org/10.18115/D5JW4R. Despite the widespread use of ERPs in the fields of 

psychology, psychiatry, and neuroscience, this resource is the first of its kind.

Each paradigm in the ERP CORE successfully elicited the component of interest with a 

large effect size in a 10-minute recording. Moreover, we provided several measures of the 

magnitude and timing of the ERP components, noise levels in the data, and variability across 

participants. These results will serve as a guide to researchers in selecting task and analysis 

parameters in future studies, and they provide a standard against which future data sets can 

be compared. We are not claiming that our data quality is optimal or that our effect sizes can 

be used as formal norms for the broader population. However, no other standard of this 

nature currently exists, and the ERP CORE provides a starting point for the development of 

new standards based on larger samples and other subject populations.

We have provided our experiment control and data processing scripts so that other 

researchers can utilize our tasks and analysis pipelines in their research, saving time and 

increasing reproducibility. Researchers can also perform quality control by comparing their 

noise levels with those presented here. ERP studies do not ordinarily present a detailed 

assessment of noise levels, and the noise quantifications provided here are therefore a unique 

resource. By providing these data quality measures on our own data and sharing our analysis 

scripts, we hope to encourage other researchers to provide similar metrics in their 

publications so that the field can see which experimental procedures and data analysis 

methods yield the best data quality. Broad adoption of these noise metrics in EEG/ERP 

publications would also over time allow for field standards regarding acceptable levels of 

noise to be established.

We also provided several measures of variability across participants, and all of our single-

participant data and measures are available online. Although we tested a relatively 

homogeneous sample of neurotypical young adults, substantial variability was observed (see 

Supplementary Figure S3). Although the existence of individual differences in ERP 

waveforms is well known (Kappenman and Luck, 2012), publications typically do not 

provide such a detailed characterization of the variability in their samples. The present 

results therefore provide a useful comparison point for researchers who are evaluating 

variability in their own single-participant ERP waveforms.

The ERP CORE contains data from several ERP paradigms in the same participants, which 

is quite rare given that a full recording session is typically required to yield a single 

component. However, the CORE paradigms were designed to produce optimal results with 
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minimal recording time. Consequently, the ERP CORE is the first published data set that 

includes such a comprehensive set of ERP components in the same participants. This 

resource can therefore be used to examine a broad range of empirical and methodological 

questions, such as assessing the effectiveness of a new signal processing method across 

multiple components and paradigms. The ERP CORE tasks could also serve as an 

electrophysiological test battery.

It is also worth noting that our data set contains many other components beyond those 

analyzed here, including auditory and visual sensory responses, the stimulus-locked LRP, 

the response-locked P3, and the anterior N2 component that is sensitive to response 

competition in the flankers task (Kopp et al., 1996; Purmann et al., 2011).

In many cases, researchers will be able to apply our validated paradigms and analysis 

pipelines directly to their own experiments, which will save time, reduce errors, and 

decrease researcher degrees of freedom in statistical analyses (Simmons et al., 2011). 

However, the task and analysis parameters provided in the present study were validated with 

neurotypical young adult participants and may need to be adjusted for other populations. 

Nonetheless, these parameters provide a useful starting point for researchers interested in 

any of the neurocognitive processes encompassed by the ERP CORE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of a subset of the trials in each of the six tasks. The stimuli are not drawn to scale; 

see Supplementary Materials and Methods for actual sizes. (A) Face perception task used to 

elicit the N170. On each trial, an image of a face, car, scrambled face, or scrambled car was 

presented in the center of the screen, and participants indicated whether a given stimulus was 

an “object” (face or car) or a “texture” (scrambled face or scrambled car). (B) Passive 

auditory oddball task used to elicit the mismatch negativity (MMN). Standard tones (80 dB, 

p = .8) and deviant tones (70 dB, p = .2) were presented over speakers while participants 

Kappenman et al. Page 18

Neuroimage. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



watched a silent video and ignored the tones. (C) Simple visual search task used to elicit the 

N2pc. Either pink or blue was designated the target color at the beginning of a trial block, 

and participants indicated whether the gap in the target color square was on the top or 

bottom. (D) Word pair judgment task used to elicit the N400. Each trial consisted of a red 

prime word followed by a green target word, and participants indicated whether the target 

word was semantically related or unrelated to the prime word. (E) Active visual oddball task 

used to elicit the P3. The letters A, B, C, D, and E were presented in random order (p = .2 

for each letter). One of the letters was designated the target for a given block of trials, and 

participants indicated whether each stimulus was the target or a non-target for that block. 

Thus, the probability of the target category was .2, but the same physical stimulus served as 

a target in some blocks and a nontarget in others. (F) Flankers task used to elicit the 

lateralized readiness potential (LRP) and the error-related negativity (ERN). The central 

arrowhead was the target, and it was flanked on both sides by arrowheads that pointed in the 

same direction (congruent trials) or the opposite direction (incongruent trials). Participants 

indicated the direction of the target arrowhead on each trial with a left- or right-hand 

buttonpress.
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Figure 2. 
Grand average parent ERP waveforms (left) and difference waveforms (right). The shading 

surrounding the difference waveforms indicates the region that fell within ±1 SEM at a given 

time point (which reflects both measurement error and true differences among participants). 

A digital low-pass filter was applied offline before plotting the ERP waveforms (Butterworth 

impulse response function, half-amplitude cutoff at 20 Hz, 48 dB/oct roll-off).
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Figure 3. 
Quantification of the EEG signal and the ERP noise. (Left) Amplitude density as a function 

of frequency (on a log scale) for each ERP component at the electrode site where that 

component was maximal, calculated from individual participants and then averaged. Note 

that, although LRP and ERN were isolated in the same task, the spectra were obtained at 

different electrode sites and therefore differ slightly. (Middle) Probability histograms of the 

noise levels during the baseline period for the averaged ERP parent waveforms and 

difference waveforms. Bins are 0.4 μV in width, and the x-axis indicates the midpoint value 
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for each bin. (Right) Probability histograms of the noise levels during the measurement time 

window of the plus-minus average parent waveforms and difference waveforms. Bins are 0.4 

μV in width, and the x-axis indicates the midpoint value for each bin.
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Figure 4. 
Noise level at each time point for each component at the electrode site where that 

component was maximal, measured as the standard deviation across participants of the plus-

minus ERP difference waveforms at a given time point. Time zero represents the time-

locking point for each ERP component (i.e., the onset of the stimulus for the N170, MMN, 

N2pc, N400, and P3, and the buttonpress for the LRP and ERN).
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Table 1

Sample size (after excluding subjects with too many artifacts), electrode site, time-locking event, epoch 

window, and baseline period for each component

ERP Component Sample Size (N) Electrode Site Time-Locking Event Epoch Window (ms) Baseline Period (ms)

N170 37 PO8 Stimulus-locked −200 to 800 −200 to 0

MMN 39 FCz Stimulus-locked −200 to 800 −200 to 0

N2pc 35 PO7/PO8 Stimulus-locked −200 to 800 −200 to 0

N400 39 CPz Stimulus-locked −200 to 800 −200 to 0

P3 34 Pz Stimulus-locked −200 to 800 −200 to 0

LRP 37 C3/C4 Response-locked −800 to 200 −800 to −600

ERN 36 FCz Response-locked −600 to 400 −400 to −200
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Table 2

Time windows of statistically significant differences (based on the mass univariate approach) and 

recommended measurement windows, relative to stimulus onset (for N170, MMN, N2pc, N400, and P3) or 

response onset (for LRP and ERN).

ERP Component Statistically Significant Time Windows (ms) Recommended Measurement Windows (ms)

N170 105.47 to 148.44 110 to 150

MMN 113.28 to 230.47 125 to 225

N2pc 191.41 to 292.97 200 to 275

N400 183.59 to 750.00 300 to 500

P3 253.91 to 664.06 300 to 600

LRP −125.00 to 15.63 −100 to 0

ERN −27.34 to 109.38 0 to 100
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Table 3

ERP difference waveform measures, averaged across participants (standard deviations in parentheses), along 

with effect size (Cohen’s dz) of the difference in amplitude from 0 μV.

ERP Component
Mean Amplitude

(μV) Peak Amplitude (μV) Peak Latency (ms) 50% Area Latency (ms) Onset Latency (ms)

N170
−3.37 (2.71)

dz = 1.24
−5.52 (3.32)

dz = 1.66 131.44 (12.56) 131.84 (8.58) 95.76 (29.05)

MMN
−1.86 (1.22)

dz = 1.52
−3.46 (1.71)

dz = 2.02 187.60 (19.13) 185.20 (14.44) 146.94 (30.33)

N2pc
−1.14 (1.15)

dz = 1.00
−1.86 (1.60)

dz = 1.16 253.24 (18.51) 246.43 (8.81) 213.63 (30.85)

N400
−7.61 (3.27)

dz = 2.33
−11.04 (4.65)

dz = 2.38 370.09 (49.43) 387.72 (17.85) 284.86 (44.92)

P3
6.29 (3.39)
dz = 1.86

10.15 (4.53)
dz = 2.24 408.89 (70.48) 436.47 (32.77) 327.44 (61.98)

LRP
−2.40 (0.94)

dz = 2.56
−3.41 (1.15)

dz = 2.97 −49.94 (15.66) −49.09 (9.72) −96.50 (19.85)

ERN
−9.26 (5.90)

dz = 1.57
−13.86 (7.01)

dz = 1.98 54.47 (12.63) 54.36 (9.99) 2.50 (27.53)
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Table 4

Average standard deviation (SD) of the voltage in the baseline time window of the ERP waveform and in the 

measurement time window of the plus-minus averages

Baseline Time Window Measurement Time Window

ERP Component Trial Type
Unfiltered SD 

Amplitude (μV)
Filtered SD 

Amplitude (μV)
Unfiltered SD 

Amplitude (μV)
Filtered SD 

Amplitude (μV)

N170

Faces 0.937 0.824 0.595 0.411

Cars 0.799 0.677 0.489 0.306

Faces-Cars 1.214 1.044 0.833 0.590

MMN

Deviants 0.811 0.743 0.555 0.452

Standards 0.664 0.639 0.315 0.254

Deviants-Standards 0.684 0.577 0.616 0.496

N2pc

Contralateral 0.500 0.417 0.316 0.200

Ipsilateral 0.542 0.449 0.304 0.191

Contralateral-Ipsilateral 0.559 0.446 0.410 0.281

N400

Unrelated 1.505 1.394 0.945 0.811

Related 1.423 1.311 1.051 0.912

Unrelated-Related 1.662 1.468 1.414 1.221

P3

Rare 1.570 1.415 1.383 1.238

Frequent 0.823 0.750 0.689 0.622

Rare-Frequent 1.566 1.378 1.516 1.362

LRP

Contralateral 0.507 0.420 0.378 0.272

Ipsilateral 0.524 0.439 0.387 0.279

Contralateral-Ipsilateral 0.388 0.291 0.324 0.212

ERN

Incorrect 1.848 1.625 2.250 2.055

Correct 0.918 0.884 0.375 0.290

Incorrect-Correct 1.909 1.662 2.264 2.050
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