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Abstract

Top-down mass spectrometry (MS) is a powerful tool for identification and comprehensive 

characterization of proteoforms arising from alternative splicing, sequence variation, and post-

translational modifications. However, the complex dataset generated from top-down MS 

experiments requires multiple sequential data processing steps to successfully interpret the data for 

identifying and characterizing proteoforms. One critical step is the deconvolution of the complex 

isotopic distribution that arises from naturally occurring isotopes. Multiple algorithms are 

currently available to deconvolute top-down mass spectra, resulting in different deconvoluted peak 

lists with varied accuracy compared to true positive annotations. In this study, we have designed a 

machine learning strategy that can process and combine the peak lists from different deconvolution 

results. By optimizing clustering results, deconvolution results from THRASH, TopFD, MS-
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Deconv, and SNAP algorithms were combined into consensus peak lists at various thresholds 

using either a simple voting ensemble method or a random forest machine learning algorithm. For 

the random forest algorithm which had better predictive performance, the consensus peak lists on 

average could achieve a recall value (true positive rate) of 0.60 and a precision value (positive 

predictive value) of 0.78. It outperforms the single best algorithm which only achieved a recall 

value of 0.47, and a precision value of 0.58. This machine learning strategy enhanced the accuracy 

and confidence in protein identification during database search by accelerating detection of true 

positive peaks while filtering out false positive peaks. Thus, this method show promise in 

enhancing proteoform identification and characterization for high-throughput data analysis in top-

down proteomics.
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Introduction

Top-down mass spectrometry (MS) is a powerful tool for identification and comprehensive 

characterization of proteoforms, including alternative splicing, sequence variations, and 

post-translational modifications.1–5 One of the unique advantages of top-down MS is the 

ability to analyze intact proteins without proteolytic cleavage to obtain the mass spectra of 

various proteoforms simultaneously and subsequently fragment the proteoform to locate the 

site(s) of modification(s).6–7 A major challenge in top-down proteomics data analysis is the 

complexity of high-resolution top-down mass spectra.

The analysis of high-resolution top-down MS data requires several sequential processing 

steps, such as centroiding, deconvolution, proteoform identification, and quantification. 

Currently, many software tools have been developed to perform each step of the analysis 

process.8 Deconvolution is a critical step early in the analysis, as the results can significantly 

affect the performance of the downstream methods. In addition to the first high-resolution 

deconvolution software THRASH,9 other algorithms such as MS-Deconv,10 TopFD,11 

pParseTD,12 and UniDec13 are also available for deconvolution of top-down MS data. 

Furthermore, instrument vendors also provide deconvolution algorithms such as SNAP 
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algorithm14 by Bruker Corporation and Xtract algorithm by Thermo Scientific within their 

software products.

Due to the diversity of deconvolution algorithms provided to the scientific community, one 

potential challenge an analyst may face is the non-standardization of their parameters. 

Consequently, the resulting peak list from different deconvolution algorithms cannot be 

directly compared. Moreover, different deconvolution algorithms performed spectral 

deconvolution using diverse computational methods, resulting in different peak list output. 

For instance, THRASH9 is a subtractive peak finding routine that locates possible isotopic 

clusters in the spectrum by using least-squares fits to a theoretically derived isotopic 

abundance distributions. MS-Deconv10 is a combinatorial algorithm that uses graph theory 

to find the heaviest path in a largest set of potential candidate envelopes. TopFD11 is a 

successor to MS-Deconv which converts isotopomer envelopes to monoisotopic neutral 

masses after grouping top-down spectral peaks into isotopomer envelopes. The SNAP 

algorithm fits a function of superimposed bell curves to the peaks in order to identify the 

isotopic distributions (details regarding several common deconvolution algorithms were 

summarized in Table S1). Using a human histone dataset, Sun et al. showed that the peak list 

outputs among Xtract, MS-Deconv, and pParseTD had a maximum difference of 25% and 

15% in recalled peak rate and recalled intensity rate, respectively.12 Last but not least, 

deconvolution algorithms may identify false positive peaks. The deconvolution results would 

need to be manually validated or corrected using software such as MASH Suite Pro,15 which 

can be time consuming. As a consequence of all these challenges, there is a need for the 

standardization of different deconvolution algorithms as well as a method that analyzes and 

combines results from available deconvolution algorithms.

In the machine learning community, ensemble methods (e.g. simple voting) and machine 

learning algorithms (e.g. random forest algorithm) have been developed to enhance the 

predictions of multiple distinct algorithms in order to improve the overall predictive 

performance.16–17 These ensemble methods and machine learning algorithms have also been 

employed in MS applications to improve the performance of disease diagnosis,18 to improve 

target protein identification,19 and to enhance de novo peptide sequence.20 In this study, by 

treating each deconvolution algorithm as a distinct algorithm, we propose that these 

ensemble methods and machine learning algorithms could be applied to combine different 

deconvolution results and obtain consensus peak lists. The resulting consensus peak lists 

should have higher accuracy, which will improve proteoform identification and mitigate 

manual validation efforts.

Herein, we report a novel use of machine learning strategy to combine the results from 

multiple deconvolution algorithms employed on high-resolution top-down MS to obtain 

consensus peak lists using an ensemble method and a machine learning algorithm. We 

compared and contrasted the predictive performance of our machine learning strategy 

against each deconvolution algorithm separately using a set of targeted MS data that has 

been annotated by an expert to obtain a “true positive” list and showed improved 

performance over each individual algorithm. We demonstrated that adding more 

deconvolution results, even results from the same algorithm with different parameters, could 

further improve predictive performance. Finally, we showed the utility of the consensus peak 

McIlwain et al. Page 3

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2021 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



list generated by our machine learning strategy could improve downstream proteoform 

identification using a software tool such as MS-Align+. This machine learning strategy will 

be integrated into our developing software, MASH Explorer,21 a comprehensive and user-

friendly tool for analyzing high-resolution top-down MS data.

Experimental Section

Mass Spectrometry Data Acquisition

The collision-induced dissociation (CID) and electron-capture dissociation (ECD) tandem 

MS (MS/MS) spectra from 15 sarcomeric protein proteoforms were published previously.22 

The protein identification, accession number, and post-translational modifications were 

provided in Table S2. For data acquisition, the MS/MS data were collected on a 12 Tesla 

solariX Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (Bruker 

Daltonics, Bremen, Germany) equipped with an automated chip-based nano-electrospray 

ionization source (Triversa NanoMate, Advion Bioscience, Ithaca, NY, USA). Details 

regarding sample collection, protein extraction, sample handling, experimental workflow, 

and instrument parameters are provided in the Supporting Information. The mass 

spectrometry proteomics raw data and annotations have been deposited to the 

ProteomeXchange Consortium via the PRIDE23 partner repository with the dataset identifier 

PXD018043.

Peak Extraction and Expert Annotation

Deconvoluted peaks were identified by four different algorithms, including THRASH,9 MS-

Deconv,10 TopFD,11 and the SNAP algorithm from Bruker DataAnalysis14, which were 

available to process Bruker dataset. The peak extraction using the MASH Explorer software 

was executed with THRASH algorithm using a fit parameter of 60%, 70%, 80%, and 90%. 

The MS-Deconv algorithm was run using default parameters with a maximum charge of 30, 

maximum mass of 50,000, m/z error tolerance of 0.02, and an S/N ratio of 3. The TopFD 

deconvolution was employed using default parameters with a maximum charge of 30, MS1 

S/N ratio of 3.0, precursor window size (m/z) of 3.0, maximum mass (Da) of 100,000, MS2 

S/N ratio of 1.0, and an m/z error of 0.02. Using DataAnalysis available for the Bruker 

dataset, the deconvoluted ion list was obtained using the SNAP algorithm with a quality 

factor threshold of 0.1, S/N threshold of 2, relative intensity threshold (base peak) of 0.01%, 

absolute intensity threshold of 0, and a maximum charge state of 50. All deconvolution 

results were output into MSAlign format, which provides information of the monoisotopic 

distributions including monoisotopic mass, intensity, and charge. While this manuscript 

focused on data acquired from Bruker instrument, this method is applicable for datasets 

from other vendors if the peak information was converted to MSAlign format.

Coding Environment

Python (2.7.10) was used to generate the clusters, and R (3.6.0) was used to perform the 

machine learning analysis and to automate the MS-Align+ searches.
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Machine Learning Strategy for Combining Multiple Deconvolution Results

A general overview of the data analysis process was provided in Figure 1. Each MSAlign 

file was parsed by a Python script, and the results were concatenated into one peak list 

which records the monoisotopic mass, charge, and source algorithm. Peaks having the same 

charge and similar monoisotopic mass were clustered together as the same peak. The 

clusters were then filtered using simple voting or machine learning methods, and the results 

were output into a consensus MSAlign file. Each part of the process is described in more 

detail below.

Hierarchical Clustering -—The algorithm merges the full list of deconvoluted peaks into 

clusters that contain the same charge and are similar in monoisotopic mass. Inspired by 

Robert Tibshirani’s work on ‘peak probability contrasts’,24 the method uses hierarchical 

clustering,25 using the difference between pairs of peaks from the log10 transformed 

monoisotopic mass as the distance metric. Transforming the monoisotopic mass using log 

removes the linear dependence of the error with mass, so a constant cutoff can be used to 

determine the number of clusters. A further constraint was added to ensure the charges are 

the same between peaks with the proposed clusters. Using Equation 1, a cutoff was 

determined using a user-defined threshold ppm error within the cluster, which ensured that 

the distances between the largest and smallest mass of the peaks within the cluster were not 

larger than the +/− ppm threshold. The average of the monoisotopic mass was then used as 

the center of the cluster. The clustering algorithms ran on each spectrum separately.

Cutoff ppm = log10 2.0 ppm
106 + 1 Equation 1

Expert Annotation and Assignment to Clusters -—The expert annotations were 

obtained and verified manually using the MASH software with the embedded enhanced-

THRASH algorithm at 60% fit setting.15 The peaks were manually validated by adjusting 

the most abundant m/z and charge state of each monoisotopic distribution. In this study, we 

considered expert annotated peaks as true positive peaks.

The identified clusters were annotated using the expert annotations by finding clusters that 

were of the same charge and within a +/−X ppm window of the expert annotated 

monoisotopic mass (where X is set to the same value as used in the clustering). In cases 

where an expert peak could be assigned to multiple clusters, we select the pair with the 

smallest distance between the monoisotopic mass with expert assignment that matched to 

multiple possible clusters as the true match. Clusters with assigned expert annotation were 

called expert matched peaks, and the unassigned clusters were labelled as unmatched expert 

annotated peaks.

Machine Learning Analysis -—The machine learning analysis was performed using the 

R language. For each cluster, a feature vector was generated using the features described in 

Table 1. We set up a machine learning task to separate expert annotated matched clusters 

from unmatched clusters. Precision-recall curves were estimated using leave-one-spectrum 

out cross-validation, where each fold estimates the probabilities of a true annotation for each 
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of the clusters found in one spectrum using a machine learning model built from the other 

spectra feature vectors. Recall and precision are defined in Equation 2 and 3,

Recall = TruePositive
TruePositive+FalseNegative Equation 2

Precision = TruePositive
TruePositive+FalsePositive Equation 3

where a true positive is a cluster peak with an expert annotation, a false negative is an 

unmatched expert annotation, and a false positive is a cluster peak without an expert 

annotation. Recall measures the percentage of expert annotations found by the algorithm, 

whereas precision measures the percentage of cluster peak calls that have true annotations. 

We compared and contrasted the predictive performance using the random forest 

(randomForest R package)26 model using ntree (the number of trees used in the forest) of 

100 and the remaining parameters set to their defaults.

To compare the individual algorithms on the precision-recall curves, all of the true positives, 

true negatives (cluster peaks with no expert annotations that algorithms did not call as 

annotations), false positives, and false negatives results were aggregated before calculating 

precision and recall values. Deconvolution methods were also compared by calculating the 

F1 score, a metric that balances between precision and recall as defined in Equation 4. For 

random forest, we selected the probability threshold that maximizes the F1 score within the 

training dataset to make the final call on the associated test set.

F1 = 2 * Precision * Recall
Precision+Recall Equation 4

Due to the high rate of false positives within the datasets, we used precision-recall curves to 

visualize the accuracy of the methods. Typically, precision-recall curves have a point for 

recall value of 1 and precision value of 0, which indicates a machine learning algorithm that 

calls all clusters true peaks. However, if we count the false negatives incurred by the 

upstream clustering method, the curve will give a lower maximum achievable recall result. A 

superior performing classification algorithm would have a point (or curve) that is higher in 

precision and recall (i.e. more top-right) than the contrasted algorithm(s). For example, the 

point for one deconvolution algorithm which gives a recall of 0.50 and precision of 0.40 

outperformed the point for the second deconvolution algorithm that gives a recall of 0.60 and 

precision of 0.50.

Cluster Filtering and Consensus Deconvolution Results -—To reduce false 

positive clusters, we explored two avenues of filtering. One was a simple voting heuristic 

that thresholds clusters based upon the number of deconvolution algorithms that called the 

peaks within the cluster. Another route was to apply the previously described machine 

learning models to assign a probability of a true expert assignment to each cluster. The 

clusters were filtered via thresholding upon this probability. Consensus results were output 

as an MSAlign file, which were processed using database search.
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Database Searching -—All searches were performed using MS-Align+ v0.7.1.714327 

with a fasta database file derived from a human database (Uniprot-Swissprot database, 

released December 2019, containing 20,367 protein sequences) for βTpm, a cynomolgus 

monkey database (Uniprot-Swissprot database, released January 2020, containing 77,341 

protein sequences) for fsTnT5, a rat database (Uniprot-Swissprot database, release January 

2020, containing 8,085 protein sequences) for αTpm, and a rhesus macaque database 

(Uniprot-Swissprot database, released January 2020, containing 78,285 protein sequences) 

for the rest of the proteins. We compared and contrasted the search results of MS-Align+ 

using the MSAlign file from each deconvolution algorithm, the expert annotated peaks, the 

simple voting method, and the random forest machine learning method.

Results and Discussion

Setting clustering ppm cutoff and clustering choices

One of the important parameters to determine for the machine learning strategy is the choice 

of the ppm cutoff for calling clusters. To determine the optimal cutoff for the dataset 

presented in this work, we evaluated four parameters: the number of clusters, the percent of 

peaks assigned, the cross-validated accuracy from the random forest model (the percentage 

of correct annotations found over the whole dataset), and the random forest’s F1 score (a 

measure of accuracy that is the harmonic mean of precision and recall), at multiple different 

cutoff levels (1 ppm, 2 ppm, 5 ppm, 10 ppm, 20 ppm, 50 ppm, 100 ppm, and 200 ppm). The 

results in Figure 2 demonstrated that 10 ppm was optimal for the clustering cutoff because 

1) for values greater than 10 ppm clustering cutoff, there was a noticeable drop in the 

number of clusters (Figure 2a), 2) the percent of recalled peaks was not significantly less 

than that from higher ppm cutoff, while greater than that from lower ppm cutoff (Figure 2b), 

and 3) the accuracy and the overall accuracy measured by F1 score did not differ 

significantly from the optimal values in both measurements (Figure 2c and 2d).

Many other clustering algorithms exist in the literature, including different linkage 

algorithms for hierarchical clustering.28 In this work, we used complete hierarchical 

clustering, which gives tight clusters (min/max rather than average). This is desirable for 

merging peaks by monoisotopic mass.

Expert annotation accuracy performance with 4-vote ensemble

After determining the optimal hierarchical clustering cutoff, the peak clusters were analyzed 

by ensemble/machine learning methods and individual deconvolution algorithms for 

comparison. In this study, we used a simple voting ensemble method which is based upon 

the number of unique deconvolution algorithms that called a peak within that cluster. 

Additionally, the random forest machine learning algorithm, which is itself an ensemble of 

decision trees, was utilized.26 The random forest algorithm was shown to be able to handle 

large datasets and exhibit excellent performance in the classification tasks.29 There are 

several other classification methods available, such as support vector machines30 and deep 

learning models.31 However, these algorithms may be difficult to tune, and deep machine 

learning requires numerous examples in order to learn an adequate network structure for 

optimizing predictive performance.
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The aggregate predictive performance among individual deconvolution algorithms, the 

simple voting method, and the random forest machine learning algorithm are summarized in 

Figure 3. A majority vote (2 or more votes, Point “2 Votes”) appeared to outperform any one 

deconvolution method used by itself. Compared to SNAP (Point “SNAP”) and TopFD (Point 

“TopFD”) algorithms, a majority vote (2 or more votes) had better recall and precision, 

respectively. The Venn diagram between a majority vote (2 or more votes) and its overlap 

with expert annotation was shown in Figure S1. Although THRASH of 60% fit identified a 

total of 50381 peaks, 41204 of them (82%) were false positive because they were not those 

identified by the expert annotations. Filtering the false positive accounted for the improved 

accuracy in the majority vote (2 or more votes). On the other hand, this majority missed 

7181 peaks from the THRASH of 60% fit, out of 12264 peaks (59%) which were expert 

annotated peaks, which contributes to the low recall values. To provide reference for the 

random forest method, we calculated the aggregate precision and recall score using a 

probability threshold cutoff that optimizes the F1 score on the training spectra and applied it 

to the corresponding test set. The aggregated precision and recall value from the random 

forest method shown as a green point in Figure 3 is superior to most of the methods.

Furthermore, the results suggest that the random forest algorithm could achieve superior 

performance for identifying clusters which are true expert annotations. To determine average 

metrics (precision and recall) for random forest’s performance, the probability threshold 

cutoff that optimizes the F1 score was determined in each training fold feature set. The 

probability threshold was then applied to the associated test fold feature, and the resulting 

performance metrics were calculated. The final precision and recall were determined by 

averaging the results across each testing fold. Using this process, the random forest model 

achieved an average recall of 0.49, a precision score of 0.69, and an F1 score of 0.55. In 

comparison, THRASH of 60% fit which was the best algorithm by F1 score, achieved a 

recall of 0.76 and precision of 0.18, with an F1 score of 0.30. Additional metrics including 

median, 1st and 3rd quartiles, minimum and maximum of the F1 score across the different 

deconvolution methods were compared, and the random forest model outperformed other 

algorithms (Figure S2).

A useful aspect of the random forest model is the ability to extract feature importance 

values. One of the metrics that the random forest can report for each feature is the Mean 

Decrease Accuracy, which is an estimate of the reduction in the accuracy performance of the 

machine learning algorithm upon permuting the values of the current feature. The features 

ranked at the top of the plot reduce the accuracy of the model most significantly when 

permuted and these features are considered to be the most important ones. In Figure S3, 

cluster features such as the average mass of the cluster (AvgMass), the cluster charge 

(Charge), and the average intensity (AvgIntensity) had the most significant impact on the 

model, indicating that the random forest model was learning some of the spectral features 

such as charge and mass ranges that contribute to a true positive cluster. Features describing 

characteristics of the spectrum (i.e. activation type, precursor mass, and precursor charge) 

had a greater influence in the performance of the random forest classifier over the simple 

voting model. Using the vote of each deconvolution algorithm in the random forest model 

also provides a way to learn the confidence in each of algorithms to determine an optimal 

score (THRASH 60% fit, MS-Deconv, TopFD, and SNAP). While these features did not 
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rank high in the list, the THRASH 60% fit feature seemed to have the most effect on the 

model performance over the other deconvolution algorithms. This is possibly due to the 

number of proposed peaks that the THRASH 60% fit finds in conjunction with the other 

features (spectrum characteristics and cluster features) to find the best scoring clusters 

within all of the false positive peaks (clusters with an expert annotation).

Backward selection, which iteratively removes features in model performance optimization, 

is an alternative route to determine feature importance. Performing a full backward selection 

process with leave-one-spectrum out cross-validation, and optimizing on the median F1 

score (Figure S4), we found that Charge, Precursor Charge, THRASH 60% Fit, AvgMass, 

and SumIntensity (five of the features shown in Table 1) can achieve the same performance 

as a model built from all of the features. Omitting one of these five features showed a 

significant decrease in the median F1 score. Moreover, features such as AvgIntensity, Votes, 

and SumIntensity are correlated by definition. Consequently, removal of two of these 

features would be sufficient for the discriminatory models.

Expert annotation accuracy performance with 7-vote ensemble

To test the hypothesis that more orthogonal deconvolution algorithms can further improve 

results, we generated the results using THRASH with different fit score parameters as 

separate deconvolution algorithms (Figure 4). Comparing the peak call results from four 

THRASH algorithms with different fit scores, we noticed that no result directly subsumed 

the peak calls of any of the others, which indicates some degrees of “orthogonality” among 

the different THRASH results (Figure 4a). The discordance of results from THRASH was 

not surprising since THRASH is heuristically finding isotope envelopes. That is, isotopic 

distributions found in the beginning of the THRASH algorithm can affect the peaks found 

later during the algorithm process. With the additional deconvolution algorithm results 

added to the method, our results showed an increase in the number of assignments of 

clusters to annotated expert peaks and an increase in the filtering performance (Figures 4b 

and 4c). Additionally, other metrics using the 7-vote ensemble including the number of 

clusters, F1 score, and the number of recalled peaks were also improved compared to those 

using the 4-vote ensemble (Figure S5). In comparison with the average performance as in 

the 4-vote ensemble, the random forest model from the 7-vote ensemble achieves an average 

recall or true positive rate of 0.60 and a precision score of 0.78, and an F1 score of 0.67. 

After calculating the recall and precision for the individual algorithms, the best algorithm 

(by F1 score) was found to be THRASH 90% fit, which achieved a recall of 0.47 and 

precision of 0.58, with an F1 score of 0.52. Since there was an increase in the number of 

unassigned clusters (potentially false positives) in the 7-vote ensemble (56363) vs 4-vote 

ensemble (45117), it suggests that the 7-vote method learned to filter out false positives 

more accurately than the 4-vote system (Table S2 and S3).

In summary, adding more deconvolution algorithms has the potential of increasing the 

identification of peaks potentially missed by other deconvolution algorithms and improving 

the classification performance to filter out more false positives. Two additional 

deconvolution algorithms including pParseTD and UniDec which are based on online 

support vector machine algorithm and a Bayesian algorithm, respectively, will be ideal for 

McIlwain et al. Page 9

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2021 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



continual development of this machine learning strategy due to the differences in algorithmic 

approaches compared to the four deconvolution algorithms used in this study. However, 

pParseTD currently only processes Thermo dataset, and the output peak list requires 

additional processing to assign charges for the isotopic distribution to locate the 

deconvoluted peaks in the spectrum. UniDec is optimized for native mass spectrometry 

where proteins and their fragment ions typically carry lower charges relative to mass 

compared to those in denatured conditions. Additional efforts are needed to incorporate 

these two algorithms into the machine learning strategy described in this study.

Unmatched clusters and missed expert annotations

When investigating the missed expert annotations (false negatives) and the unassigned 

clusters (false positives) from the machine learning strategy, two key observations surfaced. 

First, the unassigned clusters might actually be real isotopic distributions. Second, the 

corrected isotopic distributions may introduce a false positive and false negative calls into 

the analysis.

There are cases where the unassigned clusters may actually be real isotopic distributions that 

the manual annotator could have missed due to low abundance. These low abundance 

isotopic distributions might also suffer from imperfect distribution due to the noise. Figure 

5a gives two examples of low abundance isotopic distributions that could be real 

annotations. This indicates that the method would be useful in proposing other annotations 

within data.

During manual annotation and correction, there are many instances where the annotator has 

to correct the charge and/or peak of the most abundant mass. Figure 5b provides an example 

of an annotation that has been corrected by an expert annotator. Annotations that have been 

corrected in this way may introduce both a false positive and a false negative into the method 

analysis. The false positive would arise from the original peak without the correction from 

the deconvolution method, and the false negative would come from the corrected peak in the 

expert annotations.

The ability to shift the charges and most abundant mass is an area of continual research in 

this project, in order to identify more expert annotations without incurring more false 

positives. For example, generating the expert annotated results for the αTpm protein with 

ECD activation required the expert annotator to remove 52% (840 of 1631 peaks), adjust the 

charge state for 7% (109 of 1631 peaks), and shift the monoisotopic mass for 2% (38 of 

1631 peaks) from the deconvoluted peaks found by THRASH 60% fit. The machine learning 

strategy did succeed in reducing the false positive rate but making additional modifications 

to identify and fix the annotations would further reduce the time spent on manual 

verification and peak correction.

Effects of improved deconvoluted peaks on database searching results

To investigate whether using the machine learning strategy can help with protein 

identification, we compared the MS-Align+ database search results from peak lists 

generated by different deconvolution algorithms and machine learning methods. Using the 

ECD spectrum of the αTpm proteoform, we evaluated and plotted the database search 
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results using the deconvoluted results from expert annotation, TopFD, simple voting method, 

and random forest model (Figure 6 and Table S2). The E-value metric was utilized to 

evaluate the confidence of protein identification, with a lower E-value indicating high 

identification confidence. In the figure, the −log10 of the E-value was used for visualization 

instead in the y-axis, as a greater −log10(E-value) suggests higher protein identification 

confidence. The simple voting results were plotted by thresholding upon the number of 

votes. In the random forest model, the plot was generated at different thresholds of cross-

validated probability of a correct expert annotation. For the 4-vote ensemble, only a small 

fraction of probability from simple voting and random forest model could achieve higher 

confidence in protein identification compared to that from expert annotations (Figure 6a). In 

comparison, the confidence in protein identification from the 7-vote ensemble in most 

majority votes from the simple voting model and most probability thresholds from the 

random forest model exceeded the −log10(E-value) score obtained from the expert 

annotations (Figure 6b). The improvement in protein identification confidence from the 4-

vote ensemble to the 7-vote ensemble was also reflective of the observed increase in 

accuracy (in both limiting false positives while finding more peak clusters that match with 

an expert annotated peak, Figure 4c) when using a larger ensemble. Other proteoforms such 

as βTpm with CID activation and other proteins showed a similar trend in the analysis 

(Figure S6 and Table S2), except for a few special cases. These results indicate that some of 

the lower intensity isotopic distributions which were identified using the machine learning 

strategy could help improve the identification confidence values.

The amount of true positive and false positive peaks that constitutes the consensus peak list 

has an impact on the database search when protein isoforms have a long homologous 

sequence. While evaluating the database search results for ssTnT ECD spectrum using 

generated peak lists, several isoforms were identified including A0A5K1V8N4 (Troponin T, 

slow skeletal muscle isoform b, correct identification), H9FC02 (Troponin T, slow skeletal 

muscle isoform c), A0A1D5RIQ3 (Troponin T1, slow skeletal type), and F7HR11 (Troponin 

T1, slow skeletal type) (Table S6). Using a sequence alignment tool, it was observed that 

only the N-terminal sequence has variations among these four isoforms (Figure S7). Ideally, 

thresholding on probability should keep the true expert annotations while reducing the 

number of false positives. A lower threshold would also result in the inclusion of more false 

positive annotations. In this particular case, simple voting method at low majority votes (less 

than 3 votes) yielded incorrect identification if the database search algorithm is given a set of 

peaks with many false positives. On the contrary, at higher thresholds for both the random 

forest algorithm and simple voting method, omission of true positives led to either 

diminishing E-value of correct identification, meaning a less confident database search 

result, or an incorrect identification.

For the spectrum for ssTnC protein with ECD activation, none of the single algorithms, 

except for THRASH of 80% fit, were able to identify the target sequence (Table S2 and S4). 

For the simple voting method, a majority vote (3 or more votes) could correctly find the 

protein. This result indicates that utilizing a consensus peak list could help identify the 

proteoform in spectra, even when most of the deconvolution algorithms failed to find the 

correct identification. If at least one algorithm can find the correct identification, 

theoretically the ensemble should also be able find the correct identification. Also, if there 
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are several distinct false positive peaks (or no expert annotated peaks) from each algorithm, 

using a majority vote should help reduce the false positives (i.e. reduce the noise from each 

algorithm) to achieve a better identification rate.

Based on the database search results, both simple voting ensemble method and random 

forest machine learning algorithm were found to enhance both the accuracy and confidence 

in proteoform identification. For the simple voting ensemble method which only utilized 

clustering and simple voting, a majority vote (3 votes in the 7-vote ensemble) yielded the 

best results. In the case of random forest algorithm which required clustering and training a 

machine learning model, a probability threshold greater than 0.3 to 0.4 provided the optimal 

results.

Liquid chromatography-MS/MS data analysis

The results here are derived from targeted MS/MS data, and the machine learning strategy 

holds potential in improving the number of confident identifications with liquid 

chromatography (LC)-MS/MS runs. Further investigation needs to be done to determine 

whether models built using the expert annotations from MS/MS runs will improve the 

identification rate on a separate LC-MS/MS run, or if other annotations are needed in order 

to improve performance. Annotating deconvoluted peaks from spectra with confident protein 

identification would be a good starting point. A simple voting model would be more easily 

applicable for the LC-MS/MS experiment, as other machine learning algorithms may require 

enough annotated top-down LC-MS/MS spectra in order to develop models for performance 

optimization.

Integration into MASH Explorer

With the success of this project, the next step is to integrate the developed machine learning 

strategy as part of MASH Explorer, which provides several options for deconvolution of top-

down data. Instead of deciding which deconvolution algorithm to apply, the user could run 

all available algorithms and automatically combine the results into a comprehensive list.

Conclusion

In summary, we have designed and demonstrated a machine learning strategy that allows for 

the combination of deconvolution results from multiple algorithms into an accurate 

consensus peak list for downstream processing. With the detection of more real isotopic 

distributions while filtering out false positives, the process showed promise in reducing the 

time spent manually validating and correcting the ion annotations in top-down MS/MS 

protein identification. In both simple voting ensemble method and random forest machine 

learning algorithm, the resulting consensus peak lists could improve on the accuracy and 

confidence in proteoform identification compared to a single deconvolution algorithm. This 

machine learning strategy shows promise for high-throughput protein identification and 

characterization in LC-MS/MS dataset for top-down proteomics. Integrating the tool into 

MASH Explorer will enable users to find more true positive deconvoluted peaks and 

consequently enhance the data analysis of high-resolution top-down MS dataset.
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Figure 1. Flowchart for the machine learning strategy.
This figure shows the steps taken to combine deconvolution results into a consensus peak list 

using either the simple voting method or using a machine learning algorithm.
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Figure 2. Cluster cutoff performance.
Each plot is a boxplot that shows the spread of the metric measured from the 30 spectra 

versus different ppm cutoffs used in the hierarchical clustering step. (a) Number of clusters, 

(b) percent of recalled peaks versus ppm cutoff, (c) random forest accuracy versus ppm 

cutoff, and (d) random forest F1 score versus ppm cutoff. The black squares in the figure 

represent outliers in the dataset.

McIlwain et al. Page 16

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2021 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Precision-recall curves and points of the expert annotation prediction task.
Plot displays the precision and recall performance of the deconvolution methods by 

themselves (red points), the simple voting (black points), and random forest (blue line). The 

green point represents random forest algorithm with F1 score optimized.
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Figure 4. Performance comparison between 4-vote ensemble and 7-vote ensemble.
(a) Venn diagram of peaks found using THRASH with the fit parameter set at 60%, 70%, 

80%, or 90%. (b) Boxplot of random forest accuracy between the 4-vote ensemble (red) and 

7-vote ensemble (blue) with different cluster cutoffs. At all cluster cutoffs value, 7-vote 

ensemble had better performance than 4-vote ensemble. (c) Precision-recall curve using 4-

vote ensemble (blue, THRASH 60%) and 7-vote ensemble (red, THRASH 60–90%). 7-vote 

ensemble had improved performance compared to 4-vote ensemble. The black squares in the 

figure represent outliers in the dataset.

McIlwain et al. Page 18

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2021 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Example annotation of isotopic distributions.
(a) Low abundance isotopic distribution that could be found by consensus peak list. These 

peaks were only found by the machine learning strategy. (b) Example isotopic distribution 

that has been manually corrected by shift the charge and monoisotopic peak.
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Figure 6. MS-Align+ database search results for αTpm.
(a) 4-vote ensemble results. (b) 7-vote ensemble results. Each plot has the −log10(E-Value) 

for TopFD (red line), expert annotation (purple line), simple voting thresholding 

(#votes/max votes, green points/lines), and random forest probability thresholding (blue 

line).
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Table 1 -

Description of Features used in Machine Learning

Feature Name Data Type Description

Activation ECD/CID Activation used to generate spectra

Charge Integer Charge of the peaks within the cluster

Votes Integer Number of deconvolution algorithms that called a peak within that cluster

SumIntensity Numeric Sum of the intensity of peaks in the cluster

AverageIntensity Numeric Average intensity of peaks in the cluster

MSDeconv Boolean MS-Deconv called this peak

TopFD Boolean TopFD called this peak

THRASH60 Boolean THRASH with 60% Fit called this peak

THRASH70 Boolean THRASH with 70% Fit called this peak

THRASH80 Boolean THRASH with 80% Fit called this peak

THRASH90 Boolean THRASH with 90% Fit called this peak

SNAP Boolean SNAP called this peak

PrecursorCharge Integer Charge of the precursor

AvgMass Numeric Average Mass of the peaks within the cluster

StdDev Numeric Standard Deviation of the mass of the peaks within the cluster

PrecursorMass Numeric Monoisotopic mass of the precursor

PrecursorMZ Numeric m/z of the precursor
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