Table 4.
Technique and outcome class | Precision | Recall | F-measure | AUCa | |
Temporal MMCBRb | |||||
|
AHEc | 0.20 | 0.17 | 0.18 | 0.50 |
|
HRSd | 0.09 | 0.10 | 0.10 | 0.54 |
|
Neither | 0.97 | 0.96 | 0.96 | 0.54 |
Time fusion CNNe | |||||
|
AHE | 0.12 | 0.33 | 0.18 | 0.65 |
|
HRS | 0.06 | 0.38 | 0.10 | 0.67 |
|
Neither | 0.97 | 0.81 | 0.88 | 0.63 |
T-LSTMf | |||||
|
AHE | 0.09 | 0.33 | 0.14 | 0.65 |
|
HRS | 0.05 | 0.27 | 0.09 | 0.68 |
|
Neither | 0.97 | 0.84 | 0.90 | 0.63 |
RNN-LRg | |||||
|
AHE | 0.21 | 0.42 | 0.28 | 0.82 |
|
HRS | 0.08 | 0.40 | 0.13 | 0.64 |
|
Neither | 0.98 | 0.85 | 0.91 | 0.66 |
aAUC: area under the curve.
bMMCBR: multiple measurement case-based reasoning.
cAHE: acute hepatic encephalopathy.
dHRS: hepatorenal syndrome.
eCNN: convolutional neural network.
fT-LSTM: time aware long short-term memory.
gRNN-LR: recurrent neural network-latent regulator.