Skip to main content
. 2021 Feb 12;23(2):e18372. doi: 10.2196/18372

Table 4.

Prediction performance of the proposed method versus benchmark techniques.

Technique and outcome class Precision Recall F-measure AUCa
Temporal MMCBRb

AHEc 0.20 0.17 0.18 0.50

HRSd 0.09 0.10 0.10 0.54

Neither 0.97 0.96 0.96 0.54
Time fusion CNNe

AHE 0.12 0.33 0.18 0.65

HRS 0.06 0.38 0.10 0.67

Neither 0.97 0.81 0.88 0.63
T-LSTMf

AHE 0.09 0.33 0.14 0.65

HRS 0.05 0.27 0.09 0.68

Neither 0.97 0.84 0.90 0.63
RNN-LRg

AHE 0.21 0.42 0.28 0.82

HRS 0.08 0.40 0.13 0.64

Neither 0.98 0.85 0.91 0.66

aAUC: area under the curve.

bMMCBR: multiple measurement case-based reasoning.

cAHE: acute hepatic encephalopathy.

dHRS: hepatorenal syndrome.

eCNN: convolutional neural network.

fT-LSTM: time aware long short-term memory.

gRNN-LR: recurrent neural network-latent regulator.