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Abstract
The development of genome-editing technologies in 1970s has discerned a new beginning in the field of science. Out of 
different genome-editing approaches such as Zing-finger nucleases, TALENs, and meganucleases, clustered regularly inter-
spaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR/Cas9) is a recent and versatile technology that has 
the ability of making changes to the genome of different organisms with high specificity. Cancer is a complex process that 
is characterized by multiple genetic and epigenetic changes resulting in abnormal cell growth and proliferation. As cancer is 
one of the leading causes of deaths worldwide, a large number of studies are done to understand the molecular mechanisms 
underlying the development of cancer. Because of its high efficiency and specificity, CRISPR/Cas9 has emerged as a novel 
and powerful tool in the field of cancer research. CRISPR/Cas9 has the potential to accelerate cancer research by dissecting 
tumorigenesis process, generating animal and cellular models, and identify drug targets for chemotherapeutic approaches. 
However, despite having tremendous potential, there are certain challenges associated with CRISPR/Cas9 such as safe 
delivery to the target, potential off-target effects and its efficacy which needs to be addressed prior to its clinical application. 
In this review, we give a gist of different genome-editing technologies with a special focus on CRISPR/Cas9 development, 
its mechanism of action and its applications, especially in different type of cancers. We also highlight the importance of 
CRISPR/Cas9 in generating animal models of different cancers. Finally, we present an overview of the clinical trials and 
discuss the challenges associated with translating CRISPR/Cas9 in clinical use.
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Abbreviations
AAV	� Adeno-associated virus
CRISPR	� Clustered regularly interspaced short palin-

dromic repeats
Cas	� CRISPR-associated (protein)
ZFN	� Zinc finger nucleases
TALENs	� Transcription activator-like effector nucleases
crRNA	� CRISPR-RNA

scaRNA	� Small, CRISPR–Cas-associated RNA
sgRNA	� Single guide RNA
tracrRNA	� Trans-activating CRISPR-RNA
PAM	� Protospacer-Associated Motif
REPAIR	� RNA editing for programmable A-to-I 

replacement
RNP	� Ribonucleoprotein
NHEJ	� Non-homologous end-joining
HDR	� Homology Direct repair
DSBs	� Double-stranded breaks
TCR​	� T-cell receptors
HGT	� Horizontal gene transfer

Background

The establishment of recombinant DNA technology has 
a significant role in the field of research and development 
(Carroll 2017). Recombinant DNA technology has helped 
the researchers to modify the DNA of any organism to 
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understand the biology behind any mechanism, and thus 
exploiting the novel methods for medicine and diagnosis 
development (Hsu et al. 2014). Recent developments in 
genome-editing technologies are being exploited as a new 
resource in the biological fields where researchers could 
directly delete, insert, and modify a DNA segments in the 
genetic material of the cell or an organism, to functionally 
characterize the biological role of any genomic region at 
systemic level and identify pathogenic mutations (Lanigan 
et al. 2020). In the current scenario, genome-editing tech-
nologies are being extensively used in almost all the areas 
of biological research including pharmaceuticals, agricul-
ture, crop enhancement, pest management therapeutics, drug 
development, etc. (Sander and Joung 2014).

The major application of genome-editing technology 
includes genomic modification which includes gene inac-
tivation, new sequence insertion, and/or correction of 
mutated sequences with accurate nucleotide sequences (Li 
et al. 2020a). The potential to perform it with efficiency in 
eukaryotes carries enormous applications in biological sci-
ence. Various methods have been developed for the editing 
of the genomes, but the most efficient one is the targeted 
genome modification by the designer nucleases (Corrigan-
Curay et al. 2015). Since the eukaryotic genome contains 
millions of bases, and to manipulate or correct the bases, the 
genome-editing technologies which are very specific could 
herald the purpose through emerging nuclease-based edit-
ing technologies (Li et al. 2020a). The most commonly used 
and promising nuclease-based technologies are zinc finger 
nucleases (ZFN), meganucleases, transcription activator-like 
effector nucleases (TALENs), and the most recently devel-
oped, clustered regularly interspaced short palindromic 
repeats (CRISPR)/CRISPR-associated system (Cas) (Gaj 
et al. 2013; Zhang 2014; Kim and Kim 2014). Conventional 
genome editing is done using homologous recombination 
approaches where a vector containing a desirable DNA 
construct (homologous to targeted genomic sequence) is 
introduced in a cell, and through the process of homologous 
recombination, the targeted DNA is replaced by the intro-
duced DNA (Hirotsune et al. 2020). Such technologies have 
been implicated well in developing transgenic mice from 
embryonic stem cells with desirable gene modifications/
expression patterns and ‘knock-in’ targeted genes (Rocha-
Martins et al. 2015). However, this approach of generating 
genetically engineered organisms is a slow and expensive 
mechanism as it would take around 2–3 years to generate 
a single mutant mouse which will cost more than $100,000 
(Lampreht Tratar et al. 2018). In addition, this technol-
ogy is relatively less efficient in terms of precise editing of 
DNA sequences due to lowered frequency of recombination 
events and generation of large number of false positives. To 
reduce false positives, genome-editing nucleases were intro-
duced (Sander and Joung 2014). Genome-editing nucleases 

have the ability to recognize and cut at specific sequences 
resulting into double-stranded breaks (DSB) (Gersbach 
2014; Doudna 2015). These breaks are then repaired either 
by non-homologous end-joining (NHEJ) or homology-
directed repair (HDR) methods (Brinkman et al. 2018). 
NHEJ method of DNA repair is said to be error-prone which 
produces small insertions or deletions (indel), resulting in 
gene knockout. On the other hand, HDR method provides a 
genome-editing approach which is precise and can thus be 
used for delivering DNA with similar sequences in the target 
loci (Zhang et al. 2019a).

Nuclease‑based tools for genome editing

Zinc finger nucleases (ZFN): the pioneer one

ZFNs are derived from the largest family of metallo-pro-
teins, zinc proteins (Klug 2010). Due to their unique struc-
ture and functional applications, they play a major role in 
regulating transcription and translation in both prokaryotes 
and eukaryotes (Carroll 2011; Urnov et al. 2010). ZFNs con-
tain two domains: a nuclease domain and a DNA-binding 
zinc finger protein domain (Davis and Stokoe 2010). The 
zinc finger domain with Cys2-His2 is abundantly found 
in the eukaryotes as the DNA-binding motifs, which may 
include 3–6 finger-like projections held together by the 
Zn+2, and two of each cysteine and histidine amino acids 
(Gupta et al. 2014). Each finger-like projection is made up 
of ~ 30 amino acids, which are folded into ββα configura-
tions. These zinc finger nucleases have the ability to recog-
nize around 9–18 base pairs and the specificity is provided 
by the recognition helix of the nucleases composed of six 
amino acids (Durai et al. 2005). The nuclease domain of the 
ZFN is formed by the C-terminal of the restriction endo-
nuclease, FokI. However, this genomic tool requires the 
dimerization of two ZFN monomers, i.e., two sets of fingers, 
to be activated and to produce a nick or a double-stranded 
break (DSB) in the DNA (Mani et al. 2005). Some of the 
various programs and online tools for designing ZFN are: 
genome-wide target scanner for nuclease off-sites, the Segal 
Laboratory software site, Zinc Finger Tools ZiFiT Targeter 
software (Sander et al. 2010), and ZFN target site algorithm 
for identifying sites compatible with zinc fingers (Schierling 
et al. 2012). The specificity can be altered by mutagenesis, 
which allows the ZFN to be programmable nucleases, in a 
fast and convenient method. Lack of DNA target activity and 
cytotoxic effects of off-targeting are some of the possible 
disadvantages in using ZFN (Khan 2019). At times when 
off-targeting is extensive, the number of double-stranded 
breaks produced may be more than the DNA repair capacity 
of the cells and, therefore, results in cell death due to cyto-
toxicity. Hence, the disadvantages of ZFNs include the lack 
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of DNA targeting activity or cytotoxicity due to off-target 
effects (Miller et al. 2007). Thus, it is still a challenge to 
construct a ZFN with low cytotoxic effects, high specificity, 
and high targeting activity. ZFNs have reached the phase I 
clinical trials for treating HIV (human immunodeficiency 
virus) infected patients by knocking out the HIV co-receptor 
CCR5 (chemokine receptor 5) gene (Ashmore-Harris and 
Fruhwirth 2020; Perez et al. 2008).

Transcription activator‑like effector nucleases 
(TALENs): second generation

The TALENs are derived from transcription activator-like 
effectors, encoded by Xanthomonas, a plant pathogenic 
bacterium (Bloom et al. 2015; Boch and Bonas 2010). The 
TALENs from Ralstonia, another plant pathogenic bacte-
rium, are also engineered to bind to the DNA sequences 
and have a structural similarity to that of ZFNs (Joung and 
Sander 2013) The DNA-binding domain includes arrays 
of single protein modules of ~ 34 amino acids long, each 
of which recognizes a single base pair of the DNA in the 
major groove, thus providing the specificity to the level of 
single nucleotide. These modules have identical amino acids 
except at the positions 12 and 13 (Deng et al. 2012). The 
amino acids at these positions are called ‘repeat variable di-
residue’ (RVD), which are responsible for determining the 
nucleotide specificity of the programmable nuclease (Boch 
et al. 2009). All four different nucleotides are recognized 
by four different RVDs: Guanine, Adenine, Cytosine, and 
Thymine by Asn–Asn, Asn–Ile, His–Asp, and Asn–Gly, 
respectively. The TALENs can be constructed to recognize 
13–20 base pairs along with FokI nuclease domain, in the 
C-terminal (Miller et al. 2011). As different RVD modules 
recognize different nucleotides, it is comparatively easier to 
design the TALENS to recognize specific DNA sequences 
(Bogdanove and Voytas 2011). E-TALEN (Heigwer et al. 
2013), Genome Engineering Resources (http://www.genom​
e-engin​eerin​g.org/), scoring algorithm for predicting its 
activity (http://baola​b.bme.gatec​h.edu/Resea​rch/Bioin​forma​
ticTo​ols/TAL_targe​ter.html), ToolGen TALEN Designer 
(http://www.toolg​en.co.kr/talen​_desig​ner/), and ZiFiT Tar-
geter (Sander et al. 2010) software are some of the online 
tools available for constructing a new TALENs. They can 
be designed in such a way that it can target any given DNA 
sequences (Kim and Kim 2014). The transcription activa-
tor-like effective (TALE) arrays can be assembled rapidly 
using various strategies such as high-throughput Golden 
Gate molecular assembly and ligation-independent cloning 
techniques (Holkers et al. 2013). There are some limitations 
of TALENs as it cannot be used for producing nicks and thus 
can create only DSB in the DNA (Joung and Sander 2013). It 
is also a highly laborious and expensive process to construct 
individual TALE protein modules. Another limitation of this 

strategy is the requirement of a Thymine base (recognized 
by the TALEN) at the 5′ end of the target sequence (Wood 
et al. 2011). Conventional TALENs are also considered to 
be incapable of cleaving DNA which contains methylated 
cytosines (Sakuma et al. 2013).

Mega nucleases

Mega nucleases (homing endonucleases) are natural proteins 
derived from microbial mobile genetic elements, with the 
ability to recognize DNA sequences of > 12 bp in length 
(Silva et al. 2011). Homing endonucleases can be divided 
into five families based on their sequence and structures: 
LAGLIDADG, GIY-YIG, HNH, His-Cys box, and PD-(D/E) 
XK (Chevalier and Stoddard 2001). LAGLIDADG endo-
nucleases are used as molecular tools as genetic endonu-
cleases and the essential element for their enzymatic activ-
ity are defined by ‘LAGLIDADG’ sequence motif (Jacoby 
et al. 2012). The endonucleases may have one or two such 
sequence motifs followed by ~ 75–200 amino acids. These 
endodeoxyribonuclease target the recognition site with 
high specificity and generate a DSB having overhangs, and 
protein-coding sequence is inserted within the genome by 
the process of homologous recombination (Maeder and 
Gersbach 2016). Initially, I-CreI and I-SceI, single and 
double motif protein, respectively, were used for editing the 
genome (Chen et al. 2009; Rosen et al. 2006). In both the 
cases, enzymes obtain a αββαββα fold and recognize a DNA 
sequence with 14–40 bp in length (Grizot et al. 2009). The 
recognition and enzymatic properties of the enzymes are 
intertwined which make it difficult to design and engineer 
these nucleases (Nomura et al. 2008). The main advantage 
with meganucleases is that they produce DSB with 3′ over-
hang, which has more recombination characteristic to stimu-
late HDR, when compared to the 5′ overhangs produced by 
the FokI restriction endonucleases (Guha and Edgell 2017). 
Since they are also the smallest class of modified nucleases, 
they can be delivered more easily and efficiently (Galetto 
et al. 2009).

CRISPR–Cas9: recent and versatile tool in genome 
editing

Another recently developed gene-editing technology, 
clustered regularly interspaced short palindromic repeats 
(CRISPR) and CRISPR-associated proteins (Cas), is a well-
known adaptive and heritable immune system of archaea and 
bacteria (Barrangou and Marraffini 2014; Rath et al. 2015; 
Ishino et al. 1987). CRISPR–Cas technology has various 
advantages compared to the nuclease-based genome-editing 
technologies (Adli 2018; Ran et al. 2013). Nuclease-based 
genome-editing technologies involve protein–DNA interac-
tion, whereas CRISPR–Cas technology uses Watson–Crick 
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base pairing for recognizing the target sequence. The various 
advantages of the CRISPR–Cas system include its high effi-
ciency, specificity, ability to target multiple genes, and being 
cost-effective (Chen et al. 2017; Kleinstiver et al. 2016). Due 
to such advantages, the CRISPR–Cas system has triggered a 
value addition by bringing dramatic changes in the field of 
therapeutics especially in cancer therapy (Liu et al. 2019a). 
Furthermore, there are various applications of this technol-
ogy to this field in combination with immunotherapy, such 
as the production of therapeutic cells or antibodies (Xia et al. 
2019), and providing immunity to prokaryotic species in 
opposition to viral-mediated infections and bacterial trans-
formations (Price et al. 2016).

The CRISPR–Cas system was first discovered in E.coli, 
but it has been shown to be present in a large population 
of prokaryotes (Ishino et al. 2018; Jansen et al. 2002). The 
CRISPR–Cas system is a sequence-specific adaptive immune 
system in bacteria and archea which provide resistance 
against phages, viruses, and other genetic materials (Horvath 
and Barrangou 2010; Haft et al. 2005). CRISPR primarily 
prevents bacteriophages infection and plasmid conjugation 
(Barrangou et al. 2007). In addition to this, several studies 
have shown that CRISPR can act as a barrier against all 
mechanisms of Horizontal gene transfer (HGT) which is a 
main source of genetic variation in prokaryotes (Garneau 
et al. 2010). Therefore, along with their function in antiviral 
immunity, CRISPR plays an important role in maintenance 
of genome integrity (Shabbir et al. 2016). When a foreign 
pathogenic organism attacks the bacteria, the invading for-
eign DNA or RNA is recognized and inserted into its own 
genome, forming a CRISPR locus (Loureiro and Da Silva 
2019). This CRISPR locus comprises two main elements: a 
series of repeat sequences interspaced by variable sequences 
and a clustered set of CRISPR-associated (Cas) genes 
(Karimi et al. 2018; Bolotin et al. 2005). These elements 
of the CRISPR–Cas system provide a three-step defense 
response against any invading foreign organisms (Hille et al. 
2018). The three steps include; Adaptation, CRISPR Expres-
sion, and Interference or immunity. (i) Adaptation: Certain 
regions of foreign DNA or RNA elements from the invading 
virus or other pathogenic organisms such as bacteria and 
archaea are selected based on protospacer-adjacent motifs 
(PAM) and are incorporated into their genome, thus form-
ing protospacers (Karginov and Hannon 2010; Mojica et al. 
2000). Cas9 proteins identify different PAM sequences orig-
inated from different bacteria; for instance, Streptococcus 
pyogenes Cas9 recognizes ‘NGG’ and weaker ‘NAG’ PAM 
sequences (Geng et al. 2016). These new protospacers act as 
sequence-specific memory against the pathogenic organisms 
(Brouns et al. 2008). (ii) Expression: The CRISPR regions 
are transcribed to form pre-CRISPR-RNA (pre-crRNA) 
which then matures into CRISPR-RNA (crRNA) by RNa-
seIII (Charpentier et al. 2015). The crRNA is composed of 

two sequences: a sequence complementary to the foreign 
gene sequence of 20-nucleotide length and the sequence 
which is complementary to the trans-activating CRISPR-
RNA (tracrRNA), a binding scaffold to the Cas nuclease 
(Deltcheva et al. 2011) (iii) Interference: crRNA guides the 
Cas9 protein to the PAM and produces a double-stranded 
break (DSB) in the foreign DNA and thus provides defense 
against the pathogenic organism by blocking the propagation 
of foreign DNA (Lone et al. 2018; Cong and Zhang 2015). 
In the CRISPR system, tracrRNA base pairs with crRNA 
and forms a functional single-guide RNA (sgRNA). The 
sgRNA of the CRISPR–Cas9 system is designed as a single 
strand, so that the guide sequence is present at the 5′ end 
and the RNA duplex at the 3′ end (Anders et al. 2014). The 
guide sequence is complementary to the foreign DNA and, 
hence, directs the binding with the target gene sequence, 
whereas the RNA duplex binds with the Cas9. Hence, the 
sgRNA recognizes the sequence at which the Cas9 acts as 
endonucleases and catalyzes the cleavage of 3–4 nucleo-
tides upstream of the PAM (Ma et al. 2015; Wu et al. 2014) 
(Table 1, Fig. 1).

Different types of Cas systems

Another functional form of CRISPR/Cas system composed 
of a small molecular weight protein known as Casφ (approx. 
70 Kda protein) and CRISPR array is specifically involved 
in encoding large-sized bacteriophage genomes (Pausch 
et al. 2020). The Casφ protein utilizes a similar active site 
for both CRISPR-RNA (crRNA) and crRNA-guided DNA 
target molecules for cleaving external DNA molecules. This 
compact system is found stable in multicellular eukaryotic 
species with highly efficient target prediction abilities in 
contrast to other CRISPR/Cas systems and is also applicable 
in significant gene-editing functions and DNA recognition 
(Pausch et al. 2020). CasX is another new protein which 
has been identified from metagenomic analysis of bacteria 
(Yang and Patel 2019). CasX protein has a RuvC domain at 
C-terminus and lacks HNH domain. It works in the same 
way as Cas9 as it employs both crRNA and tracrRNA which 
leads to dual RNA-guided DNA cleavage, but compared to 
Cas9, it has few advantages. The size being the most impor-
tant factor which allows it to get inside the cells much easier 
and since it has been isolated from bacteria, the chances of 
triggering an immune response are humans is less which 
has always been a concern of Cas9 (Liu et al. 2019b). Simi-
larly, CRISPR–CasY is another newly identified functional 
form which has some distinct features compared to other 
CRISPR systems. In CRISPR–CasY, most of the CRISPR 
arrays contain 17–19 nucleotides spacers which are compar-
atively shorter from other reported systems. Recent studies 
have shown that CRISPR–CasY exhibit RNA-guided DNA 
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cleavage activity, but whether they use tracrRNA for cleav-
age is still not known (Burstein et al. 2017).

Structure and classification of CRISPR system

Due to peculiar structural and functional diversification 
between the CRISPR/Cas systems, Cas gene arrangement, 
and features of crRNA-cas effector complexes, these systems 
have been well categorized into 6 major types (types I–VI) 
which are supplemented by a broader classification as Class 
1 and Class 2 (Koonin et al. 2017; Makarova et al. 2011). 
Class 1 system includes type I, III, and IV, and is charac-
terized by the presence of a multiprotein effector complex 
known as CRISPR-associated complex for antiviral defense 
(Cascade) (Hidalgo-Cantabrana et al. 2019). Class 1 sys-
tem utilizes Cas3, Cas10, and DinG as nucleases (Pickar-
Oliver et al. 2019). Also, they are more commonly present 
in genomes of bacteria and archaea; where the type I system 
comprises seven subtypes (I–A to I–F plus I–U) as the most 
abundant and widespread in nature. Although type I is the 
most abundant, yet only few models have been characterized 
with most of the studies focusing on type I–E from Escheri-
chia coli (Zheng et al. 2020b). Endogenous type I systems 
which are naturally present in bacteria and archaea can be 
repurposed for targeted genome editing or transcriptional 
approaches which would help in alteration of genome or 
transcriptome of microbiome of industrial and economical 
importance. Class 2 system comprises type II, V, and VI, and 
is associated with Cas9, Cas12–Cas14, and Cas13, respec-
tively (Chylinski et al. 2014) (Fig. 2).

Types I–III systems associated with Cas3, Cas9, and 
Cas10, respectively, are the most studied one, whereas the 
remaining IV–VI has been recently identified (Makarova 
et al. 2011). Surprisingly, Cas3, Cas10, and Cas12 are pre-
sent in both bacteria and archaea, whereas Cas9 and Cas13 
are present exclusively in bacteria and Cas14 is uniquely 
present in archaea (Harrington et al. 2018). RNase III, 
which is present only in bacteria (and not in archea), plays 
a crucial role in maturation of pre-crRNA into crRNA, 
and this explains why type II systems are found only in 
bacteria (Mir et al. 2018; Durand et al. 2012). Out of these, 
Cas3, Cas9, and Cas10 are the most commonly occurring 
caspases and can easily be identified from microbial and 
human environments. However, within every type, there 
are several subtypes which display different functional fea-
tures utilized by prokaryotic species to protect themselves 
from viral attack as well as from other mobile genomic 
substances. For instance, class 1 systems’ (type I, III, and 
IV) effector complexes are composed of diverse cas pro-
teins in close coalition with crRNA, while class 2 systems 
(type II, V, and VI) harbor only one effector cas protein 
having nuclease property (Shmakov et al. 2017; Liu and 
Doudna 2020). In addition, the nucleic acid substance Ta
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identification and destruction by different crRNA-cas 
effector complexes vary among disparate CRISPR/Cas 
systems (Koonin et al. 2017). For instance, type I, II, and 
V targets DNA molecules, and type III system assists 
cleavage of both DNA and RNA molecules, while type 

VI system specifically targets RNA molecules. The effec-
tor molecule functioning via DNA targeting system have 
been dependent on prediction of small sequences, known 
as PAM which are situated near the target sequences in 
invading DNA and are responsible for degradation (Leenay 

Fig. 1   Schematic representation of timelines of CRISPR develop-
ment which highlights the important discoveries related to CRISPR 
technology from 1987 to current year. CRISPR technology was first 
reported in 1987 in Osaka University, whereas the term CRISPR–
Cas9 was first coined in 2002. In 2012, first patent for CRISPR–
Cas9 technology was submitted, and in 2015, first report of human 
genes edited by CRISPR came out which fueled the controversy 

about ethical issues related to gene-editing technologies. In the same 
year, US scientists used CRISPR/Cas9 for making genetically modi-
fied mosquitoes, to prevent them carrying malaria parasite. In 2018, 
first CRISPR–Cas9 clinical trial was launched. In 2020, first patient 
received gene therapy where CRISPR was administered directly into 
the body and in the same year Emmanuelle Charpentier and Jennifer 
Doudna won the Nobel Prize in chemistry for CRISPR technology

CRISPR 
system

Class 1

Type I

Cas3

Type III

Cas10

Type IV

DinG

Class 2

Type II

Cas9

Type V

Cas12 & 
Cas14

Type VI

Cas13
Effector
nucleases

Fig. 2   A simple schematic representation of CRISPR system and 
associated nucleases. The CRISPR/Cas system can be divided into 
two classes as Class1 and Class2. Class1 CRISPR/Cas system uti-
lize multi-Cas protein complex, whereas Class2 CRISPR/Cas system 

employ single Cas protein. Furthermore, these two classes are subdi-
vided into six types based on the presence of specific genes. Class1 
includes types I, III, and IV, whereas Class2 includes types II, V, and 
VI
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et al. 2016). Contrastingly, the type III and VI system 
targeting RNA molecules does not depend upon PAM 
sequences as these systems are known to be regulated by 
flanking sequences surrounding the protospacer segments 
of target RNA molecules (Gleditzsch et al. 2019). Cas13 
protein has ribonuclease activity and can bind to single-
stranded RNA and cleave the target (Granados-Riveron 
and Aquino-Jarquin 2018). There are 4 Cas13 proteins 
identified so far; Cas13a, Cas13b, Cas13c, and Cas13d. 
Recently, there are two RNA base editing systems have 
been developed; one is REPAIR which allows A-to-I (G) 
replacement and the other one is RESCUE system which 
allows C-to-U replacement (Fry et al. 2020). RNA editing 
is more specific and efficient compared to DNA editing. 
Also, it makes temporary genetic edits/changes which are 
reversible avoiding the potential ethical issues (Fukuda 
et al. 2017). The capability of type II and V systems to effi-
ciently form transgenic crRNAs, which degrade specific 
DNA sequences has been utilized in a variety of appli-
cations such as gene modification, controlling genetic 
expression, and DNA checking in populations. Due to its 
simple structure and ease of use, class 2 CRISPR–Cas sys-
tem is popular among the other tools used for the genome-
editing approaches for various applications in the field of 
medicine, agriculture, and biotechnology (Manghwar et al. 
2019). In contrast, the CRISPR-based RNA targeting sys-
tem has shown their wide applications in the development 
of engineered RNA as well as in identifying prognosis 
for virus-mediated, bacteria-mediated, and human-asso-
ciated disorders (Strutt et al. 2018; Sampson et al. 2013). 
Among the other types of nucleases in class 2, type II 
CRISPR–Cas9 is the most routinely used tool and is com-
monly known as CRISPR (Doudna and Charpentier 2014). 
The Cas9 proteins have two domains RuvC and HNH. 
RuvC is further subdivided into three subdomains, RuvC 
I, which is near the N-terminal of the protein and RuvC 
II/III, which flanks the HNH domain of the protein (Mali 
et al. 2013). The RuvC domain of the Cas9 protein cleaves 
the non-complementary regions of the DNA, whereas the 
HNS domain cleaves the complementary regions (Chen 
et  al. 2014). This cleavage results in the formation of 
DSBs which is further repaired by NHEJ or HDR path-
way. However, HDR pathway/gene-knocking requires a 
de novo DNA template and is considered to be less effec-
tive than the NHEJ pathway/gene-knockout (Rodgers and 
Mcvey 2016). CRISPR along with Cas9 from Francisella 
novicida (Fn) can target and degrade mRNA. FnCas9 
forms a complex with its tracrRNA and a novel and small 
CRISPR/Cas-associated RNA (termed scaRNA) instead of 
the crRNA. The detailed molecular mechanism of FnCas9 
is still not clear, but there are studies, which will definitely 
improve its further application in targeting endogenous 

RNAs (Burmistrz et al. 2020). A simplified representation 
of CRISPR technology is described in Fig. 3.

Delivery of CRISPR/Cas9 in cells

For successful implementation of CRISPR/Cas9 in vivo, 
a proper and effective delivery of Cas9 and sgRNA to the 
target cell is required (Wilbie et al. 2019). The main cri-
terion for this approach is that it should cause low tox-
icity and avoid potential off-target genome editing (Lino 
et al. 2018). Initially, it was achieved in mammalian cells, 
by plasmid based expression of Cas9 and sgRNA. Simi-
lar approach was adapted for delivery into model organ-
isms such as mice, but the outcome of editing efficiency 
was poor. Therefore, to improve the efficiency of in vivo 
delivery, different viral and non-viral methods have been 
adapted (Yin et al. 2016; Li et al. 2015a). Non-viral meth-
ods include lipid nanoparticles, gold nanoparticles, cell 
penetrating peptides, etc., but these methods are not being 
widely used; however, it is becoming a burgeoning area 
of research (Li et al. 2018). Viral methods include adeno-
associated virus (AAV), Adenovirus (AV), and lentivirus 
(LV) vehicles which act as the prominent method of deliv-
ery vectors. AAV is a single-stranded DNA virus that has 
been extensively used for gene delivery because of its non-
toxic nature (Lee et al. 2017; Xu et al. 2019a). As such, 
AAV is not known to induce innate or adaptive immune 
response or any associated toxicity which makes it a great 
choice for this purpose (Chew et al. 2016). There are dif-
ferent approaches for CRISPR/Cas9 delivery using AAV 
vectors which include packaging of SpCas9 (Streptococ-
cus pyrogenes) and sgRNA onto one plasmid vector and 
then delivery via one AAV article (Luther et al. 2018). 
The only drawback of this method is that AAV allows 
approximately 4.5–5 kb of packaged genomic material, 
whereas the size of Cas9 and sgRNA is roughly around 
4.2 kb; this makes the packaging little challenging, and 
also, it does not allow addition of other elements such as 
fluorescent tags, reporters, etc. There has been different 
modification to this approach for example by packaging 
Cas9 and sgRNA into two separate AAV particles which 
allows an increase in the overall size of the construct, but 
this has its own pitfalls which include decrease in effi-
ciency in terms of delivery as well as target DNA cutting 
(Sun et al. 2003; Ronzitti et al. 2020). Another approach is 
using a different version of Cas9 from S. aureus rather than 
S. pyrogenes, which is less in size, but has the same edit-
ing ability, so that Cas9 and sgRNA expression cassette 
can be packed into a single AAV genome-editing vector 
(Lino et al. 2018). The method of delivering CRISPR/
Cas9 using LV and AV is pretty much similar to each other 
where backbone virus in LV is a provirus of HIV, and in 
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AV, it is different known serotypes of known AVs. Both 
LV and AV can infect dividing and non-dividing cells, 
but interestingly, AV does not integrate into the genome. 
This is very advantageous for reducing off-target effects. 
LV and AV have a better advantage compared to AAV in 
terms of their size which ultimately affects the size of the 
construct (Kabadi et al. 2014; Cheng et al. 2014). All these 
viral delivery methods can be used for in vitro, in vivo, and 
ex vivo applications which makes this as the most suitable 
choice for CRISPR delivery (van Haasteren et al. 2020). 
A brief summary of all the delivery methods of CRISPR 
is represented in Fig. 4.

Applications of CRISPR

Applications of CRISPR in agriculture

Till date, many crops have been genetically modified using 
CRISPR/Cas9 such as rice, wheat, maize, soybean, cotton, 
lettuce, grapes, potato, etc. Gene knockouts are the most 
frequently used application to produce null alleles (Jaga-
nathan et al. 2018). LAZY1 gene was knocked out in rice 
using CRISPR/Cas9, to produce a phenotype which could 
result in increased crop yield (Miao et al. 2013). Simi-
larly the GN1a, DEP1, and GS3 genes of the rice cultivar 

Fig. 3   Simplified mechanism of the CRISPR technology (modified 
from “Delivery Strategies of the CRISPR–Cas9 Gene-Editing System 
for Therapeutic Applications” (Liu et al. 2017a). a Single guide RNA 
(sgRNA structure) consists of CRISPR-RNA (crRNA) and trans-acti-
vating CRISPR-RNA (tracrRNA). The crRNA and tracrRNA forms 
a complex and acts as a guide RNA for the Cas9 enzyme. b Cas9 
is a dual RNA-guided DNA endonuclease enzyme in Streptococcus 
pyrogenes. There are two nuclease domains, RuvC (which cleaves the 
non-target DNA strand) and HNH nuclease domain (that cleaves the 
target strand of DNA). Target DNA must contain a PAM-motif which 
is recognized by PAM-interacting domain (PI) of Cas9. Cas9 also 
have a recognition lobe (REC). Both REC and Nuclease lobe folds 
to give a positive charge that can accommodate the negative charged 
sgRNA:target DNA heteroduplex. c CRISPR/Cas9 induces double-

stranded breaks which can be repaired either by the non-homologous 
end-joining DNA repair pathway (NHEJ) or the homology-directed 
repair (HDR) pathway. In NHEJ process, the two broken ends of 
DNA are ligated without a template donor which causes insertion and 
deletion (indel) mutations. This repair process is error-prone and can 
result in frameshift or loss-of-function and finally gene disruption. In 
case of HDR, it requires almost identical DNA template to repair the 
breaks that result in to precise insertion or edition ultimately leading 
to full correction of the DNA cleavage. d RNA targeting by CRISPR–
FnCas9. Cas9 from Francisella novicida (Fn) can target and degrade 
mRNA. FnCas9 forms a complex with its tracrRNA and a novel and 
small CRISPR/Cas-associated RNA (termed a scaRNA) instead of 
the crRNA. The exact mechanism is not very clear yet
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ZH11 (Zhonghua11) were modified using the CRISPR/
Cas9, resulting in phenotypes with enhanced grain number 
dense erect particles and larger grain size (Zhang et al. 
2019e; Arora and Narula 2017). CRISPR/Cas9 can also 
be used to improve nutritional profiles of the crops, to 
improve resistance to biotic stresses, to improve shelf life, 
and also to create herbicide resistant crops (Zhou et al. 
2020). In 2014, Haun et al. (2014) have used TALENs 
technology to improve oleic acid content in Soybean by 
targeting FAD2 gene. Similarly, some other teams studied 
the mutation efficiency of CRISPR/Cas9 for evaluating 
exogenous and endogenous genes in hairy roots of soybean 
(Jacobs et al. 2015; Li et al. 2015b). This was further sup-
ported by Du et al. (2016) who compared TALENs and 
CRISPR/Cas9 efficiency for targeting phytoene desaturase 
genes, and concluded that CRISPR is much more efficient 
than TALEN in targeting these alleles. Whereas in rice, 
this technique was used to produce targeted mutations in 
SBEIIb, thereby resulting in the production of higher pro-
portions of amylopectin which enhanced the nutritional 
value of starch (Sun et  al. 2017). Zhang et  al. (2017) 
produced wheat plants resistant to powdery mildew by 
targeted modification of three homologs of EDR1. Also, 
SlMLO1 was edited to produce powdery mildew-resistant 
tomatoes (Nekrasov et al. 2017). When the eIF4E gene of 
the cucumber was disrupted, broad virus-resistant plants 
were generated as they were resistant against Ipomovirus, 
Zucchini yellow mosaic virus, and Papaya ringspot mosaic 
virus-W (Chandrasekaran et al. 2016). Although the per-
formance of cas9 genes in plants and breeding varieties 
has not been to the expectations, there is a greater scope 
and promise of applying these variants in wide cultivars 
(Zhang et al. 2019d). Table 2 summarizes the more recent 
and advance application of CRISPR in agriculture.

Applications of CRISPR in medicine

One of the most early and important applications of CRISPR 
in the medical field is disease modeling. Nakamura and col-
leagues (2015) produced a rat model for Duchenne muscular 
dystrophy (DMD) by targeting two exons of the DMD gene 
in the rat using CRISPR/Cas9. This genome-editing technol-
ogy can be used to make multigenic disease models more 
easily than the conventional transgenic techniques. Similarly, 
various somatic mutations can be induced in adult mice 
simultaneously or sequentially, resulting in oncogenic muta-
tions and ultimately cancer. Xue and colleagues (2014) were 
successful in inducing both gain- and loss-of-function muta-
tions in the liver cells of the mouse which resulted in hepa-
tocarcinogenesis (Maddalo et al. 2014). CRISPR/Cas9 can 
also be used for interrogation of functions of genes in health 
and disease and identification of genes involved in resistance 
to adverse conditions, i.e., toxins or drugs. Another most 
crucial application of CRISPR/Cas9 in medicinal research is 
its potential for gene therapy. It was demonstrated that using 
CRISPR/Cas9 HIV-1 gene can be mutated which resulted in 
its decreased expression in the human T cells (De Masi et al. 
2020). The potentiality of this technique against numerous 
infections such as hepatitis B virus and human papilloma-
virus are being explored along with their ability to correct 
genetic mutations (Kennedy et al. 2014, 2015). Recently, 
various studies reported that CRISPR/Cas9 components 
delivered into mice corrected a genetic mutation in the DMD 
mouse models. Some of the studies reported the efficacy of 
the CRISPR/Cas9-mediated HDR for in vivo gene therapy in 
the mouse models of human hereditary liver disease (Yang 
et al. 2016; Yin et al. 2016). Despite all these advances in the 
use of CRISPR/Cas9 in gene therapy, there are some ethi-
cal and safety concerns. As the changes caused by CRISPR 

Fig. 4   A pictorial representation 
of different types of CRISPR 
delivery systems. The effective 
delivery of CRISPR is one of 
the most challenging steps in 
the genome-editing process. 
The main mode of delivery is 
either by viral (adenoassoci-
ated, adenoviral, or lentiviral) 
or by non-viral methods (lipid 
nanoparticles, gold nanoparti-
cles, cell penetrating peptides, 
etc.). Non-viral methods have 
lesser advantage over viral vec-
tors especially in case of gene 
knock-ins. Viral vectors are 
the most prominent one, but it 
induces off-targets and immune 
response which needs to be 
improved
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Table 2   Applications of CRISPR in different fields

Field Applications References

Agriculture Knockout of two homologs of the BnaMAX1, which resulted in the increase of yield in rapeseed Zheng et al. (2020a)
CRISPR-mediated knockout of phytochrome C in maize resulted in regulation of flowering time 

and height of the plant
Li et al. (2020c)

Semi-dwarf rice lines lacking any residual transgene-DNA and off-target effects were generated 
through CRISPR/Cas9-guided mutagenesis of the OsGA20ox2 gene in a high yielding Basmati 
rice line

Nawaz et al. (2020)

Complete reproductive sterility in the poplar sterile apetala (PopSAP) via the CRISPR/Cas9 Azeez and Busov (2020)
Knockout of OsGhd7 via CRISPR/Cas9 resulted in rice varieties with early flowering and early 

maturity
Wang et al. (2020)

CRISPR/Cas9 editing of SlHyPRP1 resulted in salt stress-tolerant events in cultivated tomato Tran et al. (2020)
CRISPR/Cas9 editing of OsROS1 gene resulted in pollen and embryo sac defects in the rice Xu et al. (2020)
Genome-editing via CRISPR/Cas9 resulted in the modification of MaGA20ox2 gene which created 

semi-dwarf banana
Shao et al. (2020)

OsPYL9 was mutagenized through CRISPR/Cas9 enhanced Drought Tolerance and Grain Yield in 
Rice (Oryza sativa L.)

Usman et al. (2020)

Gene therapy The targeting of IVS1-110G>A mutation using Cas9 ribonucleoprotein (RNP) and the IVS2-
654C>T mutation by Cas12a/Cpf1 RNP in primary CD34+ hematopoietic stem and progenitor 
cells (HSPCs) from β-thalassemia patients

Xu et al. (2019b)

Cas9:sgRNA ribonucleoprotein (RNP)-mediated cleavage within a GATA1 binding site at the + 58 
BCL11A erythroid enhancer has resulted in the induction of γ fetal globulin in Sickle cell anemia 
patients

Wu et al. (2019)

Development of EDIT-101, a candidate genome-editing therapeutic using CRISPR/Cas9, to remove 
the aberrant splice donor created by the IVS26 mutation in the CEP290 gene and restore normal 
CEP290 expression in the Lebercongenital amaurosis type 10

Maeder et al. (2019)

CRISPR/Cas9 system was used in the mdx mouse model of DMD to remove the mutated exon 23 
from the dystrophin gene

Nelson et al. (2016)

CRISPR/Cas9 endonucleases coupled with paired guide RNAs flanking the mutated Dmd exon23 
were used in excision of intervening DNA and restored the Dmd reading frame in myofibers, 
cardiomyocytes, and muscle stem cells after local or systemic delivery

Tabebordbar et al. (2016)

It has been demonstrated that in a mouse model of tyrosinaemia, hydrodynamic tail-vein injection 
of plasmid DNA encoding the adenine base editor (ABE) and a single-guide RNA (sgRNA), can 
correct an A>G splice-site mutation

Song et al. (2020)

AAV delivery of CRISPR can effectively correct Z-AAT mutation in the liver of a transgenic 
mouse model of Alpha1-Antitrypsin Deficiency

Song et al. (2018)

Cell and animal 
disease 
models

A human muscle cell model of Duchenne muscular dystrophy created through CRISPR/Cas9 by 
targeted removal of DMD exons 51–57

Shimo et al. (2018)

CRISPR/Cas9 technology was used to introduce a heterozygous nonsense mutation in the PAX6 
gene of LSCs, which is found in Aniridia-Related Keratopathy patients

Roux et al. (2018)

CRISPR/Cas9-mediated knockout of Abcd1 and Abcd2 genes in BV-2 cells resulted in microglial 
models for X-linked Adrenoleukodystrophy

Raas et al. (2019)

Development of DMD mouse model was achieved by deleting exons 8–34 of the X-linked mouse 
Dmd gene using CRISPR/Cas9 genome editing, which led to a reading frame shift and the 
absence of functional dystrophin production

Egorova et al. (2019)

First CRISPR/Cas9-induced Lep and Lepr knockout (KO) mouse models for diabetics and obesity 
were generated using CRISPR/Cas9 technique by specifically targeting Lep or Lepr in C57BL/6J 
embryos, which resulted in phenotypic such as an increase in body weight, hyperglycemia, and 
hepatic steatosis

Roh et al. (2018)

A new tau knockout strain (tauΔex1) of Alzheimer’s was generated by CRISPR/Cas9-mediated 
genome-editing of intron-1/exon 1 of Mapt in C57Bl/6J mice

Tan et al. (2018)

A knock-in (KI) pig model of Huntington Disease, which endogenously expresses full-length 
mutant huntingtin (HTT) was developed using CRISPR/Cas9 and somatic nuclear transfer tech-
nology

Yan et al. (2018)
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in human genome are permanent and inheritable, there are 
still some uncertainty for using it in clinical settings (Nelson 
et al. 2016). It is also possible that they may produce unpre-
dictable and uncontrollable off-target effects to the genome. 
The use of CRISPR in gene therapy and in animal models is 
summarized in Table 2.

CRISPR and cancer

Cancer is a complex disease which is characterized by mul-
tiple changes in genetic and epigenetic alterations in tumor 
suppressors and oncogenes (Garraway and Lander 2013). 
Therefore, it is essential to look for experimental approaches 
to modify the genome of normal as well as cancer cells and 
identify different genes and pathways involved in the process 
(Stratton et al. 2009). Different genome-editing approaches 
have made it possible to study the function of different genes 
in cancer initiation and progression by modifying specific 
DNA sequences in vivo as well as in vitro (Barman et al. 
2020). Also, these technologies have helped to understand 
the function of a particular gene (either an oncogene or 
tumor suppressor) in cancer (Shen et al. 2018). The use of 
CRISPR/Cas-9 in research laboratories has significantly 
increased because of its simplicity and efficiency (Liu et al. 
2019a). Moreover, its successful implementation in mam-
malian cells by different pioneer groups in the fields has 
strengthened this genome-editing approach which also dealt 
with many limitations of other methods. There has been an 
enormous increase in the research using CRISPR-mediated 
efficient gene modification in a variety of cells and organ-
isms strengthening this approach for further use (Sánchez-
Rivera and Jacks 2015; Moses et al. 2018). Several research 
laboratories have generated in vitro and in vivo knockout 
models to study the molecular mechanisms underlying dif-
ferent pathways in different cancers (Ng et al. 2020). In 
addition, CRISPR technology is used for identification of 
potential therapeutic approaches in different cancers mainly 
in solid tumors such as breast, lung, brain, bone, liver, pros-
tate, and colorectal cancer (Hazafa et al. 2020).

Lung cancer

Lung cancer is one of the leading causes of cancer-
related deaths worldwide where non-small cell lung can-
cer (NSCLC) subtypes account for more than 90% of all 
lung cancers (Devarakonda et al. 2015). Different studies 
have used CRISPR/Cas9 for effectively targeting different 
genes involved in the initiation and progression of lung 
cancer (Nair et al. 2020). For example, Cheung et al. have 
used the CRISPR technology to target mutant versions of 
EGFR gene, elimination of which resulted in reduced cell 
proliferation both in vitro and in vivo (Cheung et al. 2018). 

Similarly, Koo et al. deleted EGFR in a NSCLC cell line 
which resulted in death of cancer cells and reduction in 
tumor size in vivo (Koo et al. 2017). There are many more 
similar results that highlight the importance of CRISPR 
technology, especially for targeting EGFR which takes us 
forward in cancer therapy (Xiao-Jie et al. 2015). Elumalai 
et al. have successfully knocked out the tumor-suppressor 
phosphatase and tensin homolog (PTEN) gene via CRISPR/
Cas9 genome-editing approach in NSCLC which resulted in 
increased cancer growth by promoting Akt pathway (Peru-
mal et al. 2019). PTEN inactivation further contributed to 
epithelial-to-mesenchymal transition by regulating β-catenin 
translocation. This study reported the mechanism of EMT 
transition via PTEN, which was previously unknown, with 
the help of CRISPR technology. Recent studies by Lu et al. 
(2020b) have used CRISPR-edited T cells for the treat-
ment of NSCLC by targeting PD-1 gene which showed 
promising results in the first-in-human phase I clinical trial 
(NCT02793856). This study demonstrated safety and fea-
sibility of CRISPR-edited T cells for the treatment of lung 
cancer with minimal off-target effects. This can be a break-
through study as this will lead to more clinical trials for the 
treatment of lung cancer (Lu et al. 2020b).

Breast cancer

Breast cancer is another most common cancer and one of 
the leading causes of cancer-related deaths in women world-
wide (Momenimovahed and Salehiniya 2019). Breast cancer 
can be divided into four molecular subtypes based on the 
expression of progesterone receptor (PR), estrogen receptor 
(ER), and HER2 (Voduc et al. 2010). The most common 
among them is ER-positive which shows maximum resist-
ance to therapies (Waks and Winer 2019; Rani et al. 2019). 
Recent advancements in CRISPR technology have led to 
the identification of different potential therapeutic targets 
in different breast cancer subtypes (Yang et al. 2018). Cur-
rently, many research laboratories are exploring therapeutic 
targets in breast cancer by studying multiple proteins with 
oncogenic effects (Lima et al. 2019). Ebright and colleagues 
used CRISPR-based genome screening to identify genes 
which are responsible for metastasis. They reported over-
expression of RPL15, a component of a large ribosomal unit, 
to be a major factor responsible for the metastatic growth. 
By the advent of CRISPR-based screening, they identified 
multiple genes which are well-established oncogenes or 
genes involved in cancer hallmark pathways (Ebright et al. 
2020). A recent study by Selinas et al. has used CRISPR 
technology to study the role of FASN gene (involved in 
ERα signaling) in the development of breast cancer. Using 
CRISPR, they generated different clones with frameshift 
mutations in FASN gene and observed different stages of 
cancer development. They concluded that FASN knockout 
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resulted in decreased proliferation and migration of breast 
cancer cells (Gonzalez-Salinas et al. 2020). Triple negative 
breast cancer (TNBC) is a subtype of breast cancer which is 
characterized by the loss of estrogen receptor, human epi-
dermal growth factor receptor, and progesterone receptor 
(Telli 2016). There are not many therapeutic options avail-
able for this type of cancer and prognosis of TNBC remains 
the poorest among all other types of breast cancer (Wahba 
and El-Hadaad 2015). Not many studies have been done to 
investigate the therapeutic approach of CRISPR in TNBC. 
Guo et al. have synthesized a noncationic tumor-targeted 
nanolipogel system (tNLG) to knockout Lipocalin 2 (Lcn2), 
a breast cancer-promoting gene, in vitro and in vivo. This 
approach resulted in significant decrease in tumor growth 
and highlighted the importance of CRISPR genome edit-
ing for therapeutic applications in TNBC (Guo et al. 2019). 
Almost 70–80% of BRCA1 mutations lead to the develop-
ment of TNBC (Brianese et al. 2018). The poly(ADP‐ribose) 
polymerase 1 (PARP1) gene is the synthetic lethal pair of 
BRCA1 and can be targeted for TNBC treatment (Faraoni 
and Graziani 2018). There are some clinical studies which 
are using PARP1 inhibitors such as olaparib (AZD‐2281) 
and veliparib (ABT‐888), and are currently under inves-
tigation (Lord and Ashworth 2017). Chemotherapy has 
also been used along with PARP1 inhibitors, but not much 
improvement was seen. Because of all these inconsist-
ent data, CRISPR can be used to expedite the drug test-
ing in preclinical studies. Mintz et al. (2020) used CRIPSR 
approach for generating PARP1-deficient TNBC cell lines 
(with and without BRCA1 mutation). The therapeutic effi-
ciency of different drugs was checked both in 2D and 3D 
tumor-chip models. They reported that TNBC cells (with 
both BRCA1 and PARP1 mutations) were more sensitive 
to chemotherapeutic breast cancer drugs docetaxel, doxo-
rubicin, and gemcitabine in 2D culture, but the result was 
not that promising for 3D tumors. Further investigation is 
required to understand the exact mechanism of difference 
in both the systems, so that better therapy approaches for 
treating BRCA1 mutant TNBC can be developed (Mintz 
et al. 2020).

Colorectal cancer

Colorectal cancer is the fourth cause of cancer-related deaths 
worldwide where adenocarcinomas are the most prominent 
one (Compton 2003). The well-known driver mutations in 
colorectal cancers are KRAS and BRAF (Yokota 2012; Yau 
et al. 2017). Using CRISPR/Cas9 genome-wide screening 
of KRAS wild type and mutant xenografts, different genes, 
which act as either an oncogene or tumor suppressor, have 
been screened out, but clinical studies are needed to con-
firm their efficacy (Yau et al. 2017). A very recent study 
by Wan et al. (2020) have identified a new strategy for the 

construction of supramolecular vectors which facilitate 
in vivo delivery of CRISPR/Cas9 in the form of ribonu-
cleoprotein (RNP) and inhibit tumor growth and metastasis 
in experimental mouse models by targeting mutant KRAS 
(Gao et al. 2020). This study provides a new effective ther-
apeutic strategy for treatment of colorectal cancer using 
CRISPR approach. Similarly, Ryu et al. (2020) have devel-
oped a nanoliposomal particle, which contains Cas9 pro-
tein and a single-guide RNA (sgRNA) to specifically target 
KRAS mutation in colorectal cancer. Takeda et al. have used 
CRISPR/Cas9 to functionally characterize colorectal cancer 
driver genes in mouse intestinal tumor organoids and human 
colorectal cancer-derived organoids. This study resulted in 
the identification of Arid2, Acvr2a, and Acvr1b as tumor 
suppressors. This system can also be used in other orga-
noid system to identify novel driver cancer genes (Takeda 
et al. 2019). Li et al. have used CRISPR/Cas9 approach to 
generate CD133 knockout colon cancer cells to study its 
role. CD133 is a cancer stem cell marker and plays a very 
crucial role in proliferation and invasion in colon cancer (Li 
et al. 2019b). Izumi et al. have generated xenograft mouse 
models using CRISPR/Cas9 approach with stable knock-
down of TIAM1, a gene involved in Wnt signaling pathways 
and is over-expressed in colorectal cancer. By studying the 
role of TIAM1 in colon cancer cells, it was identified as 
a therapeutic target to reverse drug resistance (Izumi et al. 
2019). Environmental and genetic factors play an impor-
tant role in the colon cancer development. Haiwen li et al. 
have used CRISPR approach to identify the genetic factors 
involved in the regulation of oxidative stress. Galectin 2 
(Gal2) protein, encoded by LGALS2, is known to be down-
regulated in colon cancers. With the help of some in vitro 
and mice studies, this group showed the therapeutic potential 
of Gal2 in colon cancer. CRISPR has been increasingly used 
in genome-wide screening to study various signaling path-
ways in different disease conditions, and altogether, all these 
studies have provided a new dimension to this approach (Li 
et al. 2020b).

Prostate cancer

There are different studies showing the importance of the 
CRISPR/Cas9 system in Prostate cancer. Kawamura et al. 
(2015) established NANOG1 and NANOGP8-knockout 
PCa cell lines and studied the function of these genes in the 
same cell lines. Several studies have suggested NANOG1, a 
transcription factor, to be involved in the process of malig-
nancy using RNAi-based approaches. NANOGP8 is a pseu-
dogene which encodes full-length NANOG1 protein. RNAi 
can have off-target effects due to high similarity between 
NANOG1 and NANOGP8 mRNA. CRISPR/Cas9 proved to 
be a boon for this study as it resulted in the proper knockout 
of NANOG1 and NANOGP8 in PCa cell lines. Multiple 
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experimental approaches further suggested the role of these 
two genes in the malignant potential of PCa (Kawamura 
et al. 2015). Another recent interesting study by Kounati-
dou et al. (2019) have used CRISPR technology to gener-
ate PCa cell lines which have lost expression of Androgen 
Receptors of Full Length (AR-FL), but have all endogenous 
AR-Vs. One of the major problems in treating PCa is the 
development of resistance to androgen receptor (AR)-tar-
geted therapies. A very recent article by Warner et al. (2020) 
highlighted the importance of ERβ in PCa. Complete knock-
out of ERβ was not successful in the previous studies as the 
knockout techniques only deleted the DNA-binding domain 
of ERβ which is not required for ERβ signaling. With the 
help of CRISPR/Cas9 technology, the ERβ gene was com-
pletely deleted (Warner et al. 2020). In another study, Ye 
et al. (2017) have deleted GPRC6A, a G-protein coupled 
receptor known to be involved in the progression of PCa, 
using CRISPR/Cas9 and found out that GPRC6A editing 
could reduce androgen biosynthesis by regulating enzyme 
expression involved in the process. A very novel approach 
to target tumors in vivo by chimera delivery system consist-
ing of RNA aptamers-liposome-CRISPR/Cas9 was devel-
oped by Zhen and team (2017). This could act as a potential 
therapeutic approach for treating PCa. However, this has its 
own challenge which includes isolation of aptamers which 
itself can be a herculean task (Esposito et al. 2018). In a very 
recent study by Jiang et al., CRISPR was used to knockout 
PCa associated miRNAs for functional validation. Different 
miRNAs such as miR-205, miR-221, miR-455-3p, miR-222, 
miR-224, miR-505, miR-23b, miR-30c, miR-1225-5p, and 
miR-663a were knocked out in PCa cell line LNCaP, and 
their effects were studied. This study, to the best of author’s 
knowledge, first time reported that miR-663a and miR 1225 
5p may be involved with the progression of prostate cancer, 
suggesting their potential as candidate biomarker (Jiang et al. 
2020). Another recent study by Rushworth et al. (2020) have 
used whole-genome CRISPR screening to identify genes 
and related pathways which is responsible for sensitization 
of prostate cancer cells against taxane treatment. Through 
this study, they reported that suppression of transcription 
elongation factor A-like 1 (Tceal1) enhances taxanes (doc-
etaxel) efficacy. Park et al. used CRISPR to produce NKX3.1 
knockout mice. NKX3.1 is a well-known tumor-suppressor 
gene which is known to act as an androgen-regulated tran-
scription factor. This study provided evidence that CRISPR-
mediated knock-down of NKX3.1 gene leads to PIN lesions 
and alteration in different cancer pathways (Park et al. 2020). 
Chakraborty et al. have used CRISPR for concomitant dele-
tions of BRCA1 and RB1 which induces EMT transition and 
leads to aggressive prostate cancer progression. This is the 
first study which shows that co-loss of two genes induces a 
distinct phenomenon in prostate cancer which is associated 
with worse prognosis (Chakraborty et al. 2020).

Bone cancer

Osteosarcoma is the most common type of malignant bone 
cancer affecting children and adults (Yan et al. 2016). Ear-
lier to the 1970′s, osteosarcoma was seldom treatable, even 
through certain surgical treatments. Since then, the com-
bined effect of surgical treatment and use of chemotherapeu-
tic agents such as doxorubicin, cisplatin, and methotrexate 
have been used worldwide and shown effective survival rate 
among the population. Unfortunately, none of the tyrosine 
kinase inhibitors like imatinib and sorafenib are proven to 
be better diagnostic therapies than the conventional methods 
(Lodish 2013); however, few of the tyrosine kinase inhibi-
tors such as vascular endothelial growth factor, platelet-
derived growth factors, and IGF1 get over-expressed during 
osteosarcoma (Li et al. 2019c). In addition to this, many 
osteosarcoma cells have shown dependency on CDK11 for 
growth (Feng et al. 2015). Thus, a clear understanding of 
biological processes underlying osteosarcoma and an urgent 
requirement of novel chemotherapeutic agents are needed. 
In recent years, the CRISPR/Cas9 system of bacterial host 
defense mechanisms has proven to be a better genome-edit-
ing tool in cancer diagnosis. Feng et al. have given evidence 
for utilizing the CRISPR/Cas9 system as a robust genome-
editing tool for determining direct effect of CDK11 gene in 
osteosarcoma cell line by efficiently silencing it. The CDK11 
inhibition is connected with decreased cellular proliferation 
and viability in osteosarcoma cell lines, and thus, CDK11 
knockout could be used as a powerful prognostic marker for 
diagnosing osteosarcoma (Feng et al. 2015). Furthermore, 
Liao et al. (2017) have proved that higher level of PD-L1 
expression in osteosarcoma patients could also be disrupted 
by CRISPR/Cas9 strategy and PD-L1 knockout can be used 
as a promising therapeutic approach for osteosarcoma diag-
nosis. Another recent report for osteosarcoma diagnosis was 
established by Wu et al. (2020b) where they reported the 
development of kinase library for CRISPR/Cas9 which can 
be used as a promising tool for genomic screening in osteo-
sarcoma as well as for drug discovery in any other kind of 
cancer.

Ovarian cancer

Ovarian cancer is one of the cancer-associated causes of 
mortality in female individuals (Permuth-Wey and Sellers 
2009). It is of extreme importance to understand the molecu-
lar mechanism behind tumor development and determine 
certain oncogenic markers for inhibiting its malignancy. The 
over-expression of OC-2 gene has been proven to be highly 
regulating tumor progression in ovarian cancer (Khaider 
et al. 2012; Wu et al. 2020a). Lu et al. (2020a) have reported 
a CRISPR/Cas9-based genome-editing tool which directly 
inhibits the OC-2 expression in ovarian cancer cell lines 
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and, thus, finally results in down regulation of pre-tumor 
growth factors such as FGF2, vascular endothelial growth 
factor, and human growth factors. Furthermore, utilizing 
CRISPR/Cas9 editing tool for targeting altered DNA meth-
yltransferase I might be used as a potential therapeutic agent 
for ovarian cancer diagnosis (He et al. 2018). In addition, 
CRISPR/Cas9 system-mediated induction of mutations in 
genes which are found altered in high-grade-serous ovarian 
cancer showed the dual origin for these high-grade tumors 
which could also be used to design biomarkers for study-
ing their molecular mechanisms (Govindarajan et al. 2020; 
Lõhmussaar et al. 2020).

Hepatocellular cancer

Hepatocellular cancer is the second most leading cancer-
related death in humans worldwide (Savitha et al. 2017). 
Despite several advancements in interpreting various pro-
cesses regulating the hepatocellular carcinoma progression 
through tumor-associated genes such as TP53, the underly-
ing mechanisms driving the tumor progression are rarely 
understood. Thus, it is important to discover carcinoma 
progression mechanisms with an aim to improve diagnosis 
for individuals suffering from hepatocellular cancer. The 
nuclear receptor-binding SET domain proteins (NSD) are 
known to be involved in the tumorigenesis process (Bennett 
et al. 2017), while in reference to hepatocellular carcinoma, 
the molecular mechanisms of these proteins are rarely dis-
covered. The CRISPR/Cas9-mediated genome-editing tool 
is an efficient approach in inducing variations with single 
guideRNA or producing knockout of genetic fragments with 
multiple guideRNAs in human cells to better understand the 
biological mechanism underlying any disorder (Rodríguez-
Rodríguez et al. 2019). For example, CRISPR/Cas9 sys-
tem influences alterations in Pten and P53 genes which has 
been reported to assist hepatocellular cancer development 
in transgenic mice (Liu et al. 2017c). In addition, genome 
editing of CXC chemokine receptor 4 through CRISPR/Cas9 
system has been reported to reduce cellular proliferation 
and progression of hepatocellular carcinoma in living cells 
(Wang et al. 2017). Another study reported that CRISPR/
Cas9 system mediates knockout of NSD-1 which assists in 
suppression of hepatocellular carcinoma progression and 
transfer in cells, suggesting that NSD1 could be treated as 
a potential regiment for its diagnosis (Zhang et al. 2019b).

Advancements of CRISPR/Cas9 technique 
on mouse cancer models

As cancer genomes are characterized with complex prospects 
of mutations and several kinds of genomic alterations (Bai-
ley et al. 2018). One of the major limitations in interpreting 

the cancer genome is to extract the genetic information about 
mutations that are controlling the tumor evolution process 
(Vogelstein et al. 2013). Genetic screening is one of the 
most substantial tools for ascertaining pathogenic muta-
tions in tumor progression (Hanahan and Weinberg 2000, 
2011). In the past, RNA interference and open-reading frame 
expression studies have been extensively used for predicting 
cancerous genes in oncogenic mouse models (Livshits and 
Lowe 2013). Currently, the Cas9 nuclease enzyme from the 
bacterial type II CRISPR system has been exploited majorly 
in eukaryotic species (Cong et al. 2013). The CRISPR sys-
tem is used to introduce genetic alterations in less than 
4 weeks of duration, thus providing an efficient platform for 
functionally annotating the cancer genome. In particular, 
there are currently two interrelated approaches available for 
building mouse models through genome editing: germline 
and somatic. The germline mouse models could be generated 
by inducing cancer-derived variations into mice embryonic 
stem cells, thereby generating germline-transmitting alleles 
and permitting their maintenance through animal husbandry. 
The CRISPR/Cas9 system can successfully develop double-
stranded breaks into mouse embryos and thus generating 
genetically modified mice which are briefly not resting on 
their suitable embryonic stem cells (Amitai and Sorek 2016; 
Inui et al. 2014). In contrast, the somatic cancer mouse mod-
els reiterate the somatic capability of tumor progression and 
divert the embryonic damage caused due to knockout of par-
ticular genes in mice (Lampreht Tratar et al. 2018). The brief 
applications of CRISPR technology in mouse models and 
cancer research are shown in Table 3.

CRISPR in cancer clinical trial

The somatic genome editing with CRISPR/Cas9 approach 
has enhanced the therapeutic applications of genes and 
immunotherapy in cancer biology (Sayin and Papagianna-
kopoulos 2017). For instance, in vivo modeling of repeti-
tive ERCC3 variation contributes to medium risk of breast 
tumor in ERCC3-deficient cells, thus permitting to visual-
ize effects of ERCC3 malformed-repair phenotype (Vijai 
et al. 2016). Furthermore, genome-editing process has also 
enabled in vivo sensitive biomarkers prediction for smaller 
biomolecules, for, e.g., detecting SLFN11 which is sensi-
tive to PARP inhibitors as a predictive biomarker for lung 
cancer (Lok et al. 2017). Moreover, examination of muta-
tions of EGFR tyrosine kinase inhibitors in EGFR-mutant 
non-small cell lung cancer has led to detection of patho-
genic variations and thus resulting in better targeted resist-
ance therapies (Leonetti et al. 2019). The genome editing 
through CRISPR/Cas9 knockout has allowed the progres-
sion of mutations and detection of candidate risk genes 
connected with p53 and KRAS proto-oncogenes in mouse 
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Table 3   Generation of different animal models using CRISPR approach to study about various cancers

Cancer type Animal model References

Non-small cell lung cancers (NSCLC) Mouse model of Eml4-Alk-driven lung cancer was generated using the 
CRISPR/Cas9 technology

Maddalo et al. (2014), Blasco 
et al. (2014)

Liver cancer Direct mutation of tumor-suppressor genes such as PTEN and p53 and 
oncogenes in the mouse liver using the CRISPR/Cas system, may 
lead to the rapid development of the animal models

Xue et al. (2014)

Lung adenocarcinoma KRAS, p53, and LKB1genes were mutated for lung adenocarcinoma 
for developing a mouse model

Platt et al. (2014)

Lung adenocarcinoma Cre-dependent somatic activation of oncogenic K-Ras (G12D) along 
with CRISPR/Cas9-mediated genome editing of tumor-suppressor 
genes resulted in lung adenocarcinomas mouse models

Sanchez-Rivera et al. (2014)

Pancreatic ductal adenocarcinoma CRISPR/Cas9-mediated gene inactivation of Lkb1in combination with 
oncogenic K-Ras expression in mice pancreas

Chiou et al. (2015)

Alveolar rhabdomyosarcoma (A-RMS) In vivo mimicking of reciprocal translocation t(2;13)(q36.1;q14.1) in 
mice creates a pathognomonic PAX3-FOXO1 fusion gene

Lagutina et al. (2015)

Brain tumor Deleting single (Ptch1) or multiple genes (Trp53, Pten, Nf1) in the 
mouse brain, using CRISPR/Cas9, results in the development of 
medulloblastoma and glioblastoma, respectively

Zuckermann et al. (2015)

Pancreatic cancer Multiplex genetic engineering of multiple genes in the pancreatic cells 
of mice

Maresch et al. (2016)

Breast cancer PYCR1 knockout in an in vivo mouse disease model Loayza-Puch et al. (2016)
Lobular breast carcinoma Generation of mice models by targeting the ILC-initiating cells and 

induce specific gene disruption of PTEN with the CRISPR/Cas9 
gene-editing tool

Annunziato et al. (2016)

Ovarian cancer CRISPR/Cas9-mediated Trp53 and BRCA2 Knockout to generate 
improved murine models of Ovarian High-Grade Serous Carcinoma

Walton et al. (2016)

Retinoblastoma Knockout of rb1 and rbl1 leads to retinoblastoma development in 
Xenopus tropicalis

Naert et al. (2016)

Metastatic renal cell carcinoma (mRCC) Knock out of Von Hippel Lindau (VHL), a tumor suppressor in the 
RENCA model leads to morphologic and molecular changes indica-
tive of epithelial-mesenchymal transition (EMT) phenotype, which 
in turn drives increased metastasis to the lungs

Schokrpur et al. (2016)

Colorectal cancer (CRC) Tumor formation is induced editing of the tumor-suppressor genes 
such as Apc and in colon epithelial cells and later by transplantation 
of Apc-edited colon organoids

Roper et al. (2017)

Ovarian cancer CRISPR/Cas9 gene editing was used to generate derivatives with dele-
tions in Brca1, PTEN and Nf1 to produce murine models of ovarian 
high-grade-serous carcinoma (HGSC)

Walton et al. (2017)

Brain tumor For precise modeling of human tumors through the somatic deletion 
of tumor-suppressor genes, such as Trp53, Cdkn2a, and Pten in the 
neural stem cells, a series of mouse strains were generated by com-
bined approach of RCAS-TVA and CRISPR/Cas-9

Oldrini et al. (2018)

Retinoblastoma Rb1 knockout in Xenopus tropicalis using CRISPR/Cas9 tool Naert and Vleminckx (2018)
Leukemia CRISPR/Cas9 gene editing is used to induce MLL chromosomal trans-

location t(9;11) in human hematopoietic stem and progenitor cells
Jeong et al. (2019)

Brain tumors Accurate cell targeting of genetic recombination, Sleeping beauty 
and piggyBac transposons and CRISPR/Cas9 for generating genetic 
knockout and functional screens

Noorani (2019)

Hepatocellular carcinoma (HCC) Specific knock-out of Androgen Receptor (AR) gene in the liver of 
zebrafish via the CRISPR/Cas9 system

Li et al. (2019a)

Leukemia An experimental pipeline, based on mosaic genome editing by 
CRISPR/Cas9, to generate high-performing leukemia models in 
Xenopus tropicalis

Dimitrakopoulou et al. (2019)

Small cell lung cancer (SCLC) Using CRISPR/Cas9 genome-editing tool, a murine model of SCLC 
is rapidly modeled for the loss of the gene p107, which significantly 
accelerated the tumor progression

Ng et al. (2020)
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embryonic fibroblasts, assisting in comprehension of pri-
mary mice sarcomas (Huang et al. 2019). In another study, 
total knockout of ORF57 was performed in HEK293/Bac36 
cells and simultaneously expressed in Cas9 protein along 
with two guide RNAs connected with cell selection from 
an isolated vector (BeltCappellino et al. 2019). In further 
clinical trials, investigators have examined the role of FRK 
oncogene in lung cancer cell lines, depicting FRK knockout 
leading to cellular colony formation cancer cell prolifera-
tion (Zhang et al. 2020). In a recent report, ex vivo genome 
editing for cancer treatments is performed through chimeric 
antigen receptor T-cell (CAR-T) therapy and PD-1-induced 
immunotherapy utilizing CRISPR/Cas9 editing approach to 
destroy the tumors (Stadtmauer et al. 2020). In this clini-
cal trial NCT03399448, three patients were administered 
CRIPSR-mediated T cells where two patients were suffering 
from multiple myeloma and one patient was suffering from 
liposarcoma. All the patients were heavily pretreated both by 
chemotherapeutic regimens and transplants. Since the trial, 1 
patient has died and there is disease progression in rest of the 
two patients (Stadtmauer et al. 2020). In addition, CRISPR/
Cas9 systems are also used to produce in vivo chromosomal 
abnormalities such as deletions, duplications, insertions, and 
inversions (Cheong et al. 2018). The results of the first-in-
human phase I clinical trial of CRISPR/Cas9 PD-1-edited 
T cells in patients with advanced non-small-cell lung can-
cer (NCT02793856) were reported to be safe, feasible, and 
effective (Lu et al. 2020b). In another clinical trial, genome-
wide CRISPR screen was used to identify the reduction in 
gemcitabine-induced apoptosis in the Gall Bladder cancer 
cells, due to the loss of ELP5, which results in the poor sur-
vival rate of the patients with lower ELP5, hnRNPQ, or P53 
expression after the gemcitabine chemotherapy (Xu et al. 
2019c). All the above-cited instances support the efficacy 
of CRISPR/Cas9 system in both in vivo and in vitro studies 
and their implementation in gene therapy fields. However, 
the approach has not been used extensively; the increased 
reported studies will probably promote its understanding in 
wide applications in the medical field and contribute toward 
better understanding in disease etiology (Doudna 2020).

CRISPR/Cas9 and long non‑coding RNAs

Long non-coding RNAs constitute a large family of non-
coding endogenous RNAs with > 200 nt, which are con-
sidered to play a major role in regulation of biological 

processes (Mercer et  al. 2009). There is also evidence, 
suggesting that lncRNA plays a pivotal role in the devel-
opment of a number of human cancers (Jiang et al. 2019). 
These are also identified as potential biomarkers for various 
diseases. While numerous lncRNAs are characterized and 
studied, the biological functions of most of the lncRNAs 
are yet to be discovered (Bhan et al. 2017). Understanding 
each of the lncRNA and their role in regulation is critical 
for various fields in biological research such as develop-
mental biology, genetics, evolution, etc. Genetic modifica-
tion is one of the essential approaches to study the function 
of the lncRNAs and other genes, which has been acceler-
ated by the usage of CRISPR/Cas9 gene-editing technology 
(Goyal et al. 2017). Three common strategies are used to 
knock down the lncRNAs: (i) RNA degradation by RNA 
interference (RNAi; Elbashir et al. 2001); (ii) degradation 
of the RNAs by RNase H, which is activated by antisense 
oligonucleotides (ASOs) (Bennett and Swayze 2010); (iii) 
CRISPR/Cas9 technology (Liu et al. 2017b). Similarly, as 
the CRISPR/Cas9 is seen as the revolutionary genome-edit-
ing tool for all areas of molecular biology, it can also be used 
in the lncRNA research to delete lncRNA genes to introduce 
RNA-destabilizing elements into their locus. Each of these 
methods has their own advantages and disadvantages, and 
the success of the editing process is also influenced by the 
sub-cellular localization of the lncRNAs. Some lncRNAs are 
located in the nucleus and are involved in the regulation of 
transcription and RNA processing, whereas other lncRNAs 
are located in the cytoplasm, where they target the protein 
localization, mRNA stability, and translation (Zhang et al. 
2019c). Some lncRNAs are found to be equally present in 
both nucleus and cytoplasm. RNAi is one of the commonly 
used methods for the knockdown of the lncRNAs within 
the nucleus. It utilizes the RNAi-induced silencing complex 
(RISC), a multiprotein molecule with siRNA to target a spe-
cific RNA for degradation. While the ASOs are used for 
editing the lncRNAs present in the cytoplasm. They are used 
to target and bind to the RNA which then employs endog-
enous RNase H1 enzyme which readily cleaves the RNA 
in the heteroduplex RNA:DNA. It has also been reported 
that only 38% of the lncRNA loci are safely amenable to 
apply CRISPR technology, whereas the remaining lncRNA 
loci are at risk of deregulating the adjacent genes as most 
of these lncRNAs are derived from bidirectional promoters 
or they overlap with promoters or regions of sense or anti-
sense genes. There will be some cases where lncRNAs will 
not be knocked down either by RNAi or by ASOs which 

Table 3   (continued)

Cancer type Animal model References

Breast cancer Generation of a knock-in mouse with Cre-conditional expression of a 
cytidine base editor

Annunziato et al. (2020)
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could be due to their sub-cellular localization and inacces-
sibility to RNase H or RNAi machinery. In that situation, 
CRISPR technology will play a very important role, and 
currently, there are many researches which have successfully 
implemented CRISPR/Cas9 genome-editing technology to 
knock out lncRNAs (Horlbeck et al. 2020). One such study 
by Singh et al. (2016) involved deletion of BC200, a lncRNA 
which is known to be involved in protein synthesis in ER-
positive breast tumors, in vitro and in vivo which resulted 
in the reduced cell growth through expression of a proapop-
totic protein (Richard and Eichhorn 2018). This also opened 
up new avenues for therapeutic approaches for treatment of 
breast cancer.

Challenges in using CRISPR technology 
in cancer

The CRISPR–Cas9 system has facilitated specific genome-
targeted editing processes and has been comprehensively 
applied to cancer treatment therapies in a broader way, 
opening new possibilities for cancer management. How-
ever, there remain a few challenges concerning the efficiency 
and precision which needs to be concerted for clinical and 
diagnostic applications, such as gene-editing ability, plausi-
ble non-specific insertion, potential off-targets effects, and 
delivery mechanisms. Hence, it is important to consider 
crucial factors that might influence the clinical outcome of 
CRISPR–Cas9 system-mediated genomic manipulation in 
cancer.

Genome-editing efficiency is the major factor for the util-
ity of the CRISPR technology, because as of now, the system 
can result in significant level of changes in the non-targeted 
sites (Zhang et al. 2015). These undesirable mutations may 
be silent or may have deleterious effects. The various mecha-
nisms have already been discussed. Another important chal-
lenge came across the development of CRISPR–Cas9 system 
is its successful delivery to the target cells in vivo for its 
implementation in clinical therapeutics. Adeno Associated 
Virus (AAV) associated Cas9 transportation occurs well in 
a laboratory system, but some limitations still emerge in 
clinical and therapeutic settings. For example, expression 
of some important genes could be altered when transgene 
is introduced into the target genomic region. Some of the 
physical delivery methods including Electroporation have 
been widely used for ribonucleoproteins delivery which has 
been successfully employed in Cas9–sgRNA transportation 
into cells in vitro. Other methods for Cas9–sgRNA delivery 
include microinjections and liposome-mediated transfec-
tion systems. Since, Cas9–sgRNA complex is anionic, thus 
cationic lipid transfection reagent can be used to transport 
this complex which further results in around 80% genetic 
alteration in cells with enhanced editing accuracy (Lino 

et al. 2018). Moreover, the most suitable carriers could be 
non-viral-mediated in vivo delivery of nucleases in RNA 
or protein which revokes the transcriptional and transla-
tional processes. In contrast to virus-mediated and DNA/
RNA vectors, the nanoparticle-based delivery mechanisms 
might have potential advantages, leading to precise dose 
duration, minimized risk of off-target cleavage effects, and 
reduced immunogenic and cytotoxic effects (Wilbie et al. 
2019). These entire advantages support a safe and highly 
efficient genome modification process in vivo. However, 
nanoparticle-mediated ribonucleoprotein harbors a few chal-
lenges in the form of difficult packing into smaller particles 
to maintain intact biological function and to further avoid 
their degradation prior to entering nuclei of cells. Hence, 
the non-viral delivery reagent should be biologically com-
patible, non-tumorigenic, and non-cytotoxic, and also have 
the capability to transport Cas9–sgRNA complex to the cell 
nuclei for efficient genome-editing mechanism (Chen et al. 
2020).

Discussion

In this review, we have attempted to summarize the role 
of CRISPR/Cas9 in different fields, but mainly focusing on 
cancers such as lung cancer, bone cancer, prostate cancer, 
liver cancer, etc. We have also made a comparison among 
CRISPR/Cas9 and other established genome-editing tech-
nologies. Out of all the other established technologies, 
CRISPR is the most advanced and highly efficient tech-
nique. Because of its high efficiency, CRIPSR holds a great 
potential for therapeutic applications. There are still some 
limitations for CRISPR which include proper delivery to 
the target cells and to minimize off-target effects. There has 
been continuous modification for better implementation of 
CRISPR technology in humans.

Conclusions

CRISPR-mediated genome editing has a great potential 
in the field of cancer therapeutics, but for its successful 
implementation, there are certain issues which need to be 
resolved; for example, standardization of delivery methods 
to minimize off-target effects and to reduce toxicity to other 
cells, etc. Despite all these challenges, CRISPR/Cas9 has 
given an invaluable contribution in the field of gene therapy 
and played an important role in cancer treatment. Also, 
CRISPR/Cas9 is able to manipulate non-coding regions of 
the genome which gives a valuable source for understanding 
the poorly characterized part of the cancer genome. Another 
major application of CRISPR technology is the generation of 
chimeric antigen receptor (CAR) T cells that can recognize 
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specific antigens on cancer cells. The research in CAR-T 
cells has been increasing tremendously, and for this purpose, 
CRISPR/Cas9 can play an indispensable role.
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