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PlasmidHawk improves lab of origin prediction of
engineered plasmids using sequence alignment
Qi Wang1, Bryce Kille2, Tian Rui Liu2, R. A. Leo Elworth2 & Todd J. Treangen 2✉

With advances in synthetic biology and genome engineering comes a heightened awareness

of potential misuse related to biosafety concerns. A recent study employed machine learning

to identify the lab-of-origin of DNA sequences to help mitigate some of these concerns.

Despite their promising results, this deep learning based approach had limited accuracy, was

computationally expensive to train, and wasn’t able to provide the precise features that were

used in its predictions. To address these shortcomings, we developed PlasmidHawk for lab-

of-origin prediction. Compared to a machine learning approach, PlasmidHawk has higher

prediction accuracy; PlasmidHawk can successfully predict unknown sequences’ depositing

labs 76% of the time and 85% of the time the correct lab is in the top 10 candidates. In

addition, PlasmidHawk can precisely single out the signature sub-sequences that are

responsible for the lab-of-origin detection. In summary, PlasmidHawk represents an

explainable and accurate tool for lab-of-origin prediction of synthetic plasmid sequences.

PlasmidHawk is available at https://gitlab.com/treangenlab/plasmidhawk.git.
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Thanks to the advancement of genome engineering and
sequencing technology, researchers now have the capability
to readily read and write DNA sequences1. This new

technology has the promise of significantly improving the quality
of human life through various fields, such as increasing agri-
cultural yields2, accelerating drug discovery3 or advancing gene
therapy4. While the use cases of this exciting technology enabling
the bio-economy are largely positive, biosecurity, IP infringement,
and potential misuse remain as concerns5,6. As a proof of prin-
ciple, in response to previously outlined concerns, Allen et al.
utilized a set of signature sequences with length k, also referred as
signature k-mers, to differentiate artificial sequences from natural
genomes and plasmids7. Although this promising k-mer-based
matching approach offers the ability to distinguish artificial
sequences from a set of background sequences, there is still a need
to develop a predictive pipeline that enables the handling of an
enormous amount of input sequences and reveals finer details of a
given synthetic sequence. To meet the need, Nielsen et al.
introduced a software tool to link artificial sequences with their
depositing labs by using deep learning8. Despite the complex
computational challenge, the prediction accuracy was promising:
48% accuracy in correctly identifying the lab-of-origin for an
unknown sequence if allowed one prediction, and up to 70%
accuracy if allowed ten predictions. To date, deep learning has
been wildly applied in analyzing genomic data as the amount of
data has grown larger and more complex9. Applications of deep
learning include gene annotation10, sequence pattern identifica-
tion11, discovering biomarkers12, and inferring cell function and
structure13. At its core, machine learning, and in particular deep
learning, is utilized for classification based on training data and
learning hidden patterns and structure in the data14. Although
deep learning-based approaches have been at the core of tre-
mendous successes and popularity in many areas, including
computer vision15, natural language processing16, and robotics17,
it has some intrinsic disadvantages. First, it has limited explain-
ability; models are often unable to fully detail the features and
decision-making process that led to a given classification or
prediction18. Second, the computational cost and carbon foot-
print of such methods are skyrocketing while processing ever-
increasing amounts of biological data19. Third, the predictions
heavily rely on representative training data and the choice of
hyperparameters20.

To address this, we introduce a fully transparent, efficient,
explainable approach to assist end users in identifying the lab-
of-origin of engineered DNA sequences. We solve the synthetic
sequence tracking problem from an alignment perspective.
Specifically, we make predictions by integrating the information
of common sequences and “signature” sequences used in
plasmid constructs via a pan-genome data structure. Pan-
genomes have been studied for nearly two decades21. Pan
genomes serve as a high-level summary of a biologically related
group of genomes by capturing all of the group’s core and
accessory regions, though the exact definition of a pan-genome
can vary based on the application. In this paper, we define a
pan-genome as a collection of genomic regions that are com-
mon or unique to synthetic biology research labs. Pan-genomes
are frequently applied to capture the genomic diversity of a
bacterial clade22. Many bioinformatic tools have been devel-
oped to build pan-genomes, such as Roary23, seq-seq-pan24,
VG25, and Plaster26. Plaster offers a linear time construction
algorithm enabling it to scale to massive DNA sequence repo-
sitories. Building off of our prior work, we have developed a
pan-genome for all available synthetic plasmid sequences using
Plaster. We then use this synthetic sequence pan-genome as a
framework for predicting the lab-of-origin of previously
unseen, newly engineered sequences.

In this study, we demonstrate that pan-genome alignment
combined with a lab score correction technique can successfully
predict the lab-of-origin of an engineered DNA sequence 75.8%
of the time. Around 85.2% of the time the source lab is included
in the top 10 predicted labs. This approach has very few pre-
processing steps, a quick update time for adding new known
sequences, and a detailed and interpretable explanation for its
predictions. This is in stark contrast to the previous convolutional
neural network (CNN) model which must be retrained to
incorporate a single newly labeled sequence, and which is
intrinsically a black box model.

Results
Neural network vs. PlasmidHawk performance. We have
developed a software called PlasmidHawk to predict the lab-of-
origin of unknown synthetic DNA sequences. Lab-of-origin
prediction with PlasmidHawk consists of three steps. The first
step is to build a pan-genome from the synthetic plasmid training
data using Plaster26. Second, in addition to building the pan-
genome, PlasmidHawk annotates the pan-genome with records of
which unique plasmid regions originated from which depositing
labs. Lastly, PlasmidHawk predicts the lab-of-origin of new,
unseen plasmids in the test data set by aligning those plasmids to
the previously constructed and annotated pan-genome (Fig. 1).

To begin the experiments, we select full plasmid sequences
from labs who have at least ten deposited plasmids in Addgene
for use as our input dataset. There are a total of 38,682 full-length
plasmids from 896 labs. We split the sequences into two groups:
the training group and the testing group. We use the training
sequences to construct and annotate the synthetic plasmid pan-
genome sequence Ptrain. The pan-genome Ptrain contains a set of
unique sequence fragments. Each fragment is stored as an
independent entry in a multi-fasta file. Fragments in the fasta file
form a linear pan-genome. Each fragment is further annotated
with a list of the depositing labs who have sequences that align to
the fragment. After building and annotating the pan-genome, we
predict the lab-of-origin of the sequences in the test set. In order
to identify the lab-of-origin of an unknown plasmid, Plasmid-
Hawk aligns a given test plasmid p to the input pan-genome and
identifies aligned regions in the pan-genome. While aligning to
the pan-genome, the test sequences are broken into a set of sub-
sequences. In this study, we also refer to the test sequence as a
query sequence. Each sub-sequence from the query sequence can
potentially align to multiple fragments in the pan-genome. These
sub-sequences can also overlap with each other inside of the
query sequence. (Fig. 1 Prediction Step 1). It then selects the pan-
genome fragments that overlap with those aligned regions. We
refer to these selected fragments as aligned fragments for the
plasmid p. After identifying the aligned fragments, PlasmidHawk
uses the fragments to predict the depositing lab or labs. Though
PlasmidHawk, for instance in MAX mode, can return multiple
labs as the most likely labs of origin, for this study we only allow
one lab to be the true depositing lab. PlasmidHawk has two
prediction modes: MAX mode and CORRECT mode. MAX mode
predicts the lab-of-origin based on the set of labs who have the
maximum number of aligned fragments for the plasmid p (Fig. 1
Prediction Step 2). Alternatively, CORRECT mode returns the lab
or labs with the minimum “lab score”. CORRECT mode attempts
to refine the set of labs from MAX mode by calculating the lab
score which we introduce in this work. The lab score is calculated
by weighting aligned fragments for each lab (Fig. 1 Prediction
Step 3) (see the “Methods” section). In our experiments, all
depositing labs are always present inside of the training data for
both PlasmidHawk and the CNN benchmark experiments. In the
real world, however, this may not always be the case. In the case
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where the true depositing lab has no presence in the training data,
a query sequence can still align to the pan-genome, and
PlasmidHawk will return the best matching of the previously
seen labs. By the definitions used in our evaluations, this would
effectively be a false negative. That is, the true lab-of-origin would
not be in the top-N labs predicted by PlasmidHawk. It is worth
noting that machine learning methods are also affected by labs
not in the training dataset. Despite this, as shown in
Supplementary Note 1, PlasmidHawk can still provide useful
predictions by pinpointing labs that are closely related to the true
depositing lab’s plasmid.

To evaluate the performance of PlasmidHawk, we reran the
deep learning experiments based on the description in Nielsen
et al. 8. We used the same data set used for the PlasmidHawk lab-
of-origin prediction experiments. We construct and train the
same CNN to predict the lab-of-origin of synthetic sequences.
The final trained CNN can predict the correct lab-of-origin 35.8%
of the time. The correct lab is ranked within the top 10 predicted
labs 70.2% of the time (Fig. 2a). Our CNN prediction results are
only slightly lower than the reported results in Nielsen et al., in
which the accuracy is 48%, and 70% of the time the depositing lab
is included in the top 10 predicted labs. Therefore, we believe our
CNN experiments can fairly represent the performance of CNNs
in lab-of-origin predictions. We believe the cause for the slight
drop in performance between our CNN and the CNN built in
Nielsen et al. is the larger size of our more up-to-date training
dataset and the minor difference in how the true depositing
source labs for each sequence were determined (see the
“Methods” section). We can further optimize the neural network
to improve the results, but, in general, we do not expect a
significant boost in prediction accuracy.

To begin comparing the lab-of-origin prediction accuracy
between the CNN and PlasmidHawk MAX mode, we only
consider the PlasmidHawk MAX mode prediction results,
considering only the case where the true source lab is reported

as the single best prediction. A prediction result containing more
than just the source lab in the highest scoring prediction set, or
that does not contain the true source lab in this set, is classified as
an incorrect prediction. In this case, PlasmidHawk MAX mode
can reach 63.95% accuracy. To further compare the results
between the CNN and PlasmidHawk MAX mode, we calculate
the accuracies when considering the 2, 5, 10, 20, and 50 best
scoring predicted labs (Fig. 2a) (see the “Methods” section).
Overall, PlasmidHawk MAX mode outperforms the CNN with
respect to both TPR and FPR (ROC curve in Fig. 2d).

PlasmidHawk CORRECT mode identifies source labs by
calculating lab scores for all the labs selected from MAX mode
(see the “Methods” section). The lab(s) with the lowest lab score
values are considered as the final lab-of-origin predictions. Using
the same test data sets used in the MAX mode prediction
experiments, PlasmidHawk CORRECT mode has around 75.8%
accuracy. 85.2% of the time the source lab is in the top 10
predicted labs (Fig. 2a). In addition, when compared to the CNN
approach, the accuracies of both MAX mode and CORRECT
mode have lower standard deviations (Fig. 2a). This means that in
general lab-of-origin predictions from PlasmidHawk are more
consistent.

PlasmidHawk prediction and confidence. The number of labs
returned by PlasmidHawk MAX mode and the ranking of labs in
CORRECT mode reflect the confidence PlasmidHawk has in its
lab-of-origin prediction. If MAX mode outputs only one lab as
the potential depositing lab, around 92% of these predictions are
right. If MAX mode outputs two labs, roughly 66% of the time
CORRECT mode is able to distinguish the right depositing lab
from those two candidates (Supplementary Fig. 1a). As the
number of labs predicted by MAX mode increases, the accuracy
will decrease, though it remains better than random guessing. In
summary, the fewer labs returned by MAX mode, the more
confident PlasmidHawk’s final lab prediction is.

Fig. 1 PlasmidHawk Pipeline. First, a pan-genome from the Addgene plasmids is built by Plaster. The plasmids are then aligned back to the final pan-
genome to annotate the pan-genome with the depositing lab information for each aligned fragment. To predict the lab-of-origin of an unknown plasmid,
PlasmidHawk aligns the unknown plasmid to the annotated pan-genome (Prediction Step 1) and counts the number of aligned fragments for each lab
(Prediction Step 2). PlasmidHawk returns the labs that have the maximum number of aligned fragments as the predicted labs for lab-of-origin (Prediction
Step 2). Finally, PlasmidHawk calculates the plasmid lab score for each lab. This step takes the labs with the minimum lab score as a final refinement step
of its predictions for lab-of-origin (Prediction Step 3).
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Similarly, the ranking of predicted labs in the PlasmidHawk
CORRECT mode is also associated with the confidence
PlasmidHawk has in its prediction. Supplementary Fig. 1b shows
the plasmids, whose depositing labs are returned by Plasmid-
Hawk MAX mode (the number of labs returned by MAX mode is

larger than 1) and then ranked by CORRECT mode. In around
54% of these cases, the top 1 plasmid ranked by CORRECT
mode will be the correct source lab. As the true lab ranks lower in
the CORRECT mode, the probability that the lab is the
true source lab is lower. Therefore, the ranking of predicted labs

Fig. 2 Prediction results and statistical analysis. a The performances of plasmid lab-of-origin prediction using PlasmidHawk and the CNN. Data
represents mean ± SD of N= 5 independent experiments. b Linear regression analysis between averaged lab Jaccard distances and averaged lab scores.
Each dot represents a lab. The x axis shows averaged lab Jaccard distances. The larger the averaged lab Jaccard distance is, the more unique a lab’s
plasmids are. The y axis is the averaged lab score. Labs with smaller averaged lab scores are more likely to be returned by PlasmidHawk CORRECT mode as
predicted source labs. Two-sided p-value is calculated (p= 3.23e−56). c Principal component analysis of labs based on lab Jaccard distances. The colors
label labs based on their sequences’ host cells. The size of the dot corresponds to the percentage of the most abundant host cells inside a lab. Blue:
mammalian lab (M), Green: yeast lab (Y), Red: bacterial lab (B), black: N/A lab (NA). d Receiver operating characteristic (ROC) curve for the CNN and
PlasmidHawk. e A clade of the lab-relatedness tree. Branch lengths are shown on the top of the branches. Support values are annotated under the branches
and marked in blue. Support values equal to 0 are not displayed. Labs who belong to the same academic family tree or have collaborated with each other
are highlighted in red.
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in CORRECT mode is also a representation of PlasmidHawk’s
confidence level. The higher the rank, the higher confidence
PlasmidHawk has that it is the likely lab-of-origin.

Lab scores and lab sequence similarities. PlasmidHawk COR-
RECT mode lab-of-origin experiments show that calculating the
lab score can significantly improve the accuracy of predicting
source labs (Fig. 2a). Lab scores are calculated by summarizing all
the weights of different parts of query sequences. The magnitude
of the weights are decided by the uniqueness of the sequences (see
the “Methods” section). PlasmidHawk then normalizes the lab
scores and chooses labs with the minimum lab score as the final
lab-of-origin prediction. Based on the workflow of CORRECT
mode, we posit that labs with more unique sequences are more
likely to have lower lab scores, that is, be identified as
depositing labs.

To validate our hypothesis, we propose to describe the
relationship between lab scores and the uniqueness of each lab
using a regression model. First, we need to quantify the
dissimilarities of a lab’s plasmids among other labs. To do that,
we employ Jaccard distances, also called lab Jaccard distances in
this paper, to estimate the differences between two labs’ sequences
(see the “Methods” section). A large pairwise lab Jaccard distance
indicates there are few shared sequences between two labs. To
summarize the idiosyncrasies of a lab’s sequences, we average all
the pairwise lab Jaccard distances for individual labs, in order to
generate a single value, referred to as the averaged lab Jaccard
distance, to represent the uniqueness of a lab’s sequences
compared to the other 895 labs’ sequences. Labs with a large
number of plasmids (more than 200 plasmids) are likely to have
large averaged lab Jaccard distances. However, the majority of
labs (labs with <200 plasmids) have no obvious relationship
between the number of sequences each lab has and the averaged
Jaccard distances (Supplementary Fig. 2). Therefore, it is reason-
able to use the averaged lab Jaccard distances to represent the
number of unique sequences a lab has, as the value of the
averaged lab Jaccard distances is not heavily impacted by the
number of plasmids a lab has. A lab with few unique sequences
tends to have small averaged lab Jaccard distances. Additionally,
we have further explored lab sequence diversity by introducing
between-lab and within-lab research diversity scores (Supple-
mentary Note 2). To understand the relationship between
averaged lab Jaccard distances and PlasmidHawk predictions,
we calculate averaged lab scores for each source lab (see the
“Methods” section). In general, the smaller averaged lab score a
lab has, the more likely the lab is nominated as the true source lab
by PlasmidHawk CORRECT mode.

After getting averaged lab scores and averaged Jaccard
distances for all the depositing labs, we fit a linear regression
model between these two variables. As averaged lab Jaccard
distances increase, averaged lab scores decrease (P value < 0.05,
R2= 0.25) (Fig. 2b). The result shows that lab scores reflect the
distinctness of labs sequences. It also indicates that CORRECT
mode tends to link query sequences with labs who have more
unique sequences.

Detailed comparison between neural network and Plas-
midHawk predictions. In this section, we examine the results
from the five benchmark experiments in detail. In the five
experiments, the testing plasmids (with replacement) from 183
labs were never correctly identified by the CNN (when outputting
only the top 1 predicted lab). In contrast, testing plasmids from
only seven labs were never successfully identified by Plas-
midHawk. Among these seven labs, four of them were also not

correctly predicted by the CNN. The four labs are: Root David,
Ferrer J, Baltimore David, and Gunawardane RN labs.

In order to better characterize what kind of plasmids are
difficult to identify for lab-of-origin prediction, we look at
plasmids from labs that have never been successfully detected
by both the CNN and PlasmidHawk. The David Root lab has
the most plasmids in the entire dataset with a total 2717
plasmids, so, theoretically, it should be the easiest one to be
identified as there are many records of plasmids from this lab
in the training set. However, neither the CNN nor Plasmid-
Hawk can correctly pinpoint David Root plasmids. Therefore,
we selected this lab for an in depth case study. Among those
2717 plasmids, 2696 plasmids are from Doench et al. paper and
created for optimizing sgRNA27. They were constructed using
the Addgene plasmid 52,963 as the main backbone and
introduced 1-nucleotide mutations to the sequence. This
example demonstrates that plasmids with single nucleotide
polymorphisms (SNPs), instead of large signature sequences,
are hard to correctly identify the lab-of-origin for both
PlasmidHawk and the CNN approach.

Additionally, we examined the individual plasmids to see
which plasmids are correctly predicted only by the CNN, but not
by PlasmidHawk. Among all the plasmids predicted correctly by
the CNN, the majority of them are also successfully predicted by
PlasmidHawk. However, 626 plasmids’ lab-of-origin fail to be
identified by PlasmidHawk (Supplementary Fig. 3a). Several
reasons can explain why some plasmids are correctly predicted by
the CNN, but not by PlasmidHawk. First, we examine the
sequences from labs whose plasmids are only ever correctly
predicted by the CNN but not by PlasmidHawk. Three labs satisfy
this criteria: Winslow MM, Omura M, and MPI CBG PEPC
labs. From the Omura M lab we can see one difficulty for
PlasmidHawk. Testing plasmids from Omura M are either
mistaken as having been deposited by the Moravec Tomáš or
the Baylies MK lab. Based on the lab Jaccard distances, Moravec
Tomáš (JD:0.876) and Baylies MK (JD:0.878) are the most similar
labs to Omura M. This example demonstrates that PlasmidHawk
can have trouble distinguishing plasmids from labs with similar
plasmids.

The second explanation is that, based on the formula of the lab
score, labs with large numbers of fragments are less likely to be
selected by PlasmidHawk CORRECT mode (Supplementary
Fig. 3b). When multiple labs are selected by PlasmidHawk
MAX mode and they all align to the same (or similar) fragments,
PlasmidHawk CORRECT mode tends to pick labs with fewer
fragments. This principle, which PlasmidHawk CORRECT mode
is built on, can be successfully applied to most situations. As labs
with fewer fragments are less likely to have the same or similar set
of aligned fragments by chance, labs with fewer fragments have a
higher chance to be the true depositing labs. However, this
hypothesis does not apply to all scenarios. Because of this, we are
able to observe cases where labs with large numbers of fragments
are predicted correctly by the CNN but not by PlasmidHawk.

Next, we wanted to look into the performance of PlasmidHawk
vs. the CNN approach across a range of averaged lab Jaccard
distances. We find that from averaged lab Jaccard distances of
0.82–0.96 the prediction accuracy steadily increases for both
methods, with PlasmidHawk accuracy higher than the CNN
approach (Supplementary Fig. S4). When the averaged lab
Jaccard distances increase above 0.96, the accuracy of Plasmid-
Hawk decreases slightly while the CNN accuracy increases
substantially. Labs with large averaged lab Jaccard distances
(0.98–1.0) usually have large numbers of pan-genome fragments
(Supplementary Fig. S5). If two labs have the same set of aligned
fragments for a query sequence, the lab with more pan-genome
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fragments is less likely to be picked by PlasmidHawk based on the
lab score equation, offering an explanation for this trend.

Lab clustering and lab-relatedness tree. DNA engineering
techniques have revolutionized the way people study biology.
Among them, engineered plasmids are widely used as vehicles to
deliver and express non-native DNA into different host cells. At
the beginning, scientists focused on expressing engineered plas-
mids inside bacteria. Recently, as DNA manipulation techniques
have matured, people have shifted their attention from bacterial
to mammalian cells in order to control and understand more
complex cellular systems. Despite the rapid development in
synthetic biology, there is no suitable approach to compare
sequence similarities across different labs. The averaged lab Jac-
card distance provides an initial attempt in comparing the
uniqueness of individual labs’ sequences. In addition, the aver-
aged lab Jaccard distance provides a way to quantify the devel-
opment of plasmid engineering. Since one of the major trends in
plasmid engineering is the shift from bacterial to mammalian
hosts, in this section we evaluate the uniqueness of a lab’s
sequences from a host cell perspective.

To do that, we first classify labs into different groups based on
the highest percentage of their plasmids’ host cells. To simplify
this problem, even though there are many different types of
vector hosts shown in Addgene, we simply classify labs into four
categories: mammalian (M), bacterial (B), yeast (Y), or N/A (NA).
If a lab has more mammalian vectors than other types of vectors,
the lab will be labeled as a mammalian lab (M). If a lab has more
plasmids belonging to a type other than these three types of
vectors, it is classified as N/A.

To identify the distribution of different target host cells across
labs, we label their lab type in Fig. 2b to generate Supplementary
Fig. 5. The size of each dot corresponds to the percentage of the
prominent vector hosts for each lab (ties are classified as N/A).
Supplementary Fig. 5 shows that labs focusing on engineering
mammalian vectors are likely to have lower averaged lab Jaccard
distances and higher averaged lab scores. Based on this result,
we may roughly conclude that synthetic plasmids expressed
in mammalian cells have lower sequence diversities and are
less prone to have their lab-of-origin be identified by Plasmid-
Hawk CORRECT mode than plasmids designed for yeast and
bacterial cells.

In addition, we generated a PCA plot using the distance matrix
of lab Jaccard distances for all labs and color the labs based on
their host classification (Fig. 2c). The PCA plot shows a clear
separation between mammalian labs and bacterial labs along PC1.
PC1 recovers the variation of host vector lab types and reveals
these lab types as distinct, visually apparent clusters spanning
across PC1. PC2 captures the variation within lab type group
clusters. The principal component analysis further verifies our
findings in Supplementary Fig. 5.

Furthermore, we construct a lab-relatedness tree using lab
Jaccard distances to reveal the academic relationships among all
the labs (see the “Methods” section). Figure 2e displays one of the
clades of the lab-relatedness tree. Branch lengths represent the
distances between labs. In Fig. 2e, principal investigators who
belong to the same academic family or have collaborated with
each other are highlighted by the same color. A collaborative
relationship is confirmed if two labs have joint publications,
patents, and/or research projects (Supplementary Table 4). Some
labs, such as the Yang Sheng Lab, appear in the same clade
without any validated collaborations with other labs. Those labs
are grouped together due to their plasmids similarities (e.g.
CRISPR vectors), which implies that their research fields are
closely related. The lab-relatedness tree, which is derived from the

alignment between the synthetic plasmid pan-genome and the
original plasmid sequences, has the potential to reveal the
academic genealogies in addition to being used for bioforensics.

Comparisons with BLAST-based and CNN-based approaches.
In Nielsen et al., researchers hand selected a plasmid from the
Voigt lab (pCI-YFP,JQ394803.1) which exists in Genbank but not
in the Addgene dataset, to compare the performances of the CNN
and BLAST in identifying the source lab for an unknown
sequence. BLAST fails to predict the lab-of-origin of pCI-YFP,
ranking the Voigt lab 5th in its prediction. On the other hand, the
CNN approach correctly predicted the plasmid with a significant
p-value.

To evaluate PlasmidHawk’s performance, we predict the source
lab for pCI-YFP using PlasmidHawk. We input the complete
pan-genome Pc, which compacts all the plasmids from labs who
have at least 10 deposited full sequences in Addgene. Two labs,
including George Church and Christopher Voigt, are identified as
the set of top lab predictions using PlasmidHawk MAX mode.
PlasmidHawk CORRECT mode further identifies Christopher
Voigt as the true depositing lab (Fig. 3a).

One of the advantages of using PlasmidHawk is that it can
provide the alignment details of a given plasmid to explain the
reasoning behind its prediction (Fig. 3b). pCI-YFP aligns to a
total of 54 fragments in Pc. The two labs selected by PlasmidHawk
have 21 out of 54 fragments. Among those 21 fragments in Voigt

Fig. 3 BLAST, CNN, and PlasmidHawk prediction comparisons and
interpretation. a BLAST, CNN, and PlasmidHawk lab-of-origin prediction
results. b The number of labs annotated for the regions of pCI-YFP that
aligned to different fragments in the synthetic pan-genome. Each bar
represents a fragment aligning to the positions in pCI-YFP. The height of
the bar represents the number of labs annotated with that fragment. Pan-
genome fragments with <100 labs annotated with have aligned to pCI-YFP
at 21–98nt, 1110–1697nt, 1993–2209nt, 2667–2751nt and 2797–3260nt
positions (red bars). For clarity, the figure only displays a subset of the
aligned fragments. The complete set of aligned fragments are shown in
Supplementary Fig. 6.
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lab, 11 of them have been used by more than 100 labs (white bars
in Fig. 3b). Those are common sequences used in the plasmid
construction process. 21–98nt, 1110–1697nt, 1993–2209nt,
2667–2751nt, and 2797–3260nt in pCI-YFP are signature regions
that help PlasmidHawk narrow down the number of lab
candidates (red bars in Fig. 3b). All of these regions, except
2797–3260nt, have been identified in Nielsen et al. as well using
deep learning disruption analysis. For the subsequence around
2797–3260nt, PlasmidHawk identifies a pan-genome fragment,
which is shared by only eight labs (including Voigt lab), mapping
to that region in pCI-YFP. Notably, the importance of this 463nt
region does not stand out in the deep learning disruption analysis.

Furthermore, the PlasmidHawk alignment results show that
subsequences at insertion sites (21–98nt, 1110–1697nt,
2667–2751nt and 2797–3260nt) and rarely used genetic parts
(p15A, 1993–2209nt) are crucial in lab-of-origin detection.
Specifically, fragments aligned to common gene parts (e.g. KanR
and YFP) alone are annotated with lots of labs. However,
fragments that cover both the genetic elements and the backbone
sequences (1110–1697nt and 2797–3260nt) are shared by few
labs. While inserting genes into a backbone, researchers usually
inevitably leave signatures on the plasmids. Those “scar”
sequences help us to identify the true depositing labs. Addition-
ally, some gene parts, which are not commonly used, can also
serve as potential signatures. For example, although the origin of
replication is essential in plasmid construction, the p15A
replication origin (1993–2209nt) has only been used by <100
labs. Therefore, p15A can potentially serve as an important lab-
of-origin detection signal.

Function of signature sequences. To further understand the
techniques that are readily traceable, we examined the function of
the signature sequences identified by PlasmidHawk. As 57% of
correctly predicted plasmids have aligned fragments with only
their depositing lab annotated (Supplementary Fig. 7), we con-
sidered aligned fragments from those successfully identified
testing plasmids, which have only the annotation of the true
depositing lab, as signature sequences. We then used Prokka to
report a functional annotation for the signature sequences28.

In the five experiments, a total of 5817 fragments were selected
as signature sequences. Among them, 2008 fragments are
predicted as hypothetical proteins. Excluding the hypothetical
proteins, serine/threonine-protein kinase PknD appears most
frequently (17 times). Thus, serine/threonine-protein kinase
PknD is potentially the most easily traceable genetic element. In
addition, CRISPR-associated endonuclease proteins have been
used as signature sequences multiple times (Cas1, Cas2, and
Cas9) (Supplementary Fig. 8).

Discussion
This study demonstrates that aligning unknown sequences to the
synthetic plasmid pan-genome can effectively identify engineered
DNA sequences’ lab-of-origin. PlasmidHawk achieves better
accuracy than state-of-the-art neural network-based approaches
while providing interpretable prediction results, identifying
unique sequence fragments responsible for identifying the source
labs. As shown in the case of pCI-YFP, PlasmidHawk can even
help elucidate a more in depth story of shared sequence frag-
ments that are shared by many labs when constructing their
synthetic plasmids as opposed to more unique regions used by
very few labs. However, due to challenges, such as sequences that
are commonly shared by many labs, about 36% of the time an
unknown plasmid cannot be successfully narrowed down to only
the single correct depositing lab by PlasmidHawk MAX mode. To
help ameliorate this difficulty, we have introduced the lab score

for inferring the single correct lab-of-origin. The lab score helps
order the set of predicted labs from PlasmidHawk MAX mode
based on the pan-genome annotation. The incorporation of lab
score increases the prediction accuracy from MAX mode’s 64% to
CORRECT mode’s 76%.

Of note, PlasmidHawk successfully predicted the correct lab for
pCI-YFP as being in the set of labs containing the highest number
of aligned fragments using PlasmidHawk MAX mode and further
narrows the detection down to the Voigt lab as the true source lab
using PlasmidHawk CORRECT mode. In this case, PlasmidHawk
has higher accuracy when compared to BLAST, and the same
accuracy when compared to the CNN. Furthermore, Plas-
midHawk reveals its detailed decision-making process and suc-
cessfully identifies the signature sequences of the source lab. This
human interpretable decision-making process not only yields
state of the art performance when analyzing all test set plasmids
but also reveals the hidden intricacies of the pCI-YFP classifica-
tion process. In an actual bioforensics setting, this type of evi-
dence can be both crucial to a correct lab-of-origin assignment, as
well as necessary for a proper final justification which is human
interpretable. On the other hand, although the deep learning
approach can potentially identify the important nucleotides in
lab-of-origin detection for specific plasmids using plasmid dis-
ruption analysis, it does not intrinsically point out exactly how
many labs have used the signature sequences, that is, how unique
the subsequences are among all labs.

Our work demonstrates an alignment-based approach can
achieve high prediction accuracy while simultaneously providing
detailed explanatory capabilities. Meanwhile, we are aware it has
potential shortcomings versus a machine learning-based
approach. One issue with our method, for instance, is in deter-
mining the size and similarity thresholds for creating and adding
novel fragments to the synthetic plasmid pan-genome. As plas-
mid design becomes more and more standardized29, sequences
from a plasmid can be organized into different modules based on
their functions. Researchers can then easily combine different
modules to build a variety of plasmids without leaving any editing
scars. While this can significantly increase plasmid construction
efficiency for synthetic biologists, it can have the unintended
consequence of potentially weakening the available signal for
determining the lab-of-origin, which may degrade Plas-
midHawk’s performance when relying on coarse grained shared
fragments as its primary source of signal for predictions. How-
ever, if the trend is that synthetic plasmids from distinct labs
become more and more similar to each other over time, it likely
will become more challenging for PlasmidHawk to rule out labs
and accurately predict the true lab-of-origin. Note, this will also
be an equally challenging issue for deep learning approaches to
handle and affect their ability to detect true depositing labs. On
the other hand, as engineered plasmids from given labs become
more and more distinct, PlasmidHawk’s performance will
increase, specifically related to its accuracy and confidence in its
predictions.

Additionally, PlasmidHawk preserves three main advantages
over the deep learning approach for lab-of-origin prediction.
First, the pan-genome alignment method has the ability to handle
large amounts of input synthetic sequences quickly. Although the
training time of the CNN and PlasmidHawk are comparable
(Supplementary Table 5), PlasmidHawk has potential advantages
with respect to updating the model with new plasmids. Whenever
a newly engineered sequence is created, the established synthetic
plasmid pan-genome can be quickly updated by adding the
unique parts of new sequences to the end of the pan-genome and
realigning the training plasmids to the new fragments. On the
other hand, the CNN model may need to be entirely retrained on
the new plasmids if they differ vastly from the previously seen
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plasmids. Furthermore, it is worth noting that the CNN approach
requires additional analysis to determine how well new data fits
the existing distribution while the PlasmidHawk approach does
not. As more and more synthetic sequences are being added into
the database, the computational and environmental cost for
retraining neural network approaches will increase alongside19.
Second, PlasmidHawk is not restricted to predict labs with a small
number of deposited plasmids. It has the potential to identify a
given plasmid as having originated from a lab that only has one
recorded plasmid in the training data set. On the other hand, the
CNN requires labs to have enough plasmids in the training set to
then be able to be predicted. Third, the pan-genome alignment
approach can associate specific regions of an unknown sequence
to the source lab. By doing this, PlasmidHawk provides detailed
evidence to support its lab-of-origin predictions.

Finally, we have demonstrated an alternative way to char-
acterize research diversity and relationships among synthetic
biology labs. By aligning synthetic plasmids from each depositing
lab to the synthetic plasmid pan-genome, we are able to capture
the resemblances and variations between and within labs engaged
in synthetic plasmid engineering. The lab-relatedness tree we
have created not only reveals the research structure in synthetic
biology, but also implies academic lineage and collaborations.
Additionally, it can help researchers to find potential collabora-
tors who work in a similar area. More work on comparative
genomics approaches can further assist to trace back the lab-of-
origin of an unknown plasmid.

While PlasmidHawk was shown to outperform a previous deep
learning method8, progress continues to be made in this area.
Notably, a recent publication by Alley et al. reported on improved
lab-of-origin prediction accuracy up to 70% using a Recurrent
Neural Network method called deteRNNt trained on DNA motifs
and phenotypes30, narrowing the gap of deep learning-based
approaches and PlasmidHawk’s performance. While deteRNNt
offers substantial gains in accuracy over the previous deep
learning approach, PlasmidHawk outperforms deteRNNt with
respect to single lab prediction accuracy (76% vs. 70%). For the
pCI-YFP plasmid example, PlasmidHawk correctly reports the
Voigt lab while deteRNNt returns two labs (the Voigt Lab and
Wang Lab, ~25% probability to each). PlasmidHawk’s perfor-
mance is based on DNA sequence alone compared to both DNA
motifs and six phenotypes used by deteRNNt (bacterial resis-
tance, copy number, growth strain, growth temperature, select-
able markers, and species).

In conclusion, PlasmidHawk is a computational approach to
leverage sequence alignment and annotated pan-genomes for the
specific research task of identification of lab-of-origin. Overall,
the aim of our study was not to diminish the important
achievements of deep learning in lab-of-origin analyses, but
rather point out the value of investigating traditional comparative
genomics methods such as by using genome alignment. On the
whole, this paper intends to encourage the community to keep in
mind traditional sequence alignment algorithms coupled with
recent advances in pan-genomic analyses, in spite of recent
exciting advances in AI/ML applied to computational biology. We
anticipate future advances will combine the benefits of both well
studied and interpretable methods like genome alignment with
the power of deep learning models such as the CNN model of
Nielsen et al. or RNN model of Alley et al. for improved biose-
curity of engineered DNA.

Methods
Addgene dataset. We acquired a plasmid dataset from Addgene in January 2019.
Addgene is a synthetic plasmid repository. It was used in Nielsen et al. to conduct
the deep learning lab-of-origin prediction study. DNA sequences in Addgene can
be classified into four categories: full plasmid sequences submitted by Addgene,

partial sequences submitted by Addgene, full plasmid sequences submitted by a
depositing lab, and partial sequences submitted by a depositing lab. There are a
total 51,047 complete sequences, in which 28,879 are uploaded by Addgene, and
737,272 partial sequences. The DNA sequences and their metadata are stored in a
JavaScript Object Notation (JSON) file. In Nielsen et al., a plasmid depositing lab
was parsed directly from the JSON file. However, the JSON file we obtained had no
deposting lab information. To decide a plasmid’s depositing lab, we first found
information from its Genbank file. We took the last author in the first published
paper of the plasmid as the depositing lab. For the plasmids without Genbank files,
we looked up the author information through its PubMed ID (PMID) or PMCID
in the JSON file. If we still could not find its depositing lab, we parsed the depositor
information directly from the Addgene website.

PlasmidHawk workflow. The main goal of our study is to predict engineered
plasmids’ lab-of-origin by aligning unknown plasmids to a synthetic plasmid pan-
genome. In order to do that, we developed a lab-of-origin prediction software
called PlasmidHawk. It consists of three modules: pan-genome construction, pan-
genome annotation, and lab-of-origin prediction. In general, the three modules
should be used sequentially for plasmid lab-of-origin detection. Each module can
also be applied independently for other scientific purposes.

For the first module, PlasmidHawk takes in plasmids from the Addgene
database and constructs a synthetic plasmid pan-genome P using Plaster. Plaster is
a state-of-the-art linear pan-genome construction algorithm26. The final pan-
genome P is composed of a set of sequence fragments F= [f0, f1, . . . fn]. Each
fragment is at least 50 bp long (default) and stored as an independent entry in a
multi-fasta file. After building the synthetic plasmid pan-genome, PlasmidHawk
aligns input plasmids back to the pan-genome. If a pan-genome fragment has at
least 20 bp (Nucmer default parameters) matching with sequences from an input
plasmid, the fragment is annotated with that plasmid’s depositing lab.

To predict the lab-of-origin of an unknown plasmid p, PlasmidHawk aligns the
plasmid p to the reference pan-genome P built in the first step. It then extracts
aligned pan-genome fragments from the pan-genome. Each aligned pan-genome
fragment has a match of at least 20 bp with the plasmid p. PlasmidHawk MAX
mode then outputs lab(s) with the highest number of aligned fragments as the
predicted source lab(s). To further improve the lab-of-origin prediction accuracy,
PlasmidHawk CORRECT mode calculates lab scores for labs returned from
PlasmidHawk MAX mode. CORRECT mode takes lab(s) with the minimum lab
score as the final prediction as explained in full detail in the following section and
visualized in Fig. 4. Briefly, the value of a lab’s score depends on the total number of
pan-genome fragments each lab has and the number of labs sharing the same
aligned fragments. Mathematically, the lab score for lab l, denoted as Sl, is

Sl ¼ �
X

f2Fl
log

1
nf � tl

 !

ð1Þ

where Fl is the aligned fragments set for lab l. It includes all the aligned fragments
lab l has for the query sequence. nf is the number of labs sharing fragment f in the
pan-genome P. And tl is the total number of fragments lab l has in P.

MAX mode p value. The fundamental mechanism of PlasmidHawk MAX mode is
to identify labs that are enriched by the pan-genome fragments that align with the
query sequence. This question is similar to gene set enrichment analysis, which
focuses on finding a subset of genes that are over-represented in a large set of genes,
and may be correlated with certain phenotypes. In gene enrichment analysis, the
hypergeometric p-value is widely used in quantifying whether enriched genes with
pre-defined functional annotations are significant or not. Inspired by this
approach, and given how well the hypergeometric distribution matches our own
problem, we apply the hypergeometric p-value to evaluate the significance of
predicted labs by PlasmidHawk MAX mode. However, the hypergeometric p-value
used in this study has several limitations. A detailed discussion is included in
Supplementary Note 4.

In our case, we model the number of fragments in the pan-genome as the finite
population size N for the hypergeometric distribution. From this population, we
perform n draws, where n is the number of fragments in a query plasmid. We then
define, based on the most frequent lab as predicted by MAX mode, the number of
successes k as the number of fragments in the query plasmid that aligned to any of
the K fragments in the pan-genome that were annotated as having come from that
most frequent lab. The final p-value is then calculated using the python package
scipy.stats.hypergeom31, calculating the p-value of the hypergeometric distribution
when observing k or more successes.

Lab score. After obtaining a list of potential source labs from MAX mode, Plas-
midHawk CORRECT mode attempts to further narrow down the labs to the true
source lab. To do that, it calculates lab scores to rank labs returned from MAX
mode as shown in Fig. 4. Essentially, lab scores are assigned to individual labs
through a weighting function. Labs with lower lab scores have a higher chance to be
the real depositing labs. The weighting function used to calculate lab scores is
derived from our key observations that despite the maximum number of aligned
fragments being the same among multiple labs, pan-genome fragments shared by
many labs are potentially less informative versus fragments shared by few labs.
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Also, labs with less total fragments in the pan-genome can be weighted higher
when making the final predictions.

Specifically, after constructing and annotating the reference pan-genome,
CORRECT mode first calculates weights for each lab, denoted as Wl for lab l, and
each fragment, referred as Wf for fragment f, based on the pan-genome
annotations. The lab weight

Wl ¼
T
tl

ð2Þ

where T is the total number of fragments in the reference pan-genome and tl is the
total number of fragments lab l has in the pan-genome. Wl is the reciprocal of the
fraction of fragments annotated by lab l inside the pan-genome. The fragment
weight

Wf ¼
1
nf

ð3Þ

where nf is the total number of labs annotated to fragment f (Fig. 4).

To calculate the final scores used for prediction, CORRECT mode goes through
all the labs returned by MAX mode and all the aligned fragments for each of these
labs and calculates a joint weight Wl,f for each aligned fragment f and lab l. To
calculate Wl,f, PlasmidHawk first identifies the set of aligned fragments Fl for each
lab l identified by MAX mode. CORRECT mode then calculates Wl,f by multiplying
Wl and Wf, and normalizing it with its maximum possible value (T). The
normalization bounds Wl,f between 0 and 1. Mathematically,

Wl;f ¼ Wf �Wl=T ¼ 1
nf � tl ð4Þ

CORRECT mode then does a log transformation of each joint weight to avoid
multiplication operations and potential overflows when calculating the final single
fragment lab score Sl,f. It adds a final negative sign to each transformed value to
make the final scores positive.

Sl;f ¼ �logðWl;f Þ ð5Þ
Finally, CORRECT mode sums the Sl,f of all the fragments in Fl to generate the final
lab score Sl for lab l used for the final prediction. The lab with the lowest Sl is

Fig. 4 PlasmidHawk CORRECT mode workflow. After building the reference pan-genome, CORRECT mode calculates fragment weights and lab weights
according to the pan-genome annotations. To predict the lab-of-origin of an unknown sequence, PlasmidHawk first aligns the query sequence to the pan-
genome and identifies candidate source labs through MAX mode: in this case, lab A and lab C. CORRECT mode then calculates lab scores for the labs
output from MAX mode. In the end, CORRECT mode predicts the lab with the minimum lab score, lab A, as the depositing lab.
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chosen as the predicted lab-of-origin as outlined in Fig. 4.

Sl ¼
X

f2Fl
ðSl;f Þ ð6Þ

PlasmidHawk lab of origin prediction. Given the nature of neural networks, the
CNN needs a certain number of plasmids from each lab to train, test and validate
the neural network. Although PlasmidHawk does not have this kind of require-
ment, in order to have a fair comparison between the CNN and PlasmidHawk, we
only choose labs with at least 10 complete plasmids (“Full Repository” or “Full
Depositor”) sequences in Addgene to conduct this experiment. A total of 38,681
plasmid sequences from 896 labs are used in this experiment. To evaluate the
performance of PlasmidHawk, sequences are split into two groups: three plasmids
from each lab are randomly selected for testing and the remaining plasmids are
used for the training set. We utilize the training plasmids to build and annotate the
synthetic plasmid pan-genome. We evaluate PlasmidHawk prediction accuracy
using plasmids in the test data set. The entire process is repeated five times.

To assess the lab-of-origin prediction accuracies of MAX mode and CORRECT
mode, we test PlasmidHawk at different thresholds; we test the accuracy when
considering the top 1, 2, 5, 10, 20, and 50 labs output from PlasmidHawk. For
MAX mode, we only consider the top predictions at or above the threshold, and
eliminate sets of predictions whose inclusion would cause there to be more
predictions than the threshold. For CORRECT mode, we only consider the scored,
ordered list created from the top set of predictions from MAX mode. For example,
when setting the threshold at 1, for MAX mode, we only consider correct
predictions when the top set of predicted labs contains only a single lab and that is
the correct depositing lab. If MAX mode outputs more labs in the top set of
predictions than the threshold, no labs are considered and the prediction is
considered incorrect, even if the correct lab is in the top set of predictions. For
CORRECT mode with a threshold of 1, we order the top set of MAX mode
predictions, and only consider the single best scoring prediction. As another
example, when setting the threshold at 5, and MAX mode outputs a set of two labs
as the top predictions, two labs in the second best set of predictions, and two labs in
the third best set of predictions, the four labs in the top two sets would be
considered and the two labs in the third set would not be considered. In this and all
other cases, CORRECT mode considers only the top set of labs from MAX mode,
thus for the top 5 threshold it would still only consider the ranked list of the top
two labs from MAX mode. In addition, if a set of labs in CORRECT mode have the
same lab score, we arbitrarily order them and apply the threshold, then add them
into our final prediction lists. By doing this, the number of labs in a CORRECT
mode prediction result equals the threshold. For instance, if the threshold is 1 and
there are two labs with the same lab score returned from CORRECT mode, we will
arbitrarily select one lab as the CORRECT mode prediction.

While building the pan-genome, we use Plaster, which can be installed via
“conda install pan-plaster”. For PlasmidHawk, we use default setting. The example
command lines are available in gitlab repository.

CNN architecture and lab of origin prediction. The CNN architecture was
constructed based on Nielsen et al. All the CNN parameters are set to their opti-
mized values from Nielsen et al.. In the original experimental design, the authors
reported splitting the data set into six subsets because of memory limitations. We
replicate this by separating the training data into six subsets, then load and train
one at a time in each epoch. After training, we save the final model and parameters.

We use the same plasmid data set from the PlasmidHawk experiments to train,
validate, and test the CNN approach. We randomly pick three plasmids from each
lab as the validation data set and then pick an additional three plasmids as the test
data set. The remaining plasmids are used as the training set. We preprocess and
encode the DNA sequences. As in Nielsen et al., we set all the DNA sequences to
8000 bp long by truncating the long DNA sequences and padding the short DNA
sequences with Ns. Characters other than A, T, C, or G in the DNA sequences are
converted to Ns. We append the sequence’s reverse complement to itself with 48
Ns in between. We translate those processed sequences as a one-hot vector with
length 16,048 where A= [1000], T= [0100], G= [0010], C= [0000]. The
depositing lab is encoded as a one-hot vector with total length 896. This
experiment is repeated five times.

To evaluate the CNN prediction accuracy, we calculate the percentage of
plasmids in the test data set correctly identified their lab-of-origin while
considering the top 1, 2, 5, 10, 20, and 50 predicted labs from CNN. We then
compute the average percentages of correct predictions and their standard
deviations at different thresholds (1, 2, 5, 10, 20, 50).

Receiver operating characteristic (ROC) curve for CNN and PlasmidHawk. To
calculate the ROC curve for the CNN and PlasmidHawk, we first need to define
what constitutes a true negative (TN), true positive (TP), false negative (FN), and
false positive (FP). We then calculate the average true positive rate and false
positive rate at different thresholds (top N predicted labs). For a given testing
plasmid, if a lab is within the top N cutoff, the lab is a TP if the lab is the true
depositing lab and a FP otherwise. If a lab is not within the top N cutoff, then it is a
FN if the lab is true depositing lab and a TN otherwise.

Averaged lab Jaccard distance and averaged lab score. To evaluate the rela-
tionships between lab scores and the uniqueness of labs’ plasmids, we calculate the
lab Jaccard distance between all labs. The lab Jaccard distance quantifies the
sequence similarities between all plasmids between two labs. To measure lab Jac-
card distances, we first build and annotate a complete synthetic plasmid pan-
genome using all plasmids from labs who have at least 10 complete sequences. We
then extract all the fragments annotated with lab A to fragment set FA. We do this
again for all labs. We define the lab Jaccard distance between two labs, lab A and
lab B, as

JDðA;BÞ ¼ 1� JðFA; FBÞ ð7Þ
where

JðFA; FBÞ ¼
jFA \ FBj
jFA ∪ FBj

ð8Þ

represents the Jaccard index between two labs (Fig. 5). We built a distance matrix
between all labs by calculating the pairwise Jaccard distances between every pair of
labs. This distance matrix was used, for instance, to build the lab-relatedness tree
and also to calculate the “averaged lab Jaccard distance” for each individual lab.
The averaged lab Jaccard distance for a lab is simply the average of all the cells in
the corresponding row or column for that lab in the distance matrix.

To calculate a lab’s “averaged lab score”, we first run CORRECT mode on all
test plasmids from the five independent lab-of-origin prediction experiments. If
CORRECT mode returns a score for the true depositing lab for a plasmid, we
assign that returned lab score to that plasmid. A lab’s “averaged lab score” is the
average of all assigned lab scores for all test plasmids corresponding to that lab.

pCI-YFP prediction analysis. To identify pCI-YFP’s depositing lab, we input the
pCI-YFP sequence, the complete synthetic pan-genome sequence, and the pan-
genome annotation information into PlasmidHawk. PlasmidHawk returns the
predicted labs and their lab scores. It also outputs alignment results. We retrieve
the aligned pan-genome fragments of pCI-YFP and the list of labs having those
aligned fragments to create the alignment plot (Fig. 3b).

Lab-relatedness tree. We apply RapidNJ32 to construct a lab-relatedness tree with
support values based on lab Jaccard distances. RapidNJ employs the neighbor-
joining method33 to build trees. In order to compute bootstrapping support value
for the lab tree, we build a binary matrix for the plasmid fragments used by each
lab. The columns of the binary matrix represent all fragments in the pan-genome.
The rows of the matrix represent each of the labs. Each row in the matrix can be
viewed as a binary vector for a particular lab, where each entry indicates the
presence or absence of a particular pan-genome fragment within that lab’s plas-
mids. If a lab i has a fragment j in the pan-genome, the cell in the ith row and jth
column is a 1 in the matrix. Otherwise, the cell is 0. To make a bootstrap replicate
of the original matrix, a new matrix of the same size is created by randomly
sampling the columns from the original matrix (with replacement). For this study,
100 bootstrap replicate matrices are generated. After that, we calculate pairwise
Jaccard distances between any two labs for each bootstrap replicate, and build the
corresponding lab-relatedness tree. A final comparison of the topologies of the 100
replicate trees to the original tree is done to add support values. This procedure is
performed using the python Bio.Phylo package34.

The visualization is conducted with the interactive tree of life (https://itol.embl.
de)35. The full lab-relatedness tree can be viewed in: http://itol.embl.de/shared/
qiwangrice.

Fig. 5 Lab Jaccard distance calculation. To calculate lab Jaccard distances
between two labs, such as lab A and lab C, we first build a fragment set, FA
and FC, for each lab. A fragment set contains all the pan-genome fragments
annotated by the corresponding labs. The lab Jaccard distance between lab
A and lab C is JD(A, C)= 1− J(FA, FC), where the Jaccard index (J(FA, FC)) is
the fraction of shared pan-genome fragments out of all the different
fragments lab A and C have. A large lab Jaccard distance indicates two labs
have few shared sequences.
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Statistical analysis. The principal component analysis is conducted using the
sklearn.decomposition function36. The explained variances for PC1 and PC2 are
1.48 and 0.92. Linear regression is performed using the sklearn. linear_model
function36. All the code is available in the GitLab repository37.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The commands used and the source code are available on GitLab. Due to data sharing
constraints, we are not permitted to redistribute the plasmid DNA sequences deposited
in AddGene’s repository. The plasmid sequences are available individually from the
AddGene website (https://www.addgene.org/browse/) for download, and available for
bulk download from AddGene upon request. Intermediate data is available by request
and all of the methods, experimental results and scripts are open source and available on
GitLab (https://gitlab.com/treangenlab/plasmidhawk.git). The DOI of the repository is
https://doi.org/10.5281/zenodo.4405001. The pCI-YFP plasmid is available from
Genbank via Accession JQ394803.1.

Code availability
PlasmidHawk is written in Python and is available at https://gitlab.com/treangenlab/
plasmidhawk.git. All the scripts, including p-value calculation, used in this study to
generate results and figures are available at https://gitlab.com/treangenlab/
plasmidhawk/-/tree/data37. The DOI of the repository is https://doi.org/10.5281/
zenodo.4405001.
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