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Ensemble model for estimating 
continental‑scale patterns 
of human movement: a case study 
of Australia
Karen McCulloch1,2*, Nick Golding3, Jodie McVernon1,4,5, Sarah Goodwin6 & Martin Tomko7*

Understanding human movement patterns at local, national and international scales is critical in a 
range of fields, including transportation, logistics and epidemiology. Data on human movement is 
increasingly available, and when combined with statistical models, enables predictions of movement 
patterns across broad regions. Movement characteristics, however, strongly depend on the scale and 
type of movement captured for a given study. The models that have so far been proposed for human 
movement are best suited to specific spatial scales and types of movement. Selecting both the scale of 
data collection, and the appropriate model for the data remains a key challenge in predicting human 
movements. We used two different data sources on human movement in Australia, at different spatial 
scales, to train a range of statistical movement models and evaluate their ability to predict movement 
patterns for each data type and scale. Whilst the five commonly-used movement models we evaluated 
varied markedly between datasets in their predictive ability, we show that an ensemble modelling 
approach that combines the predictions of these models consistently outperformed all individual 
models against hold-out data.

Interaction models1 informed by population-scale mobility data are critical enablers for transport planning and 
logistics2, inequality and economical activity analysis3, urban planning and the provision of critical services, 
including health care and infectious disease epidemiology4–7, and other areas where the assessment of the impact 
of population-scale migratory flows is of importance. Human movement patterns are modelled, extracted and 
analyzed to better understand the intensities of interactions within a population8. A salient application of nuanced 
mobility pattern mining is infectious disease epidemiology, where the spread of infectious diseases may be 
facilitated by highly connected individuals or groups of individuals9. The identification of (sub)populations at 
risk may enable better, more targeted public health response, or aid understanding of the contributions of such 
individuals to epidemic spread10–12. Recent work has focused on estimating the impact of restricting mobility 
as an intervention to slow the spread of SARS-CoV-213. Research linking human movement patterns with the 
socio-economic status of sub-populations, however, also shows that these relationships are complex and may vary 
between cities or regions14. Yet, too often do population-scale models rely on simplistic mathematical assump-
tions and lack the understanding of the data that goes into the movement models to predict movement flows.

In practice, the problem of model choice is further confounded with the choice (or availability) of the data 
used to fit the model. Call Detail Records (CDR) from mobile phones6,15–18, population census data11,15,19 and 
global positioning satellite (GPS)16,20–22 data are currently the most widely available data applicable to studies of 
human movement (historically, other data have been explored, including bank notes23). The census is the most 
comprehensive and costly source of mobility data that strives to capture the population of a country, but has to 
sacrifice temporal resolution and nuance (data are collected on a single census day typically every five years). 
Mobility can be inferred from a single census question related to a person’s journey to work which requires 
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information on their location of usual residence and workplace on the day the census was conducted. CDR-based 
data are available only for a sub-population of phone users, typically those subscribed to one (out of multiple) 
mobile providers. The locations of placed or received calls are captured based on the nearest cell tower, at a rela-
tively coarse and variable spatial resolution which is entirely dependent on the distribution of cell towers. Trips 
can then be inferred, but their purpose remains unknown. With the shift of mobile users to voice over IP and 
chat communication, these data are increasingly less representative of movement patterns. However, the use of 
GPS data collected from satellite navigation applications to infer human movement is becoming increasingly 
popular. Detailed GPS data tracking via mobile applications capture only small sub-populations of users, but 
come at a much finer spatial granularity and for all types of trips20,24. Yet, how well do distinct data sources capture 
population-scale mobility? The choice of dataset determines the success of the statistical model derived from it, 
yet all too often the choice is only driven by data availability. Determining what type of data is most appropri-
ate to capture the mobility behaviour across a specific geographical region is treated as a secondary issue11,21.

Population mobility models can generally be divided into two groups, those that consider movement 
frequency (i.e. the number of trips) between two locations to be a decreasing function of distance (gravity 
models15,25) and those that assume the number of potential destinations between two locations determines move-
ment frequency (intervening opportunities model26)21. However, more recently developed radiation models15,27 
fall in between these two groups of models and utilise a 2-step process to estimate movement frequency between 
two locations. In step 1, all locations are considered as possible destinations and are ranked depending on oppor-
tunities (which are proportional to the location population). In step 2, the location closest to the origin with 
the highest rank is chosen as the preferred destination15. Gravity models have been used to estimate large scale 
migration patterns across countries11. The radiation model has been shown to outperform the gravity model 
on occasion, including predicting movement patterns within a state and across country scale15. However, both 
model types have been shown to inadequately describe population movement in some settings, i.e. low income 
countries12.

A form of ensemble model was first introduced by Wolpert28 as stacked generalisations which are motivated 
by the goal of reducing the generalisation error (or the out-of-sample error). The idea was later formalised by 
Breiman29 and the theoretical background was developed by Van der Laan et al.30 Stacked generalisation involves 
training a new model to combine predictions of existing models in order to improve predictive performance31. 
During this process the new model learns weights to assign to each existing model based on expected perfor-
mance. This improves on model averaging processes in which each existing model would be weighted equally. 
The use of ensemble model approaches aims to shift thinking from selecting the single best available model to 
deriving an improved model which incorporates information from all available models.

This paper considers the combined challenges of data scales and model types to infer mobility patterns 
across Australia. Our work is motivated by the need to understand population mobility as a necessary step in 
the assessment of access to health care services in Australia which varies widely across the continent. We address 
the need for movement models capturing mobility flows across large geographic areas but representative across 
spatial scales. The models should capture short distance and long distance travel, adapt to highly heterogeneous 
space use and diverse geographies. As currently no single model performs consistently best across such varied 
conditions, we hypothesize that a weighted, locally adaptive combination of each of these models in an ensem-
ble model will better capture the observed movement patterns. Models are trained on data obtained from the 
Australian Bureau of Statistics (ABS) Census (a snapshot view of the population mobility through their journeys 
to work between statistical areas)32 and a dataset collected by the provider of a smartphone-based GPS satellite 
navigation application. This dataset captures a smaller sample of the population, with a richer set of journeys 
capturing diverse, yet unspecified, travel needs. We compare model predictions across all models, both datasets, 
and both spatial scales. In doing so we highlight the strengths and weaknesses in predictive capacity of currently 
available movement models. Finally, we implement an ensemble model that leads to improved, more accurate 
predictions of movement flows across different geographical scales.

Results
The ABS journey to work census data contains counts of individuals travelling between their region of home 
residence and regions of place of work on the census day, where regions were defined at Statistical Area 2 (SA2) 
granularity. In Fig. 1 we illustrate the differences in predictive capacity of the five models described in the lit-
erature (herein referred to collectively as the base models), using journey to work census data for the Australian 
state of Victoria. From Fig. 1, it appears that the intervening opportunities model captures more of the observed 
movement patterns at the state scale than the other base models. The radiation models appear to capture the 
breadth of the observed data but the intensity of movement predictions is misplaced, i.e., radiation models 
over-predict the lower frequencies of movement over long distances. In contrast, the gravity models predictions 
cover a narrow band of the observed data but with higher intensity of predictions. By assigning weights to the 
predictions generated by each of the base models, the ensemble model is able to capture a wider range of these 
features. The differences in predictive performance for each of these models is further reflected in Fig. 2C where 
it is clear that the ensemble model outperforms all base models. The Poisson deviance reported in Fig. 2 is derived 
by comparing model predictions made on out-of-sample data to the corresponding observed data and can be 
interpreted as an estimate of model performance relative to other models trained on the same data. A lower 
deviance indicates a better model fit. Similar patterns were seen for predictions generated from the whole of 
Australian census data (see Figure S1, Supplementary Material). To aid comparison of base model predictions 
we provide an alternative visualisation of Fig. 1 in Figure S2 of the Supplementary Material.

Anonymised GPS data from a smartphone based satellite navigation application were aggregated to provide 
population level travel flow frequencies between SA2 regions. The observed movement patterns for the GPS data 
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differ the census data (Figures S3 to S6 of Supplementary Material). This is not surprising given the inherently 
different nature of the data sources, for example the GPS data sample size was much smaller and the maximum 
observed movement frequency is about half of that seen in the census data. There is more variation in the Pois-
son deviance estimates for the GPS data (Fig. 2B and D) than the census data. These data encompass a variety 
of movement flows as the reasons for individual trips is unknown, this is a likely source of some of the variation 
seen. Therefore, the trained models struggle to capture a wider variety of movement patterns to reflect the input 
data. Interestingly, out of the five base models the intervening opportunities model performs best at the smaller 
geographic state scale (Victoria) across both the ABS census journey to work data and the GPS data. At the con-
tinental scale, out of the five base models, the gravity models perform best for the ABS census journey to work 
data, whereas the radiation with selection model performs best for the GPS data. There are other similarities 
across geographic scales for the datasets, in general the gravity and intervening opportunities models outperform 
the radiation models for the census data across scales, while the radiation models and intervening opportunities 
models generally perform better for the GPS data. These results suggest that each dataset is capturing different 
movement patterns (i.e. purpose of trip) and support the idea that it is necessary to consider multiple types of 
movement data in order to best capture population movements. These results also highlight that when it comes to 
population movements there is no single model that optimally fits different data sources. By combining informa-
tion from each of the base models into an ensemble model we are able to capture more of the observed movement 
patterns which would have otherwise been missed. The derived ensemble model consistently out-performs the 
widely used and reported models in the literature for each dataset and both geographic scales (state of Victoria 
and continental Australia). This can be seen clearly in Figs. 1 and 2 (and Figures S1 to S4 of Supplementary 
Material). The parameters for the ensemble models trained on Victorian and Australian census and GPS data 
are provided in the Supplementary Material. In addition to this we provide the Poisson deviance results for each 
model and dataset from the 5-fold cross validation (see Methods Section for further details) process.

Differences in movement patterns and intensities predicted by the base models at the state scale for each 
dataset are illustrated in Fig. 3. These graphs further highlight the importance of selecting the best fitting model, 
as the patterns of predicted movement vary significantly between models trained on the same dataset. We can 
also compare patterns across the two datasets for the same model type. Generally, across the model types the 
intensities and patterns that have been predicted for the census data are more defined than those for the GPS data. 
The Melbourne Metropolitan region is clearly visible in all results. The most notable difference in predictions 
is by the intervening opportunities model on the census (Fig. 3c) and GPS (Fig. 3d) datasets. The census data 
predicts higher intensities of movement across long distances, while the GPS data better distinguishes between 
short to medium distance movement patterns. This is also reflected in Fig. 1 and Figure S3. The movement pattern 
in Fig. 3g and h illustrate the ensemble model predictions for ABS census data and GPS data respectively. The 
resulting weights of the ensemble model for the state scale census data indicate that the radiation and radiation 
with selection model predictions are not very informative. The radiation models predictions are very similar 
for the census data and they are weighted in such a way that the information provided will almost cancel out 
(Table 1) when making predictions utilising the ensemble model. Therefore, the ensemble model for census data 

Figure 1.   Comparison of predicted frequency of movements by distance (kilometres) between pairs of 
locations for each model type, based on journey to work Census data. Black points show the raw movement 
frequencies that were used to train each model. Coloured points show the resulting model predictions. 
Movement frequency and distance are shown on a log-scale to better highlight differences between model 
predictions. This figure was produced using the R33 package ggplot234.
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is influenced more by the intervening opportunities and gravity models. Similarly, the ensemble model for the 
state scale GPS data is influenced more by the intervening opportunities and radiation model predictions. These 
differences further reflect the different types of movement patterns being captured within each dataset. Figure 4 
illustrates the differences in predictive capacity of the base models compared to the ensemble model trained on 
the ABS census data at the continental scale. The gravity models (Fig. 4B and C) highlight major population hubs 
such as capital cities across the eastern jurisdictions in Australia with minimal movement flows outside of these 
hubs. In contrast to the gravity model predictions, the intervening opportunities model (Fig. 4D) predicts long 
range movement flows at high intensities. The ensemble model predictions clearly highlight the population hubs 
of the capital cities in addition to smaller regional hubs. Figures 3 and 4 highlight the importance of selecting 
the most appropriate dataset and geographic scale to predict movement patterns and intensities relevant to the 
questions being asked.

Discussion
We have illustrated that an ensemble model with learned weights from currently available movement models 
outperforms any individual base model in terms of predictive capacity. We hypothesized that different interac-
tion models are suitable for modelling different parts of the specified geographic region. This cannot be simply 
achieved by averaging across the models (Fig. 2, Mean results) but it can be achieved by utilising an ensemble 
model. The ensemble model learns from the predictions made by the base models and assigns weights to each 
set of predictions to reflect which models were the most accurate. The resulting ensemble model predictions 
better reflect the underlying patterns of movement displayed by the data on which the base models were trained. 
Furthermore, interactions across large, heterogeneous regions are captured better by the ensemble model. In this 
study we used Australia as our case study due to the diverse landscape, however this methodology can easily be 
applied to any other region and landscape.

We have shown that no single model can comprehensively capture the interactions across large, heterogene-
ous regions. This highlights the importance of considering different types of interactions (predicted by currently 
available movement models) through the use of ensemble models. In addition, we have also shown that the same 

Figure 2.   Comparison of mean deviance between models for each dataset and geographic scale. Legend: G 
= gravity model; GD = gravity with distance model; Rad = radiation model; RadS = radiation with selection 
model; IO = intervening opportunities model; En = ensemble model; Mean = mean deviance across all model 
types. Note the y-axis is on a log scale and the absolute value of the deviance is not comparable between datasets. 
The deviance is a measure of how well a given model predicts the test data (which was not used to train the 
models) relative to the other models for a given dataset. The error bars show how the deviance varied for each 
model type across the 5-folds. This figure was produced using the R33 package ggplot234.
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Figure 3.   Range and intensity of interaction in Victoria revealed through different model types using 
the ABS census journey to work data (left column) and GPS data (right column). Movement predictions 
from each model were scaled to be between 0 and 1 to aid visual comparison. This range is mapped to line 
thickness, opacity and brightness (from black to white), where vivid thick white lines represent high intensity 
movement and low intensity movement is shown via faint thin darker lines. The Gravity and radiation model 
prediction maps are omitted as they are visually similar to the gravity with distance and radiation with selection 
model predictions respectively. The maps in this figure were produced using the R33 package ggplot234 (see 
Visualisation of predictions section in Methods for further detail). Preview35 and Paint 3D36 were used to 
combine the maps into one image and add the text.
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type of model trained on different data will lead to different models and as such it is important to consider the 
type of data required for estimating movement flows in different contexts.

For some applications and geographical scales of inquiry, the accuracy of the flows predicted by the gravity 
and intervening opportunities models may be sufficient (e.g., freight transportation, job seeking behaviour). 
Recent research has, however, focused on identifying gaps in the formulation and application of quantitative 
models of movement to improve the accuracy and predictive power beyond levels achieved thus far. The radiation 
model was proposed by Simini et al.15 as an alternative to the gravity model which may under certain conditions 
lead to more accurate predictions and has been shown to outperform the gravity model in predicting movement 
flows across multiple temporal scales. These mathematically elegant and computationally accessible movement 
models have enabled a widespread proliferation of mobility studies providing a coarse understanding of the 
population dynamics from national to metropolitan scales. Yet, we argue that the majority of these studies applied 
the models without attempting to understand their nuanced assumptions, their applicability across geographies 
and scales, and the errors in the predictions. Population-level movements differ by the motivation and need travel 
satisfies (e.g., journey to work or for leisure, or flight from a natural or human hazard), by mode of transport, the 

Figure 4.   Ensemble model predictions for Australia using ABS census data (A). Inset maps for gravity (B), 
gravity with distance (C), intervening opportunities (D), radiation (E) and radiation with selection (F) models 
respectively all trained using ABS data. Movement predictions from each model were scaled to be between 0 and 
1 to aid visual comparison. Vivid thick white lines represent high intensity movement, whilst faint thin darker 
lines represent low intensity movement. The maps in this figure were produced using the R33 package ggplot234 
(see Visualisation of predictions section in Methods for further detail). Preview35 and Paint 3D36 were used to 
combine the maps into one image, overlay the squares and add the text.
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geographies covered (cities, coastal plains or mountainous areas), and the temporal dependencies of consecutive 
travel, each presenting complications for these fundamentally elegant, yet simplistic statistical models.

More recent research in this field4,12,27 has emphasized the need to validate competing models and proposed 
a variety of model extensions, each with uncertain transfer-ability to different study areas with distinct space-
use patterns or to other applications (transport logistics, population migration and commuting populations). A 
rigorous comparison of movement flows predicted using different models by Lenormand et al.19 highlights that 
the same input data must be used across models for meaningful comparison. In their study, the gravity models 
with an exponential decay distance function outperformed the intervening opportunities model, highlighting 
how a person’s home location presents a more important parameter than the number of intervening opportu-
nities (work locations). Yet, the ability to tailor and fit nuanced, sophisticated, and locally adapted models37 is 
usually either not possible (due to lack of data, and the urgency to model a dynamically evolving phenomenon) 
or not easily transferable to a different geography or context. A possible departure is the approach of Kraemer 
et al.7, researching generic parameterisations of models of human mobility. More recent research has focused 
on developing models to improve the predictability of large-scale mobility by utilising a data-driven preferential 
attachment model18.

Ensemble models are valuable tools that can be used to improve predictive accuracy based on existing models, 
however a key limitation is the required computational power to train base models and carry out cross valida-
tion. Given the improvements in computational power since these methods were developed, they are likely to 
become increasingly popular in future. The Poisson deviance is a measure of how well the model predicts to 
the out-of-sample data, for this reason it cannot be used as a metric to compare across data sets and can only 
be used to compare relative model fits on the same data. The ABS census and GPS data both represent different 
inherently biased samples of population movements. A clear limitation of the census data is that it excludes 
population movements for those who are not currently employed, in addition the census is a single day sampling 
event and thus it is only reflective of the population that was employed on the day the census was conducted. The 
GPS data was sourced from a navigation application and as a result would capture different types of movement, 
restricted to those who used the navigation application. Therefore, the ABS census data may be reflective of the 
general working population movements whereas the GPS data will likely only reflect a portion of the population 
movements. Future work should consider expanding the GPS data set to see if patterns observed in this study 
hold true for a larger sample.

Our findings can be used to inform epidemiological research across country scale. This research was largely 
motivated by the need to understand how populations travel in order to access relevant health care. As such, 
firstly deriving models from appropriate data that can be utilised to predict movement flows between regions 
more accurately is of key importance. Secondly, combined with appropriate data these movement models can 
be further utilised to determine a measure of accessibility to relevant health care. Measuring accessibility to 
health care services also requires consideration of different sub-populations affected, which will again require 
appropriate use of data.

Standard movement model frameworks (such as the well known gravity and radiation models) take into 
account the Euclidean distance between the origin region and the destination region, while this can provide 
some level of insight into overall movement patterns it is not a realistic assumption for longer range movement 
within Australia. Due to the diverse landscape of Australia, it is necessary to consider the road distance or the 
road travel time between two regions and not simply the Euclidean distance which does not take into account 
the diversion of roads around mountain ranges, national parks or deserts. An extension to this work would be 
to take into account different measures of time and distance, as well as to look at changing patterns of movement 
over time to see if the same results hold as presented here. Furthermore, finding ways to integrate large spatial 
scale movement data (i.e. census) with more granular movement data (i.e. GPS) to derive a single model utilising 
both data types is another crucial way the analyses presented here could be extended upon.

Methods
Data sources.  Census data.  The Australian Bureau of Statistics (ABS) Census data are collected every 5 
years and are publicly available online. Within the Employment, Income and Unpaid work section, the journey 
to work dataset32 contains counts of individuals travelling between their region of home residence and regions 
of place of work on the census day. We use these data for regions at Statistical Area 2 (SA2) granularity a) within 
Victoria and b) across the whole of Australia, based on findings of the 2011 census. The ABS define SA2 regions 
to have a population size between 3,000 and 25,000, with the mean population size across all SA2 regions equal 
to 10,000. This results in varied spatial scales of SA2 regions across Australia, with urban regions being more 
populated and smaller than those less populated regions in remote areas.

Global positioning satellite data.  Anonymised GPS data from approximately 150,000 unique Australian users 
of a smartphone-based satellite navigation application capturing individual trips were processed and aggregated 
to provide population level travel flow frequencies between Statistical Area 2 (SA2) regions from January to 
October 2016 for a) Victoria and b) the whole of Australia. Aggregated trip frequencies over the entire dataset 
coverage period were processed to obtain an origin-destination matrix containing the average daily movement 
between SA2 regions. Each matrix was then normalised to produce a matrix of intensity of contact between 
origins and destinations. The raw data are not publicly available, however the processed origin - destination 
matrices are available upon request.

A visual comparison of the observed ABS census and GPS data can be found in Figures S5 and S6 of the 
Supplementary Material.
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Movement models.  Here, we describe the parameterised movement models used to fit the two described 
data sources and to predict patterns of population movement across Australia. 

1.	 Gravity Model: The gravity model assumes that the number of individuals moving between locations (ori-
gins and destinations) is proportional to a product of the population size of each location, and is inversely 
proportional to distance. The gravity model assumes that the magnitude of the number of trips,Tij , between 
locations i and j is defined by: 

 where mi is the population size of the origin, nj is the population size at the destination and rij is the distance 
between i and j. We use a common functional form of the gravity model which is defined as follows: 

 where Tij is the number of individuals moving between location i and j, mi represents the population at the 
origin location, nj is the population at the destination location and rij is the distance between the two loca-
tions, θ is a constant.

	   The parameters α and β tune the dependence of dispersal on the origin and destination populations 
respectively15,38.

2.	 Gravity with Distance cut off: This model is a modification of the gravity model which allows short and long 
trips to be fitted separately, resulting in more accurate predictions10. The probability of travelling between 
two locations within a given distance, δ , is different to the probability of travelling between two locations 
which are separated by a distance greater than δ . Therefore, if rij < δ we have 

 and if rij > δ we have 

 where θ1 and θ2 are proportionality constants. The exponents α and β tune the dependence of dispersal on the 
origin and destination population sizes ( mi and nj respectively) and the distance between two regions, rij38.

3.	 Original Radiation: The (original) radiation model generally assumes the rational of job selection. It follows 
the general rule that the number of employment opportunities in each region is proportional to its resident 
population, assuming full employment (that is the number of people in a region is equal to the number of 
jobs in that region). Moreover, the individuals in each region choose the closest job to their home. The aver-
age movement flow from location i to location j predicted by the radiation model is defined by: 

 where mi is the population at the origin and nj at the destination, sij denotes the total population in a 
specified radius around population centres mi and nj , and θ is the proportion of the population in region i 
that commute15,38. In this study, the radiation model parameters are estimated based on information about 
opportunities in each region.

4.	 Radiation with Selection: This model is a combination of the original radiation model (above) and inter-
vening opportunities model (see below). The average movement from region i to region j according to the 
radiation model with selection is defined by: 

 where θ is the proportion of population i that commute, P is the population at the origin location i and Q 
at the destination location j, R denotes the total population in a radius � around population centres Pi and 
Qj

5,15,27,38.
5.	 Intervening Opportunities: Stouffer26 formulated the intervening opportunities model based on the idea that 

distance and mobility are not directly related as suggested by the gravity model. The reasoning behind this is 
formed by the idea that the decision to make a trip is related to the relative accessibility of opportunities that 
satisfy the objective of the trip21. That is, the higher the number of intervening opportunities between two 
points, the lower the number of people travelling the whole distance between those two points. This results 
in the following definition: 

Tij ∝
minj
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 where nj is the total population in location j and ( sij + mi ) is the total population in locations between i and 
j26. This formulation of the model was redefined as a stochastic approach by Schneider in 1959 as explained 
in Simini et al.15. The probability that an individual in location i travels and ends their trip in location j is 
equal to the probability that location j contains an acceptable destination and that an acceptable destination 
closer to the origin location i has not been found. Therefore, the number of trips between location i and j 
is defined by: 

 where e−� is the probability that a single opportunity is not sufficiently attractive as a destination15. We make 
use of this intervening opportunities model defined by15 for the purposes of this study.

As the above movement models do not allow for movements within the same region (i.e. self loops), all predicted 
values for which the origin and destination location are the same were set to zero.

Ensemble movement model.  An ensemble movement model is derived based on the hypothesis that combin-
ing information from each type of movement model outlined above will produce more robust predictions of 
movement flows. We derive a type of ensemble model referred to as a stacked model, an idea first introduced 
by Wolpert28 as stacked generalizations. Breiman29 later introduced the concept of stacked regressions, which 
developed on Wolpert’s ideas and formalized a way to generate improved prediction accuracy by forming linear 
combinations of different predictors which were trained on the same dataset. Below we describe our ensemble 
model which utilises a Poisson generalized linear model (GLM)39 as the ‘stacker’ to derive more robust predic-
tions of movement flows between locations using the predictions generated from each of the above models as 
our input data.

Let �a(i, j) be the predicted movement flow matrix derived from model a, where (i, j) ∈ {1 . . . z} and z is the 
number of locations of interest. Then �ak is the corresponding vectorized form of �a with k = 1 . . . z2 . In the 
following a = 1 denotes predictions generated from the gravity model; a = 2 denotes gravity with distance model; 
a = 3 denotes radiation model; a = 4 denotes radiation with selection model and a = 5 denotes intervening 
opportunities model. Let yk be the ensemble predicted movement flow and µk be the expected value of yk . We 
estimate µk by deriving a Poisson GLM which takes the following form

where each of the βi coefficients (also referred to as weights) are fitted to the input data. Then, E[yk] = µk . 
The estimated weights for the ensemble models for each dataset are provided in Table 1. After transforming 
the vector µk back into a matrix of size z × z , we obtain the matrix for the predicted movement flows between 
locations i and j

Model parameterisation and prediction.  We parameterise the five movement models described above 
by fitting each to the two observed population movement flow datasets (ABS and GPS) separately. Model fit-
ting was performed using the movement package38 in R40. The fitting process results in estimates for each of 
the tunable parameters specified in models (1) to (5) above. Parameters for each model are optimised based on 
log likelihoods against the observed data assuming a poisson sampling distribution, as in the ensemble model. 
The Broyden-Fletcher-Goldfarb-Shanno (BFGS)41 method is utilised to carry out the parameter optimisation 
process.

Tij ∝
nj

(sij +mi)

Tij ∝ e−�(sij+ni)
θ

− e−�(sij+ni+nj)
θ

log(µk) =β0 + log(�
β1
1k)+ log(�

β2
2k)+ log(�

β3
3k)+ log(�

β4
4k)+ log(�

β5
5k)

=β0 + β1log(�1k)+ β2log(�2k)+ β3log(�3k)+ β4log(�4k)+ β5log(�5k)

E[y(i, j)] = µ(i, j).

Table 1.   Ensemble model weights. Parameter description: β0 model intercept, β1 gravity model weight, β2 
gravity with distance model weight, β3 radiation model weight, β4 radiation with selection model weight and β5 
intervening opportunities model weight.

Parameter

Ensemble model

Census Victoria data Census Australia data GPS Victoria data GPS Australia data

β0 0.9096 0.9442 −0.0021 0.3163

β1 0.3215 0.5347 2897.8930 1.1379

β2 −0.0036 −0.0687 −2897.9680 −0.8193

β3 821.6171 25.7575 −93.8892 −0.0894

β4 −821.4218 −25.5504 94.1929 0.6769

β5 0.3701 0.1945 0.3829 0.1419
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Cross validation.  A k-fold cross validation with k = 5 folds has been used to assess how well the above models 
predict movement. First, each dataset (ABS and GPS) is divided up into 5 folds (or sections). We then param-
eterised the movement models (described by (1) to (5) above) by training them using 4 folds (or 80% of the data). 
Then the parameterised models were used to predict the witheld fold (or remaining 20% of the data) in order to 
evaluate prediction accuracies of the models. This process was repeated until each of the 5 folds had been used 
as the witheld data. The 5-fold cross validation was also carried out for the ensemble model. This approach was 
implemented using the Caret42 R package.

After training the model, the accuracy of predictions was evaluated by computing the Poisson deviance. 
Poisson deviance allows measurement of the error between the observed and predicted values and thus enables 
assessment of how well each individual model predicts observed movement intensities between locations. It 
is important to note that the Poisson deviance provides a measure of relative fit. This means that values of the 
Poisson deviance can be compared across each fold for the same model but values cannot be compared between 
models. Tables S1 to S4 in the Supplementary Material give the Poisson deviance for the comparison of predicted 
and observed movement flows for each fold in the cross validation for each combination of model type and data 
source. Tables S5 to S8 in the Supplementary Material provide parameter estimates generated from 5-fold cross 
validation for each of the model types.

Once each model was parameterised, we used it to predict the movement flows and evaluate the accuracy of 
the predictions against the observed data. Even though we fitted the models using frequency travel data between 
SA2 regions in Australia (which can be large geographical areas), the final parameterised models can be utilised 
to predict the likelihood of movement flows between smaller geographical areas of any size, with the caveat that 
the location and population size of the origin and destination areas is still required.

Visualisation of predictions.  To aid geographical visualisation, the predicted movements for each model 
were put into an origin - destination matrices and scaled to ensure all predictions were between 0 and 1. This 
allowed better comparison of different model predictions within and between datasets. Figures 1 to 4 were pro-
duced using the R33 package ggplot234. Preview35 and Paint 3D36 were used to combine the maps into one image, 
overlay the squares and add the text on Figs. 3 and 4. Data used in Figs. 3 and 4 consist of predictions generated 
from the individual models and the ensemble model, which utilised ABS census and GPS data (see Methods 
section for details) as inputs into the models. The geographic boundaries of Australia and the state of Victoria 
for the maps in Figs. 3 and 4 were sourced from the ABS and mapped using the Geocentric Datum of Australia 
1994 (GDA94) coordinate reference system.

Data availability
The Australian Bureau of Statistics census journey to work data is freely available to download from their website. 
The raw GPS data utilised are not publicly available, however the processed origin - destination matrices are 
available upon request. All model predicted origin-destination matrices are available upon request.
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