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Abstract: While antimicrobial resistance (AMR) is seen in both Neisseria gonorrhoeae and Neisseria
meningitidis, the former has become resistant to commonly available over-the-counter antibiotic
treatments. It is imperative then to develop new therapies that combat current AMR isolates whilst
also circumventing the pathways leading to the development of AMR. This review highlights the
growing research interest in developing anti-virulence therapies (AVTs) which are directed towards
inhibiting virulence factors to prevent infection. By targeting virulence factors that are not essential
for gonococcal survival, it is hypothesized that this will impart a smaller selective pressure for the
emergence of resistance in the pathogen and in the microbiome, thus avoiding AMR development
to the anti-infective. This review summates the current basis of numerous anti-virulence strategies
being explored for N. gonorrhoeae.

Keywords: Neisseria gonorrhoeae; antimicrobial resistance; sexually transmitted infections; virulence
factors; anti-virulence therapy

1. Introduction

Neisseria gonorrhoeae is a Gram-negative diplococcus which causes the sexually trans-
mitted infection (STI) gonorrhea. The World Health Organization (WHO) estimates that
of the 376 million new cases per annum of treatable STIs (chlamydia, gonorrhea, syphilis
and trichomoniasis), N. gonorrhoeae caused 87 million cases globally [1]. Specifically, in the
United States, gonorrhea is the second most commonly reported notifiable infection. A
2018 surveillance report by the Centers for Disease Control and Prevention determined that
a total of 583,405 cases had been recorded, an 82.6% increase from the historic low observed
in 2009 [2]. A study on the total lifetime direct medical cost of gonorrhea infections on
the US healthcare system was approximately $81.1 to $243.2 million [3]. However, this
cost does not reflect the true economic burden of N. gonorrhoeae infections since it did
not include costs associated with adverse pregnancy outcomes, disease prevention or
productivity loss.

N. gonorrhoeae most commonly colonizes the genital mucosa, but can also colonize
the ocular, nasopharyngeal and anal mucosa. Gonococcal infections in men are predom-
inantly symptomatic, but pharyngeal and rectal infections in men are overwhelmingly
asymptomatic. Symptomatic patients usually present with acute urethritis, displaying
symptoms of dysuria and urethral discharge [4–8]. On the other hand, infections in women
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are frequently asymptomatic, with some studies indicating up to 70% asymptomatic infec-
tion rates [9]. Symptomatic infections of the genital mucosa usually manifest as cervicitis,
urethritis and occasionally as pelvic inflammatory disease (PID) [10]. Asymptomatic cases
are reservoirs that promote gonorrhea transmission, and undetected AMR strains from
these reservoir sites may promote the spread of resistance.

Gonococcal urethritis significantly increases the risk of acquiring and transmitting HIV,
thus substantially contributing to the public health burden of this infection [11–15]. Genital
infections in pregnant women can have adverse effects on the fetus including spontaneous
preterm birth, chorioamnionitis, low birth weight, premature rupture of membranes and
spontaneous abortion [16,17]. Additionally, transmission to the neonate may occur during
passage through the birth canal. The effects of gonococcal disease for neonates include
severe eye infections and bacteremia that can lead to ulceration of the cornea, perforation
of the globe of the eyes or permanent blindness [18–21].

To date, no successful vaccine strategies have been developed for gonorrhea in hu-
mans, as individuals can contract the disease multiple times throughout their lifetime,
suggesting that there is no natural immunity and therefore correlates of protection to
benchmark vaccine efficacy [22,23]. Recent studies have observed an association of reduced
prevalence of gonorrhea in individuals who have received the N. meningitidis serogroup B
vaccine Bexsero®, suggesting that there may be cross-protective immunological responses
elicited from common antigens in the meningococcal outer membrane (OM) vesicle com-
ponent [24,25]. Further work is required to fully analyze the immune response elicited by
this vaccine, but this provides a framework for future gonococcal vaccines, and reinforces
the requirement for human clinical trials to identify successful vaccine antigens [26].

2. Treatment and Antimicrobial Resistance

All gonococcal infections are treated with antibiotics, but different regimes may be rec-
ommended depending on the site of infection. For urethral, anorectal and oropharyngeal
infections, the WHO recommends a dual therapy of 250 mg of intramuscular ceftriaxone as
a single dose and 1 g of oral azithromycin as a single dose [27]. Alternatively, 400 mg of
oral cefixime can be administered as a single dose in conjunction with a single 1 g dose
of oral azithromycin. The dual therapy treatment for gonococcal infections is designed
to prevent the ever-increasing levels of antibiotic resistance observed in N. gonorrhoeae.
Neonatal gonococcal conjunctivitis should be treated with 50 mg/kg intramuscular ceftri-
axone as a single dose, 25 mg/kg intramuscular kanamycin as a single dose or 25 mg/kg
intramuscular spectinomycin as a single dose [27]. Ocular prophylaxis after birth should
also be applied to infants following perinatal cervical exposure using topical treatments
such as tetracycline hydrochloride or erythromycin eye ointment [28].

It is of great concern that AMR has risen to the point where there now exists no known
class of antibiotics to which resistance has not been identified [29–40]. The cost of healthcare
treatment for AMR infections is higher than for common infections since patients often
have extended hospital stays, and require more intensive and expensive care [41–45].

Development of antibiotics against AMR N. gonorrhoeae has been underway for some
time and many clinical candidates such as solithromycin, zoliflodacin, SMT-571 and gepoti-
dacin have entered clinical evaluation for treating uncomplicated gonorrhea [46–50]. Un-
fortunately, mechanisms for resistance against these antimicrobials are already present in
the bacterial population as the targets chosen are not novel. In addition, the suitability of
some of these compounds to treat gonorrhea has been reduced due to pharmacological
issues such as longevity and stability in the urogenital compartment. There also reports of
higher rates of oropharyngeal antibiotic treatment failures compared to other infection sites
which have been attributed to the inability of the antibiotic(s) to reach a sufficiently high
concentration in the oropharyngeal region [51,52]. Several studies by Chow et al. [53–55]
that looked into the effectiveness of antibacterial mouthwash in treating oropharyngeal
gonorrhea among men who have sex with men were unsuccessful or halted early due to
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high treatment failure rates, indicating the potential hurdle which oral treatments will have
to overcome to reach gonococci present in the oropharynx.

3. Pathogenesis Mechanisms of N. gonorrhoeae

Following transmission from an infected to uninfected host, the gonococcus adheres
to the apical side of the epithelial cells. This is mediated through gonococcal surface
structures such as type IV pili (tfp), opacity (Opa) proteins, lipooligosaccharide (LOS) and
the major OM protein porin, PorB [56]. Tfp, LOS and Opa can undergo both phase and
antigenic variation during infection that minimizes recognition and elimination by the
immune system [57].

Primary attachment is initiated by tfp which bind to the host cell surface receptor CD46
and/or complement receptor 3 [58,59]. In vitro studies indicate that antigenic variation of
tfp influences pilus-mediated adherence to human tissue, colony morphology and DNA
transformation efficiency [60,61]. To promote further intimate attachment, Opa proteins,
which are phase variable [62], adhere to the carcinoembryonic antigen-related cell adhesion
molecule (CEACAM) receptors, but some variants can bind to heparan sulfate proteogly-
cans (HSPGs) on host cells [58,63–66]. Attachment is also mediated by gonococcal LOS,
which binds specifically to the host asialoglycoprotein receptor on HepG2 cells [67], human
sperm cells [68] and epithelial cells [69]. Following adhesion, N. gonorrhoeae replicates to
form microcolonies and biofilms [70,71], and some bacteria can proceed to invade epithelial
cells by transcytosis [72–74]. During infection, gonococci releases fragments of bacterial
LOS, peptidoglycan (PG) and OM vesicles during cell growth that activate two pattern
recognition receptors, toll-like receptor (TLR) and nucleotide-binding oligomerization
domain-like receptor (NOD) on epithelial cells, macrophages and dendritic cells [75–79].
N. gonorrhoeae also releases heptose-1,7-bisphosphate, a precursor for the incorporation
of heptose into LOS, which activates TNF receptor-associated factor-interacting protein
with forkhead-associated protein A (TIFA)-dependent immunity [80,81]. Activation of
these TIFA, NOD and TLR signaling pathways leads to the activation of inflammatory
transcription factors and release of pro-inflammatory cytokines and chemokines (e.g., IL-6,
IL-8, CXCL3, CXCL10 and TNF-α) [58,82,83]. In response to these signals, large amounts
of polymorphonuclear leukocytes (PMNs) are recruited to the site of infection, where N.
gonorrhoeae is recognized and phagocytosed. Since gonococci can survive and replicate
within PMNs, the massive influx of PMNs forms an observable purulent exudate that
facilitates transmission [84].

4. Resistance of Gonococcus to Killing by Macrophages and PMNs

N. gonorrhoeae can avoid clearance by the immune system through a variety of mecha-
nisms, including manipulating phagocytosis, modulation of the oxidative burst, defending
against toxic neutrophil products and extending the neutrophil lifespan. Macrophages and
PMNs are both phagocytic cells which utilize oxidative and non-oxidative mechanisms in
microbial killing and degradation [85,86].

N. gonorrhoeae has four major mechanisms through which it is resistant to reactive oxy-
gen species (ROS): quenching ROS, detoxification of ROS, maintaining redox homeostasis,
and repair of oxidative damage. ROS can be quenched through a manganese (Mn) uptake
system that uses Mn(II), encoded by the gene locus mntABC [87–89]. Detoxification of ROS
occurs primarily through the expression of a cytoplasmic catalase, katA [90]. Additionally,
N. gonorrhoeae can also maintain redox homeostasis through the production of glutathione,
encoded by gor [91], while superoxide resistance is mediated by the periplasmic antioxidant
Sco [92]. Finally, N. gonorrhoeae can protect nucleic acids from ROS through recombination
repair mechanisms. It has been shown that several enzymes, including RecA, members of
the Ref-like and RecBCD pathways, and Holliday junction resolvases RuvAC and RecF,
all contribute to gonococcal survival after exposure to ROS [93]. Other enzymes such as
RecN, PriA (replication restart enzyme), UvrABCD (nucleotide excision repair system),
and MsrA/B have all been implicated in repair of oxidative damage [94,95].
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Multiple mechanisms are employed by the gonococcus to evade the non-oxidative
killing mechanisms of macrophages and PMNs. Phosphoethanolamine (pEtN) modifi-
cation and sialylation of LOS results in increased resistance of bacteria to antimicrobial
components, such as cationic antimicrobial peptide (CAMP) LL-37, while pili and porins
have been reported to inhibit the release of antimicrobial substances [96]. Zughaier et al.
(2015) [83] showed that pEtN modification of the lipid A moiety of the LOS reduced au-
tophagy pathways in RAW 264.7 murine and human THP-1 macrophages. Additionally,
the modulation of cellular iron metabolism has been reported to facilitate the survival of
bacteria inside macrophages [97]. Gonococci have also been known to suppress immu-
nity by polarizing macrophages and upregulating inflammatory and immunosuppressive
cytokines (IL-6 and IL-10, respectively) [98]. The efflux pump systems have been shown
to protect bacteria against the killing mechanisms of immune cells. The Mtr (multiple
transferrable resistance) efflux pump system, MtrCDE, plays an important role in enhanc-
ing gonococcal survival during vaginal tract infection in mice models [99]. This efflux
system also contributes towards extracellular survival, PMN extracellular traps and to
PMN-derived antimicrobial peptides [100]. FarAB, another efflux system, also exports
host-derived antimicrobials, but the exact mechanism of how this system contributes to
bacterial defense against immune cells remains unknown [99].

5. AVTs as an Intervention Strategy

Antibiotic resistance in bacteria is driven by exposure to antibiotics. This exposure
can occur via the food chain which delivers subtherapeutic concentrations of drug in
the diet that drive the development of resistance in the microbiome. During antibiotic
treatment of acute symptomatic infections [101,102], the majority of the human microbiome
is removed, leaving resistant strains to proliferate and donate genetic markers of resistance
via horizontal transfer mechanisms to colonizing pathogens (Figure 1A). In the case of N.
gonorrhoeae, resistance markers evolve in the commensal Neisseria species of the human mi-
crobiome or in response to repeated antibiotic treatment failures. As this genus is naturally
transformable, the pathogenic gonococci acquire the genetic markers via transformation
and homologous recombination, in addition to in situ evolution of mutations in antibiotic
target genes [103–105].
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Figure 1. Comparison of antibiotic and anti-virulence approaches for treatment of N. gonorrhoeae.
(A) Potential route for antibiotic resistance development in N. gonorrhoeae (pink diplococci). Antibi-
otics also affect the microbiome (Lactobacilli: grey rods; commensal Neisseria: purple circles), forcing
resistance determinants to evolve (blue outline). This resistance can then develop in N. gonorrhoeae
through gene acquisition via natural transformation (blue arrow) or spontaneous mutation. While
antibiotic treatment may assist PMNs and macrophages (yellow cells) in killing the bacteria, the
prescribed concentration may not be effective, resulting in proliferation of antibiotic resistant bacte-
ria. (B) Use of AVTs (green outline) enables PMNs and macrophages to kill the gonococci without
affecting the microbiome.
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Anti-virulence therapies (AVTs) are compounds that target virulence pathways re-
quired for microbial pathogenesis in the host but are not essential to the growth of the
pathogen in standard laboratory conditions [106]. Tailoring the AVT towards targets unique
to the pathogen reduces selective pressure on the commensal flora, which remains intact
and therefore is unable to become a reservoir of resistance determinants (Figure 1B). In the
specific case of N. gonorrhoeae, preservation of the vaginal microbiome could also protect
against gonococcal re-infection [107].

6. Gonococcal Virulence Factors as Targets for Inhibitor Design

An ideal anti-virulence target should be found in all disease-causing strains and be
essential for pathophysiology. Multiple compartments within the bacterial cell, including
the cell wall, OM and secreted components fit these criteria (Table 1) and are summarized
in Figure 2. Known anti-virulence targets and drug discovery programs against gonococcal
virulence factors are explained in detail in the following sections.

Antibiotics 2021, 10, 103 10 of 32 
 

 
Figure 2. Overview of anti-virulence therapeutic targets of N. gonorrhoeae. 

6.1. Bacterial Cell Wall Maintenance and Modification 
The gonococcal cell wall is characterized by the presence of both an inner membrane 

(IM) and OM separated by a PG layer. The PG is made up of linear glycan strands (repeat-
ing units of alternating N-acetylmuramic acid and N-acetylglucosamine residues joined 
through β-1,4 glycosidic bonds) cross-linked by short peptides [194–196]. The outer leaflet 
of the neisserial OM is composed of LOS, which consists of a membrane-anchoring lipid 
A domain and an inner core of 3-deoxy-D-manno-2-octulosonic acid linking it to a poly-
saccharide core [197]. Lipid A comprises a di-glucosamine backbone, 1- and 4’-phosphate 
groups and six acyl chains [198,199]. Since the PG and OM provide a substantial protective 
barrier, targeting enzymes that preserve or remodel the PG, such as acetylases and lyso-
zyme inhibitors [121,122,124,200], and LOS components could represent promising novel 
drug targets for treating MDR gonococcal infections. 

6.1.1. Lipid A Phosphoethanolamine Transferase 
The modification of lipid A with pEtN is mediated by the enzyme lipid A phos-

phoethanolamine transferase (EptA). EptA adds pEtN to the 1 and/or 4′ positions of lipid 
A [108,201] and is a characteristic virulence factor of pathogenic Neisseria [202] that affects 
multiple aspects of gonococcal survival. The presence of the positively charged pEtN af-
fects the neisserial cell surface and gonococcal strains lacking pEtN modification have 
been proven to be more susceptible to CAMPs and complement-mediated killing 
[109,203,204]. In addition, further studies have shown that eptA knockout strains are 
highly susceptible to killing by human PMNs and macrophages [83,111]. Loss of pEtN 
decoration was also found to decrease binding of LOS by the host TLR-4/MD-2 signaling 
pathway and lower cytokine expression [77,202]. EptA is also essential for survival in the 
murine female genital tract and in human male volunteers. A study by Hobbs et al. (2013) 
[110] showed that in competitive inhibition assays in mice, there was a minimum of 10–
10,000-fold reduction in eptA mutant strain recovery compared to the wild type. No eptA 
mutant strains could be recovered after day 6 post-inoculation in mice, and in human 
volunteers, eptA mutants could not be recovered at any point in time post-inoculation. 

The enzyme EptA is a particularly attractive target as it is essential for pathogenesis, 
is the only lipid A-modifying enzyme present and is found in all strains of pathogenic 
Neisseria. While there are no studies currently published on the development of inhibitors 
targeting EptA, this enzyme is a promising target for structure-based drug design. Crys-
tallographic and functional studies have highlighted residues in the catalytic site where 
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6.1. Bacterial Cell Wall Maintenance and Modification

The gonococcal cell wall is characterized by the presence of both an inner membrane
(IM) and OM separated by a PG layer. The PG is made up of linear glycan strands
(repeating units of alternating N-acetylmuramic acid and N-acetylglucosamine residues
joined through β-1,4 glycosidic bonds) cross-linked by short peptides [194–196]. The outer
leaflet of the neisserial OM is composed of LOS, which consists of a membrane-anchoring
lipid A domain and an inner core of 3-deoxy-D-manno-2-octulosonic acid linking it to
a polysaccharide core [197]. Lipid A comprises a di-glucosamine backbone, 1- and 4’-
phosphate groups and six acyl chains [198,199]. Since the PG and OM provide a substantial
protective barrier, targeting enzymes that preserve or remodel the PG, such as acetylases
and lysozyme inhibitors [121,122,124,200], and LOS components could represent promising
novel drug targets for treating MDR gonococcal infections.
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Table 1. Summary of anti-virulence targets in N. gonorrhoeae.

Anti-
Virulence

Target
Function

Target Validation Available
Inhibitors

Inhibitor Studies References
In Vitro Testing Structural Studies In Vivo Models

Bacterial cell wall maintenance and modification

EptA

Catalyzes the
addition of pEtN

onto lipid A of the
OM.

Loss of EptA
increases

susceptibility to
killing by PMNs,

macrophages,
CAMPs and human

serum.

Full structure solved of N.
meningitidis homologue (98%

identity, PDB
accession code 5FGN).

Reduced survival
rates of eptA mutant
in mouse and human

models.

N/A N/A [83,108–112]

Lst

Catalyzes the
addition of

N-acetyl-neuraminic
acid onto

lacto-N-neotetraose
of LOS. Primary
mechanism for

resistance to human
complement.

Loss of Lst increases
susceptibility to

killing by PMNs and
human serum.

Full structure of N. meningitidis
homologue apo form (92%

identical, PDB accession code
2YK4 1) and with structural

donor sugar analogs or
products solved (PDB

accession code 2YK5, 2YK6,
and 2YK7 1).

Reduced survival
rates of lst mutant in

mouse models.

FHD1119G and
Leg5,7Ac2

Increased serum
sensitivity. Significantly
reduced duration and
burden of infection in

mouse vaginal
colonization model.

[113–119]

NgACP and
SliC

Essential for
survival against

lysozyme.

Loss of NgACP and
SliC increased

susceptibility to
human lysozyme.

NgACP loss
significantly reduced

survival in PMNs.

Mature NgACP structure has
been solved (PDB

accession code 6GQ4).
Structure of SliC homologue in
Pseudomonas aeruginosa (MliC)

solved (23.3% identity, PDB
accession code 3F6Z 1).

Reduced survival
rates of sliC mutant
in mouse models.

N/A N/A [120–123]

PatB

Catalyzes
O-acetylation of

N-acetyl-muramic
acid.

Increased sensitivity
to lysozyme in
human sera or

lysozyme purified
from human PMNs.

Structure of PatB homologue
in

Staphylococcus aureus (OatA
C-terminal catalytic domain)

has been solved (15% identical,
PDB

accession code 6VJP 1).

N/A Compound 89224

Treatment reduced
bacterial growth by 90%.
Inhibitor binding studied

using microtiter
plate-based fluorometric

assay.

[124–131]
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Table 1. Cont.

Anti-
Virulence

Target
Function

Target Validation Available
Inhibitors

Inhibitor Studies References
In Vitro Testing Structural Studies In Vivo Models

Bacterial cell wall maintenance and modification

LtgA

Catalyzes cleavage of
N-acetyl-muramic

acid-β-1,4-N-
acetylglucosamine to
form PG monomer

fragments during cell
growth.

Reduction in PG
monomer release.
Loss of LtgA in N.
meningitidis has a

detrimental effect on
bacterial cell growth,

division, and
separation.

Structure of N. meningitidis
homologue (97% identical,

PDB accession code 6FPN 1).

NmLtgA mutant
cleared quicker than

wild-type and
reduced cytokine

induction in mouse
model.

Bulgecin A
Inhibited LgtA activity and

had a synergistic effect
with β-lactams.

[75,132–137]

Anaerobic survival

AniA
Reduces nitrite to

nitric oxide. Essential
for anaerobic growth.

Loss of AniA
reduces anaerobic

growth and biofilm
formation.

Soluble domain structure
solved (PDB accession code

1KBW, 1KBV, 5TB7, and
5UE6).

Immunization with a
truncated form of
AniA generates

protective antisera in
a mouse model.

C7-3

Significantly inhibited
enzyme activity and
gonococcal growth

under anaerobic
conditions. Inhibitor

binding studied using
molecular docking and
biolayer interferometry.

A patent has been
approved for C7-3 and its

derivatives.

[138–142]
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Table 1. Cont.

Anti-
Virulence

Target
Function

Target Validation Available
Inhibitors

Inhibitor Studies References
In Vitro Testing Structural Studies In Vivo Models

Efflux pump

MtrCDE

Selective efflux of
antimicrobials

resulting in increased
resistance to
penicillins,

macrolides and
extended spectrum

cephalosporins.

Loss of the MtrCDE
pump results in

increased
susceptibility to

penicillin,
ceftriaxone,

azithromycin,
tetracycline, and

solithromycin in the
WHO clinical panel

of
multidrug-resistant

(MDR) strains.

Full structures of MtrD and
MtrE solved (PDB accession

code 4MT1 (MtrD), 4MT0
(MtrE), 6VKS (MtrD from

strain CR103 in complex with
ampicillin) and 6VKT (MtrD

from strain CR103 in complex
with erythromycin). Full

structure of MtrC homologue
(MexA) in P. aeruginosa solved
(43% identity, PDB accession

code 1VF7 1).

Loss of the MtrCDE
pump reduced

gonococcal survival
and increased

penicillin
susceptibility to

therapeutic levels in
mouse models.

Phenylalanine
arginine

β-naphthylamide
(PaβN)

Untested in N. gonorrhoeae,
derivatives have been

halted due to high host cell
toxicity.

[46,99,143–148]

Protein folding pathways

Mip

Catalyzes the
cis–trans

isomerization of
peptide bonds

directly preceding a
proline residue.

Loss of Mip
decreased gonococcal

survival within
macrophages and

PMNs.

Full structure of Legionella
pneumophila homologue solved

(44.8% identical, PDB
accession code 1FD9 1).

N/A PipN3 and PipN4

Compounds inhibited
enzyme activity and
reduce gonococcal

survival in neutrophils.

[149–151]

DsbA/DsbB

Catalyzes formation
of disulfide bonds in

OM proteins
involved in
virulence.

Loss of DsbA1 in N.
meningitidis affects

tfp function,
reducing

colonization and
competence.

Full structures of N.
meningitidis homologues

DsbA1 (97% identical, PDB
accession code 3DVW and
3A3T 1) and DsbA3 (93%

identical, PDB accession code
3DVX and 2ZNM1) solved.

Full structure of E. coli
DsbA/B complex homologue
solved (28.7% identical, PDB

accession code 3E9J 1).

N/A

Phenylthiazole,
benzofuran,

phenylthiophene or
phenoxyphenyl

derivatives

Untested in
N. gonorrhoeae. [152–169]
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Table 1. Cont.

Anti-Virulence
Target Function

Target Validation
Available Inhibitors Inhibitor Studies References

In Vitro Testing Structural Studies In Vivo Models

Adhesion and invasion

Type IV pili
Essential for adhe-
sion/colonization,

horizontal gene
transfer, twitching

motility.

Tfp mutants lacking
PilE are unable to
adhere to human

epithelial cells, are
non-motile and are

incompetent.

Tfp structure has been
solved (PDB accession

code 5VXX, 1AY2, 2HIL
and 2HI2).

In the human male
model of infection,

men inoculated with
a gonococcal pilE

mutant developed
watery urethral

discharge or were
asymptomatic.

Compound B Prevents pilus elongation.
[170–183]

Phenothiazines

Inhibited Na+-pumping
NADH:quinone

oxidoreductase. Tests with
N. meningitidis reduced

bacteremia and increased
survival in a mouse model.

Compound G2,
carbamazepine and

methyldopa

Inhibits tfp binding to host
receptor CR3 on primary
cell line. Carbamazepine

and methyldopa are
re-purposed drug
(FDA-approved

anti-convulsant and high
blood pressure medication,

respectively).

Mannose-
binding (Opa)

proteins

Required for
adherence to host

epithelial cells.

Opa-less bacteria do
not adhere to

Chinese hamster
ovary cells.

Structure of Opa60 has
been solved (76%

identity, PDB accession
code 2MAF 1).

Gonococci recovered
from human models

are always Opa
positive, even if the
inoculum was Opa

negative.

ConA and α-methyl
D-mannoside
(Mannosides)

Compounds reduced
gonococcal adherence to

primary cervical epithelial
cells and urethral epithelial

cells.

[184–190]

1 PDB identification and percentage identity obtained using the NCBI BLASTp query of the PDB database [191–193].
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6.1.1. Lipid A Phosphoethanolamine Transferase

The modification of lipid A with pEtN is mediated by the enzyme lipid A phospho-
ethanolamine transferase (EptA). EptA adds pEtN to the 1 and/or 4′ positions of lipid
A [108,201] and is a characteristic virulence factor of pathogenic Neisseria [202] that affects
multiple aspects of gonococcal survival. The presence of the positively charged pEtN af-
fects the neisserial cell surface and gonococcal strains lacking pEtN modification have been
proven to be more susceptible to CAMPs and complement-mediated killing [109,203,204].
In addition, further studies have shown that eptA knockout strains are highly susceptible
to killing by human PMNs and macrophages [83,111]. Loss of pEtN decoration was also
found to decrease binding of LOS by the host TLR-4/MD-2 signaling pathway and lower
cytokine expression [77,202]. EptA is also essential for survival in the murine female genital
tract and in human male volunteers. A study by Hobbs et al. (2013) [110] showed that in
competitive inhibition assays in mice, there was a minimum of 10–10,000-fold reduction
in eptA mutant strain recovery compared to the wild type. No eptA mutant strains could
be recovered after day 6 post-inoculation in mice, and in human volunteers, eptA mutants
could not be recovered at any point in time post-inoculation.

The enzyme EptA is a particularly attractive target as it is essential for pathogenesis,
is the only lipid A-modifying enzyme present and is found in all strains of pathogenic
Neisseria. While there are no studies currently published on the development of inhibitors
targeting EptA, this enzyme is a promising target for structure-based drug design. Crys-
tallographic and functional studies have highlighted residues in the catalytic site where
inhibitors can be designed to target, thereby reversing the resistance of the gonococci to
antimicrobial peptides [112,201,205,206].

6.1.2. LOS Sialyltransferase

The α-chain of LOS is variable due to the differing expression of LOS glycosyl-
transferases (Lgt), which sequentially add glycan residues to the α-chain extending from
HepI [207]. The expression of certain α-chain structures which mimic host glycans, such as
lacto-N-neotetraose (LNT), play an important role in attachment to and invasion of the host
epithelium and immune invasion in both gonococci and N. meningitidis [63,208]. In particu-
lar, the sialylation of gonococcal LNT with sialic acid (Neu5Ac) by LOS sialyltransferase
(Lst) has been shown to confer serum resistance when grown in media supplemented with
cytidine monophospho-N-acetylneuraminic acid (CMP-NANA, the donor molecule for
Neu5Ac) [209–213] by interfering with all three complement activation pathways [213–216].
The lst gene is ubiquitous among gonococcal isolates [217], and is actively expressed fol-
lowing contact with host cells under the control of the transcriptional regulator CrgA [218],
making it an attractive potential target for anti-virulence therapies [219].

Two major anti-virulence strategies targeting LOS sialylation have been investigated
to date. One strategy made use of chimeric proteins consisting of factor H linked to the Fc
domain of murine IgG—termed FH/Fc [117]. By mimicking factor H mutations observed
in atypical hemolytic uremic syndrome (a condition resulting in the overactivation of
the alternative complement pathway), Shaughnessy and colleagues created a variant of
FH/Fc, FHD1119G, which was non-toxic to host cells but could bind to multiple sialylated
clinical isolates of N. gonorrhoeae, including ceftriaxone-resistant isolates, to varying degrees.
FHD1119G was also shown to have a bactericidal activity of >50% in 10 of the 15 isolates
studied and could increase C3 deposition on the remaining five strains which resisted
direct killing. In a mouse vaginal colonization model, FHD1119G reduced the bacterial
load over the course of the infection and the median time to clearance from 7 to 5 days.

The second anti-virulence strategy targeting gonococcal LOS sialylation makes use
of analogues of CMP-NANA, such as Leg5,7Ac2 and Neu5Ac9N3 (collectively termed
CMP-nonulosonates or CMP-NulOs). When grown in the presence of CMP-NulOs, these
analogues were successfully incorporated into gonococcal LOS by Lst without conferring
resistance to complement mediated killing [116]. Further investigation revealed that
Leg5,7Ac2 reduced factor H binding to levels equivalent to unsialylated gonococci, reduced
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clearance time of gonococcal infections in mice, and was able to block serum resistance
even when added to the medium following the addition of CMP-NANA [118]. Leg5,7Ac2
was also shown to not be incorporated onto the surface of human B lymphoma cells,
indicating that it may potentially be safe for use in humans [118]. Interestingly, the main
mechanism by which CMP-NulOs provide protection in mouse models is by protecting
against cathelicidins, not by inducing resistance to complement [119].

Several obstacles to the use of anti-sialic acid-based therapeutics exist. Sialidases
expressed by the microbial flora of the vagina may de-sialylate gonococcal LOS, rendering
FH/Fc based approaches ineffective [219]. Differences in the interaction of gonococci with
the male and female genital tracts may also affect the efficacy of potential therapies [63].

6.1.3. Lysozyme Inhibitors

The location of gonococcal colonization (e.g., urethra, pharynx, rectum, cervix, and
conjunctiva) is rich in lysozyme, produced as part of the innate immune system or in
macrophages, neutrophils, and dendritic cells [220–223]. Lysozyme is an antimicrobial
protein that causes cell lysis and death through glycosidic bond hydrolysis between the
carbohydrate motifs that make up the PG layer [224,225].

N. gonorrhoeae encodes two direct lysozyme inhibitors, surface-exposed lysozyme in-
hibitor of c-type lysozyme (SliC) and N. gonorrhoeae-adhesin complex protein (NgACP) [121,122].
The expression of these inhibitors is upregulated and essential for survival when exposed
to lysozyme. In the study by Ragland et al. (2018) [121], mutants lacking either SliC,
NgACP or both were constructed and tested against lysozyme from a variety of sources
(i.e., human lysozyme, pooled human tears or pooled human saliva, and neutrophils).
The loss of NgACP resulted in a significantly reduced gonococcal survival when exposed
to lysozyme or neutrophils which SliC alone could not compensate for. However, these
in vitro experiments did highlight the importance of both inhibitors in lysozyme resistance
as the double mutant exhibited an increased sensitivity to lysozyme over either single
mutant. SliC was found to play an important role in vivo survival as shown through
experimental infection of female mouse genital tract. Mice infected with a strain lacking
SliC resulted in a 3-, 372-, and 198-fold lower recovery than the wild-type strain on days 1,
3, and 5 post-inoculation. The same experiment in lysozyme defective mice supported the
importance of SliC during in vivo infection.

Both SliC and NgACP are attractive targets for anti-virulence therapy and as potential
vaccine candidates due to their extracellular localization, expression during human infec-
tion, and relative conservation among gonococcal strains [123,226,227]. No studies have
yet to be published regarding the development of inhibitors or vaccine trials using SliC
and NgACP but the structure of NgACP has been solved [123] and can be used to pursue
structure-based drug design.

6.1.4. PG O-Acetyltransferase B

Similar to the lysozyme inhibitors NgACP and SliC, the enzyme PG O-acetyltransferase
B (PatB) provides protection against lysozyme-induced lysis. In addition, it plays a role
in regulating gonococcal cell autolysis by preventing PG degradation. PatB is hypothe-
sized to function together with PatA (an integral IM protein) as a two component system,
whereby PatA translocates the presumed substrate acetyl-CoA to PatB in the periplasm,
which then acts as a substrate for acetyl group addition onto the C-6 hydroxyl group of N-
acetylmuramic acid [124,125,127,128,133,228]. Preventing O-acetylation of PG is key in mit-
igating the detrimental downstream effects of large circulating gonococcal O-acetylated PG
fragments, such as arthritis and PG-mediated complement consumption [126,130,229,230]
whilst returning sensitivity to lysozymes present in the host immune system. In addition,
compounds targeting this enzyme will have the added benefit of not affecting the existing
microbiota in the host that do not acetylate their PG.

In the study by Brott et al. (2019) [129], inhibitors were identified using high through-
put screening that monitored hydrolysis of a fluorescent substrate, 4-methylumbelliferyl-
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acetate. Following validation pilot screens, optimized screening conditions and stringent
statistical parameters were used to eliminate false positives. The remaining 12 compounds
were put through dose response assays, followed by fluorescence quenching assays that
removed potential hits with chemical properties that interfered with the assay. The com-
pound 89224 was identified as a mixed/non-competitive inhibitor of patB with a Ki of
126 ± 19.5 µM. This compound is a benzothiazolyl-pyrazolo-pyridine derivative specific
for O-acetylated PG, as evidenced by bacteriostatic growth inhibition of N. gonorrhoeae but
not E. coli.

6.1.5. Lytic Transglycosylase A

Lytic transglycosylases, in particular lytic transglycosylase A (LtgA) and LtgD, are in-
volved in PG turnover through the cleavage of the glycosidic bond between N-acetylmuramic
acid and N-acetylglucosamine, which results in the formation 1,6-anhydromuramic acid-
based structures [75,132]. LtgA and LtgD are OM proteins, localizing in the cell septum
and in discrete focal points around the bacterium, respectively [134]. Loss of LtgA and
LtgD results in markedly reduced PG monomer release and increased sensitivity to killing
by neutrophils that is independent from monomer release [135]. In N. meningitidis, an LtgA
active site mutant strain had a detrimental effect on bacterial cell growth, division, and
separation. In an in vivo mouse model, the mutant strain was cleared quicker and had a
reduced cytokine production level [137].

The compound bulgecin A was found to bind specifically to a soluble lytic transglyco-
sylase in E. coli and has been shown to have a synergistic effect when used with β-lactams
to cause bulges in the cell wall of a variety of Gram-negative species [231–236]. Williams
et al. (2017) investigated the effects of bulgecin A in pathogenic Neisseria in addition to
solving the structure of LtgA from N. meningitidis complexed with bulgecin A [136]. The
solved complex showed bulgecin A occupying the conserved active site of LtgA, suggesting
that it acts as a competitive inhibitor and demonstrated the effect of bulgecin A on the
ability of LtgA to facilitate 1,6-anhydro-muropeptide release using in vitro inhibition exper-
iments. This study also demonstrated the synergistic effect of bulgecin A with β-lactams
as seen in the lowered MIC values for penicillin G, amoxicillin and cefotaxime against
pathogenic Neisseria.

6.2. Anaerobic Survival

Evidence of biofilm formation in cervical infections supports the persistence of
gonococcal disease in women as the matrix protects against antibiotics and host de-
fenses [237,238]. Due to this matrix, there exists a concentration gradient of oxygen and
nutrients, suggesting that the bacteria can grow under anaerobic conditions. Several
different genes are upregulated in response to anaerobic growth, including aniA (nitrite
reductase) [239] and norB (nitric oxide reductase) [240].

Anaerobically induced protein A (AniA) is the only anaerobically induced OM protein
that is undetected during aerobic growth [241] and reduces nitrite to nitric oxide. The
presence of antibodies to AniA in the sera of patients diagnosed with gonorrhea or PID
strongly suggests that AniA is expressed during pathogenesis [242]. Since AniA is present
in all strains of N. gonorrhoeae and is essential for the growth and survival of N. gonorrhoeae
under anaerobic conditions and for biofilm formation, it has become a target for both
vaccine and inhibitor studies [23,139–141].

The inhibitor study by Sikora et al. (2017) [141] used a phage display approach to
identify ligands interacting with AniA. From a large initial library of peptides, 29 peptides
were identified and further examined using an enzyme-linked immunosorbent assay. The
results of this assay and computational docking studies revealed that the inhibitor C7-3
was the most promising, binding near the type 2 copper site of the enzyme responsible
for interaction with nitrite. Subsequent experiments with C7-3 and its derivatives, C7-
3m1 and C7-3m2, demonstrated potent inhibition of AniA and antimicrobial activity
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against anaerobically grown N. gonorrhoeae strain 1291, which has resulted in potential
commercialization of these materials [142].

6.3. Efflux Pumps

Most drug efflux proteins belong to five distinct families: the resistance-nodulation-cell
division (RND), major facilitator, staphylococcal/small MDR, ATP-binding cassette, and
multidrug and toxic compound extrusion families [243]. In gonococci, four efflux pump sys-
tems, MtrCDE, MacAB, NorM, and FarAB, have been identified in all strains [244–247]. The
MtrCDE system belongs to the RND family and has been shown to recognize antimicrobials
previously or currently recommended for gonorrhea treatment [46,248–250].

A major gonococcal AMR determinant is the MtrCDE pump. It is composed of
IM and OM channels (MtrD and MtrE, respectively), which are connected through a
periplasmic membrane fusion lipoprotein (MtrC) [244,251,252]. Expression of mtrCDE is
directly regulated by the MtrR repressor and MtrA activator [253–255]. Mutations causing
the overexpression of MtrCDE can occur in MtrR or in the promoter region of the mtrCDE
operon, conferring increased resistance to antibiotics such as azithromycin [244,248]. Jerse
et al. (2003) [99] found that mutations in mtrCDE reduced gonococcal survival in the female
murine genital tract. Additionally, Chen et al. (2019) [147] showed that transcriptional
repression of the MtrCDE efflux pump in penicillin resistant strains could increase the
penicillin susceptibility to therapeutic levels in mice models. MtrCDE may also contribute
to in vivo gonococcal survival by protecting against the antimicrobial effects of fatty acids
and CAMPs found at mucosal surfaces [248,256].

Efflux pump inhibitors have been considered for the treatment of gonorrhea for quite
some time as mtrCDE is expressed by gonococci in the human urogenital tract of both
men and women [226,257]. However, the current candidates under development such
as the efflux pump inhibitor MC-207110 (phenylalanine arginine β-naphthylamide) have
been associated with high levels of host cell toxicity and unfavorable pharmacokinetic
properties [143,145,258].

6.4. Protein Folding Pathways

The process of protein folding is crucial for ensuring that proper biological activity
and conformational stability is achieved as protein misfolding in prokaryotic cells can
lead to aggregation into insoluble inclusion bodies [259]. As such, bacteria contain several
mechanisms that prevent misfolding from occurring. These molecular chaperones facilitate
native protein stabilization, translocation, re-folding, and degradation, and include proteins
such as heat-shock proteins [260,261], peptidyl-prolyl cis–trans isomerases (PPIases) [262]
and oxidoreductases [152,263].

6.4.1. Macrophage Infectivity Potentiator

Macrophage infectivity potentiator (Mip) proteins are members of the FK-506 binding
protein subfamily, belonging to the immunophilin superfamily. This protein family exhibits
PPIase activity, thereby catalyzing the cis–trans isomerization of peptide bonds directly
preceding a proline residue [262]. This is an inherently slow reaction and can be rate limiting
in the correct folding of various proteins in the absence of a PPIase protein [264,265].

The Mip protein in N. gonorrhoeae is an OM protein found to be present, with a high
degree of similarity, in all 20 clinical strains tested by Starnino et al. (2010) [266]. In
addition, all infected patients’ sera were able to recognize recombinant NgMip protein, indi-
cating immunogenicity. This was reinforced by the work of Humbert and Christodoulides
(2018) [267] which showed that recombinant N. meningitidis Mip can produce bactericidal
antibodies that are effective against both N. meningitidis and N. gonorrhoeae strains. Further,
a N. gonorrhoeae strain lacking NgMip showed decreased survival within murine RAW
264.7 macrophage cells [150]. The ability of a N. meningitidis strain lacking NmMip to grow
in human whole blood was decreased in comparison to the parent control [268]. These data
indicate the importance of the Mip protein in the virulence of pathogenic Neisseria species.
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Novel inhibitors originally designed against the Mip protein of Legionella pneumophila
and Burkholderia pseudomallei were tested against N. gonorrhoeae and N. meningitidis by
Reimer et al. (2016) [151]. The cognate inhibitor of Mip proteins, rapamycin, was used as a
basis for the synthesis of these pipecolic acid derivative inhibitors, and the high level of
conservation of Mip proteins across bacterial species allowed for successful screening across
multiple pathogens. The two inhibitors studied, PipN3 and PipN4, were able to inhibit the
PPIase activity of recombinant gonococcal Mip, as well as reduce intracellular survival of
N. gonorrhoeae in PMNs. Treatment with PipN3 and PipN4 also reduced the ability of N.
meningitidis to adhere to and invade human nasopharyngeal Detroit 562 epithelial cells.

6.4.2. Oxidative Protein Folding System

Disulfide bond protein A (DsbA) and DsbB are periplasmic oxidoreductases required
for disulfide bond formation in protein substrates. DsbA is a periplasmic protein that
belongs to the thioredoxin superfamily, with an active site CXXC motif embedded in a
thioredoxin-like fold and a highly conserved cis-proline in an adjacent loop. DsbA catalyzes
the formation of disulfide bonds between thiol groups of two cysteine residues [263]. DsbA
is kept in an oxidized state by DsbB reductase, which transfers electrons to quinone through
the electron transfer system [269]. DsbB is an inner membrane protein and a member of
the vitamin K epoxide reductase superfamily [152]. N. gonorrhoeae encodes two DsbA
oxidoreductases. DsbA1 is a lipoprotein bound to the inner membrane, while DsbA3 is a
soluble periplasmic protein [154].

Inactivation of the DsbA/DsbB oxidative system has pleiotropic effects on various
virulence-associated phenotypes and decreases survival in in vivo infection models of
many Gram-negative pathogens [166]. Inactivation of dsbA1/dsbA2 in N. meningitidis
causes the inefficient folding of PilE and PilQ, resulting in reduced colonization and
competence [154,156], while inactivation of dsbA3 results in instability and loss of function
in EptA [270]. At this stage, no studies have characterized the effects of dsbB loss in
Neisseria species.

Previous studies have identified small-molecule inhibitors, phenylthiazole, benzofu-
ran, and pyridazinone derivatives, against the DsbA/DsbB system in E. coli. Pyridazinone-
based compounds [161,163,165,169] bound to EcDsbB at the quinone-binding site between
the first two transmembrane segments, competing with quinone, or to a segment of the sec-
ond periplasmic loop that interacts with EcDsbA [164,271]. Phenylthiazole and benzofuran-
based compounds bound to the hydrophobic groove of EcDsbA, which is required for inter-
action with EcDsbB [163,169]. Phenylalanine and tyrosine-based phenylthiazole derivatives
were also found to selectively inhibit EcDsbA in in vitro assays, with reduced motility in
soft agar and no effect on growth in liquid media [163]. However, these compounds have
not been trialed in N. gonorrhoeae.

6.5. Adhesion and Invasion

As described earlier, pathogenic Neisseria species express numerous features that facilitate
the attachment and invasion of host cells to begin the cycle of infection. The first step of
infection relies heavily on attachment and colonization through microcolony formation on
the epithelial cell surface [70,272]. This process is mediated by tfp, an OM structure that is
also responsible for enabling transformation competence, immune evasion through antigenic
and phase variation, twitching motility, and protection from CAMP-, ROS- and PMN-killing
mechanisms [273–281]. Additionally, gonococci express Opa proteins that are important for
facilitating attachment to host cells via glycan binding [65,66,187,282]. Therefore, tfp and Opa
proteins represent attractive targets that prevent gonococcal-host interactions.

6.5.1. Type IV Pili

Tfp are long filamentous structures extending from the inner membrane to the
bacterial surface, passing through the outer membrane via PilQ [283,284]. It is com-
posed of the major pilin, PilE, and other minor pilins such as ComP, PilV, PilC and PilH-
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L [173,177,272,281,285,286]. The tfp is a highly dynamic structure which undergoes rapid
cycles of extension and retraction mediated by PilF and PilT, respectively [175,176,287].

Two recent studies have identified inhibitors of neisserial tfp. The first inhibitor,
referred to as compound B in the publication, was identified through a phenotypic screen
and successfully prevented the adherence and formation of N. meningitidis microcolonies on
the human umbilical vein endothelial cell surface [181]. Cellular and in vitro experiments
showed that compound B could inhibit the PilF ATPase enzymatic activity resulting in
lowered surface expression levels of tfp. Since compound B did not show any inhibitory
activity on PilT, this strongly indicates an inhibitory effect on tfp assembly. Additionally,
compound B could also prevent the autoaggregation of N. gonorrhoeae and induced the
disaggregation of preformed gonococcal aggregates, indicating a potential broad-spectrum
application. In the same study, structure–activity relationship analysis of compound B
showed that the 2,4-dimethoxybenzoyl and piperidine moieties can be modified without
affecting efficiency. As such, these components could be modified in future studies to
obtain more soluble and stable inhibitors.

The second inhibitor trifluoperazine and related phenothiazines are part of a group
of anti-psychotic drugs. Unlike compound B, the inhibitors identified by Denis et al.
(2019) [182] do not directly target tfp. Instead, the phenothiazine derivatives affect the
function of the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) in N. meningitidis
and N. gonorrhoeae, which result in a reduction in tfp twitching motility and the dispersal
of bacterial aggregates [182]. Mice infected with N. meningitidis treated with the both
phenothiazine and antibiotics had reduced bacteremia and increased survival, highlighting
the importance of preventing tfp-mediated pathogenesis.

The effects of both compounds on piliation were fast acting, reflecting the rapid
dynamics of the tfp [181,182]. Additionally, both studies showed that although these
compounds were initially designed to inhibit N. meningitidis, they are also effective on
other Gram-negative tfp-expressing bacterial pathogens such as N. gonorrhoeae and P.
aeruginosa. Further investigations into targeting tfp should be performed due to the broad
range of pathogens that rely on piliation as a virulence factor.

A separate approach to blocking tfp-mediated attachment to host cells has been
recently described by Poole et al. (2020) [183] who screened a library of FDA-approved
drugs for binding to the I-domain of complement receptor 3 (CR3). They retrieved two
drugs, methyldopa and carbamazepine, which bound with high affinity to the CR3 receptor.
Using a docking model, they also synthesized a peptide, G2, which bound with such high
affinity to the I-domain of CR3 that it inhibits tfp-mediated gonococcal colonization of
primary cervical cells.

6.5.2. Mannose-Binding (Opa) Proteins

Opa proteins are OM proteins that promote intimate adhesion to CEACAM and
glycans on host epithelial cells, and are observed to be expressed by gonococci isolated
from human male models of infection [184,185,188]. Cole et al. (2010) [288] showed that
Opa proteins promote persistent late stage of infection in the female murine genital tract.
This study and another by Koch (1947) [289] suggested that expression of Opa variants
may have a link to stages of the menstrual cycle.

A study by Semchenko et al. (2019) [190] used a glycan array analysis to investigate
the glycan binding profile of N. gonorrhoeae and the proteins that mediate this interaction.
The highest percentage of bound glycans were glycosaminoglycans, such as HSPG, and
mannosylated glycans. Using surface plasmon resonance experiments, the glycan that
had the highest-affinity interaction was α1-2-mannobiose and liquid chromatography-
mass spectrometry was used to successfully identify three Opa proteins that were the most
abundant mannose-binding proteins. A second surface plasmon resonance assay confirmed
that Opa-expressing gonococci had a 6- to 27-fold higher affinity to mannosyl glycans than
Opa-nonexpressing gonococci. Since mannose was found on genital tract epithelial cells,
Semchenko and collaborators performed infection inhibition assays using the mannose-
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binding lectin ConA or α-methyl D-mannoside (mannose-binding protein antagonist)
pretreated epithelial cells. Using either inhibitor resulted in a clear reduction in gonococcal
adherence to primary cervical epithelial cells and urethral epithelial cells. These results
affirmed the need for the development of inhibitors specific to Opa/mannose-binding
proteins as gonococcal anti-infectives.

7. Considerations for Further Clinical Development of AVTs

Although there is a considerable number of AVTs for many bacterial pathogens in
pre-clinical development [106,290], licensing pathways for these compounds remain largely
underdeveloped. Provisionally, if the compounds are novel, they are likely to progress
via the same regulatory pathway as antibiotics, which may take as long as 10–15 years
(Table 2) [291]. However, a shortened licensing pipeline of 3–12 years is possible if the AVT
is discovered in previously FDA-approved compound library and shows efficacy in phase
2 trials [292].

One outstanding advantage for the development of AVTs against N. gonorrhoeae is that
this field has access to male human models of infection in the pre-clinical development
phase [179,293]. Human models of infection can be used to validate the chosen target for
AVT development and establish the end points (e.g., no colonization by the pathogen or
reduction in symptoms), which can be then used to develop dosing strategies for phase
1 trials. Three AVT targets—EptA, tfp and Opa mutants—have been tested in human
models to validate them for therapeutic intervention (Table 1). Phase 0 trials of fewer than
15 people could be used to examine the efficacy of AVTs and could be used as go-no-go
breakpoints for candidates that will progress to the more expensive and lengthy phase 1
and 2 trials [292]. This should reduce the failure rates in the development of AVTs and
shorten their time to licensing (Table 2).

Table 2. Characteristics of AVTs, antibiotics and vaccines *.

Characteristics AVTs Antibiotics Hypothetical
Vaccine

Mode of action
Selective inhibition of
pathogens, preserves

the microbiome

Broad spectrum killing of
microorganisms, removes

the microbiome

Selective inhibition of
pathogen, preserves

the microbiome

Mechanism of
action

Tailored to prevent
colonization,

transmission, and
infection by a

pathogen

Kills systemic
microorganisms—

resolves acute infections.
Not used for

asymptomatic infections

Prevents acute
infection by a

pathogen. In some
instances, vaccines

can prevent
colonization and

transmission of the
pathogen.

Use
Pre-exposure

prophylaxis or
therapeutic

Therapeutic Pre-exposure
therapeutic

Dose Multiple dosing as
needed Multiple dosing, 3–4 days 1–3 doses

Route of
administration

Oral, topical
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Table 2. Cont.
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Dependent upon the mode of action of an AVT, some may have properties more similar
to antibiotics while others act as adjuvants to antibiotic therapy [295]. Vaccines are targeted
against pathogens with generally no or very little cross-over against other microbial species
and are administered pre-emptively against infection, while antibiotics are administered to
cure acute symptomatic infections. In the case of N. gonorrhoeae, symptomatic infections
in men and PID in women are treated with antibiotics at a late stage of the infection
where inflammation may cause long-term side effects such as infertility [296] and adverse
outcomes for pregnancy [297]. Thus, although antibiotic treatment suppresses further
transmission in the community, most successfully via males, intervention is too late to
either completely resolve transmission in the community or prevent long-term morbidity
from asymptomatic infections in women. AVTs that could be applied preemptively in
the community to suppress asymptomatic transmission are likely to have the highest
benefit, particularly for women who are at the highest risk of developing PID which
increases the risk of infertility. Modes of delivery that would most likely benefit women
would either involve oral delivery or direct topical applications via hygiene products such
as commercial vaginal microbicides, some of which have viricidal and anti-chlamydial
properties [298–301].

8. Conclusions

Given the challenges in the development of antibiotics and vaccines against gonorrhea,
AVTs are a viable alternative, especially where candidate targets have been validated in
human models of infection and correlates for protection have been established. AVTs
may find roles as antibiotic adjuvants [295] for traditional antibiotic therapy to reverse
development of antibiotic resistance or may find a wider role as an intervention that can
reduce asymptomatic infections which drive outbreaks and increase the risk of long-term
morbidity in women.
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