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Simple Summary: In the application of artificial intelligence and advanced sound technologies in
animal sound classification, certain challenges are still faced, such as the disruptions of background
noise. To address this problem, we propose a web-based and real-time cattle monitoring system
for evaluating cattle conditions. The system contained a convolutional neural network (CNN) for
classifying cattle vocals and removing background noise as well as another CNN for behavior classi-
fication from existing datasets. The developed model was applied to cattle sound data obtained from
an on-site monitoring system through sensors and achieved a final accuracy of 81.96% after the sound
filtering. Finally, the model was deployed on a web platform to assist farm owners in monitoring
the conditions of their livestock. We believe that our study makes a significant contribution to the
literature because it is the first attempt to combine CNN and Mel-frequency cepstral coefficients
(MFCCs) for real-time cattle sound detection and a corresponding behavior matching.

Abstract: The priority placed on animal welfare in the meat industry is increasing the importance
of understanding livestock behavior. In this study, we developed a web-based monitoring and
recording system based on artificial intelligence analysis for the classification of cattle sounds. The
deep learning classification model of the system is a convolutional neural network (CNN) model that
takes voice information converted to Mel-frequency cepstral coefficients (MFCCs) as input. The CNN
model first achieved an accuracy of 91.38% in recognizing cattle sounds. Further, short-time Fourier
transform-based noise filtering was applied to remove background noise, improving the classification
model accuracy to 94.18%. Categorized cattle voices were then classified into four classes, and a
total of 897 classification records were acquired for the classification model development. A final
accuracy of 81.96% was obtained for the model. Our proposed web-based platform that provides
information obtained from a total of 12 sound sensors provides cattle vocalization monitoring in real
time, enabling farm owners to determine the status of their cattle.

Keywords: cattle vocalization; sound classification; MFCC; convolutional neural network

1. Introduction

Global meat consumption has increased rapidly because of a population increase
and rapid economic growth. To meet the increasing demand for livestock products, the
livestock industry has expanded and implemented dense breeding. Additionally, various
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information communications technologies have aided the development of precision live-
stock farming (PLF), through which the livestock industry is pursuing welfare breeding
(which improves livestock rearing environments) and the production of quality livestock
products [1,2]. The vital part of such PLF is the technology to accurately monitor the
current conditions of the livestock.

Vocal information is an effective communication tool between animal groups or in-
dividuals and has the advantage of effectively reaching a long range. The voice provides
information about the age, gender, sequence, and breeding status of the vocalizing animal.
The voice of cattle, therefore, contains information about the animal’s extraordinary condi-
tions, such as pain, estrus, separation from the calf, and hunger or thirst [3,4]. When the
cattle feel hungry or thirsty, or are is in estrus [5] or a certain stress situation, the cattle
phonate a voice with a specific pattern.

Many studies have been conducted to extract the features of these acoustic sounds for
classification. Kiley [6] first recorded and analyzed the vocalizations of cattle and found that
in a herd of mixed-breed beef and dairy cattle, there were six distinct call types comprising
different combinations of five syllables. Watts and Stookey [7] argued that vocal behavior in
cattle may be interpreted as a form of subjective commentary by an individual animal on its
own internal condition. These findings are more thoroughly investigated and understood,
and will be a valuable resource for cattle welfare monitoring [8]. Recent advances in
audio and video recording technology have also facilitated active research on animal
phonetics. Meen et al. [2] reported a potential welfare monitoring system that observes the
vocalizations and behaviors of Holstein Friesian cattle using audio and video recordings.
Röttgen et al. [9] reported that vocalization rate was a suitable indicator to confirm cattle’s
estrus status, and it was suggested that the status of cattle can be monitored through voice
analysis. According to Bishop et al. [10], numerous studies on PLF have proposed methods
of extracting audio-specific features of animals. Moura et al. [11] proposed a sound
acquisition system for distinguishing piglet vocalizations in stressful and nonstressful
situations by relative sound intensity. Similarly, Fontana et al. [12] used peak frequency to
classify broiler vocalizations. There have also been many attempts to analyze vocal data
by converting them to a frequency domain such as a Fourier transform [13–15]. The Mel-
frequency cepstral coefficient (MFCC) feature extraction technique includes windowing
the signal, applying the discrete Fourier transform, taking the log of the magnitude, and
warping the frequencies on a Mel scale. Afterward, the inverse discrete cosine transform is
applied. It has been reported that audio data converted to MFCC can be effectively classified
for sound classification [16], because the potentially available phonetic information is
included to facilitate feature classification. Therefore, MFCCs have acoustic features
that have been widely used in various applications [10,17–19]. As deep learning-based
classification models have shown capabilities of high accuracy and reliability in various
fields [20,21], the models have a high potential for effectively classifying animal vocals
that contain behavioral meanings. Environmental sound recognition is an important
pattern recognition problem because artificial intelligence is becoming widely adopted for
protecting biodiversity and conservation [22]. Animal voices have been used to conduct
studies on animal species classification [23], whereas classification studies on the behaviors
and statuses of specific animals have been rarely conducted [24].

A convolutional neural network (CNN) is a deep learning technology in which a
data array of two or more dimensions, such as an image, is stacked through a plurality
of two-dimensional filters. CNNs show high accuracies in image classification and have
been recently applied in speech classification [25–27]. For animal sound classification using
CNNs, Xie and Zhu [28] applied deep learning in classifying Australian bird sounds and
reported a classification accuracy of more than 88%. Xu et al. [29] proposed a multiple-view
CNN architecture to classify species of animals using a wireless acoustic sensor network.
Although advancements in this classification technology enable real-time monitoring of
voice data in the field of PLF, the maintenance of quality in the vocal acquisition system
remains a problem [30–32].
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Because most livestock facilities are semiclosed systems, they are not completely
isolated from outside noises. Thus, a device for acquiring and monitoring sound in a
livestock house must separate the livestock noises from external noises. There is a high
tendency to encounter external noises, such as white noise, in analog signal collection
because of the dust generated in livestock houses, equipment aging, and a poorly equipped
electrical signal shielding system. When these noises are not filtered out, they pose a
major problem in voice monitoring systems. Chedad et al. [33] proposed a method for
distinguishing cough sounds from other sounds, such as grunts, metal clanging, and
background noise, using neural networks for the classification. Recent cases of effective
noise reduction using short-time Fourier transform (STFT) filters have also been reported
in several studies [34,35].

Therefore, in order to effectively acquire sound and accurately determine this infor-
mation in a livestock facility, artificial intelligence technology is required to determine
whether it is a cattle’s voice by acquiring noise-removed voice information and analyzing
it. This present study aimed to develop a monitoring system for classifying sounds by
effectively acquiring cattle’s voices in livestock facilities. Thus, we propose a deep CNN
model (1) for classifying cattle cries and other sounds by removing noises from the voices
by using an STFT filter and a CNN model (2) for behavioral classification using previously
acquired data of the classified cattle voice model. By installing this analysis model on
a web-based monitoring system, we intend to construct a system with the potential to
grasp the condition of livestock through the analysis of recorded sounds generated in the
livestock house and ultimately contribute to livestock welfare.

2. Materials and Method
2.1. Description of On-Site Sound Monitoring System

The sound monitoring device and system were configured to effectively record and
analyze sounds from individual cattle using monitoring sensors capable of recording
sound through a microcontroller and a microphone. The microcontroller was used to
collect the sound data and perform preprocessing to filter the voice data. As shown in
Figure 1, the system was installed such that four monitoring devices were located at a
height of 3 m in three separate livestock facilities, making a total of 12 monitoring devices.
The apparatus for collecting the vocal data was composed of Raspberry Pi 3+, USB mic
(USB mic, Shenzhen kobeton technology, Shenzhen, China, frequency response: 100 kHz
to 16 kHz, sensitivity: −47 dB ± 4 dB), and a mini-PC (NUC10i5FNHJA, Intel, Santa
Clara, CA, USA).

The obtained sound files contained real-time sound data, and the data were saved
when the amplitude was over 60 dB (the reason for this is explained later in the noise
filtering section (Section 2.2). The collected data are being saved in DB on the local server
PC. If the same sound was recorded through each 4 sensors in the same zone, after checking
the same sound recorded at the same time, only one sound with the highest dB is selected.
Subsequently, the files, after being preprocessed through the filter, were delivered to a
small PC installed in the central control office. This PC served as the database of the sound
data collected from the 12 recording sensors and simultaneously ran the web-based cattle
status monitoring page. Additionally, the developed deep learning model for classifying
the sound class was run on the PC, which also provided information to the user through
the developed web page. The monitoring page, which was based on Flask and JavaScript,
uploaded the collected information in real-time and was designed to check and download
the recorded files and voice information.
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2.2. Noise Filtering Using Short-Time Fourier Transform and Mask Smoothing

An STFT filter was adopted to remove the background noise in the farm and the
analog white noise of the microphone, both of which were recorded along with the cattle’s
vocal sounds. The STFT filter generally improves the quality of the incoming sound signal
by eliminating noises from the sound signal.

The STFT is a Fourier-related transform used to determine the sinusoidal frequency
and phase content of local sections of a signal as it changes over time [36]. In practice,
STFTs are computed by dividing a time signal into shorter segments of equal lengths and
computing the Fourier transform separately on each shorter segment. Thus, the Fourier
spectrum for each shorter segment is revealed. One then usually plots the changing spectra
as a function of time; the plot is known as a spectrogram or waterfall plot.

For discrete time, the data to be converted can be divided into chunks or frames. Each
chunk is Fourier transformed, and the complex result is added to a matrix that records the
magnitude and phase for each point in time and frequency [37]. The discrete STFT X of the
signal x is given by

X(l, k) =
N−1

∑
n=0

w(n)× (n + lH)e
−2πkn

N (1)

where k is the frequency axis, n is the time axis, l is the length of window, w is the window
function, and H is the hop size.

The noise removal algorithm is illustrated in Figure 2. The average hearing range of
cattle for a standard 60 dB tone is between 23 and 37 kHz. The most significant sensitivity
occurs at approximately 8 kHz [6,36,38]. The value of 60 dB is the reference tone proposed
in this study, and when the sound sensor reacts sensitively to too little sound, excess sound
data are recorded, Therefore, to separate the cattle’s voice and other noises, the recording
system stores the sounds that are higher than 60 dB. When more than 60 dB of sound
was generated, the audio was recorded for 5 s; the noise was then removed through STFT.
The number of audio frames between the STFT columns used was 2048, the windowed
length was designated as 2048, and a hop size of 256 was used. Mask audio (cattle’s voice)
was processed through smoothing, excluding the noise extracted from the STFT. Here,
two frequency channels and four time channels were equalized with a smoothing filter.
Figure 3 is a schematic of the mask filter. We used the librosa and noisereduce libraries of
Python 3.7 for this sound analysis.
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2.3. Deep Neural Network Models for Classification
2.3.1. Audio Data Conversion Using Mel-Frequency Cepstral Coefficients

To visualize the acoustic data, we preprocessed the audio data through MFCC. Mel-
frequency cepstrum (MFC) is a representation of the short-term power spectrum of a sound,
based on a linear cosine transform of a log power spectrum on a nonlinear frequency Mel
scale. MFCCs are coefficients that collectively form an MFC [22,39]. MFCCs are derived
from a type of cepstral representation of the audio clip. The difference between the
cepstrum and MFC is that in the MFC, the frequency bands are equally spaced on the Mel
scale, which approximates the human auditory system’s response more closely than the
linearly spaced frequency bands used in the normal cepstrum. This is performed by the
Mel filter bank, which is composed of triangular filters that are distributed on the Mel scale.
The filter bank was calculated using Equation (2):

B(m, k) =


0, k < f (m − 1)

k− f (m−1)
f (m)− f (m−1) , f (m − 1) ≤ k ≤ f (m)

f (m+1)−k
f (m+1)− f (m)

, f (m) ≤ k ≤ f (m + 1)
0, k < f (m + 1)

, (2)
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where B(m, k) is the matrix of filter banks, f is frequency, m is the number of bank filters,
and k is the number of analysis windows.

A filter bank was obtained for each window of the speech signal. The first filter
obtained was very narrow, indicating the amount of energy present near 0 Hz [40]. As the
frequencies increase, the filters expand and the variations are smaller. To determine the
energy of the filter banks, multiply each bank of filters using the power spectral density
windows and add the coefficients as shown in Equations (3) and (4).

E(m, k) =
M

∑
m=1

B(m, k)P(k), k = 1, 2, . . . , k, (3)

Elog(m, k) = log

(
M

∑
m=1

B(m, k)P(k)

)
(4)

where P(k) is the power spectral density and k represents the number of windows that
go from the first to the k-th window of the cattle’s call. Subsequently, the logarithm of
the filter bank energy was calculated [40]. This work has the effect of closely matching
the obtained traits to what humans actually hear. The discrete cosine transform (DCT) of
the filter bank energy log was then calculated to obtain the MFCC. The DCT was used to
reduce the computational cost and is defined as shown in Equation (5).

MFCC(n) =
M

∑
m=1

Elog(m, k) cos
[

n
(

m − 1
2

)
π

M

]
(5)

This frequency warping can allow for better representation of sound—for example, in
audio compression [16]. Figure 4 illustrates the process of converting the cattle vocalization
into MFCC in this study. In this case, the number of filter bands used was 128, the time
frame was fixed to 2000, and if the sound sample was less than 2000, all sound data were
assigned a value of 0. Most of the samples already recorded are between 5 and 10 s, and
the 2000 frame was considered to be sufficient to be used as a constant input value to the
CNN as a time equivalent to 20 s.Animals 2021, 11, x FOR PEER REVIEW 7 of 19 
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2.3.2. CNN Model for Removing External Sounds

A deep learning classification model was developed for classifying cattle voices and
other noise samples generated in the barn environment. The sounds of the livestock
environment generated at this time include noises of the microphone itself, the operation
sound of the livestock farm machinery, metal clanging, bird chirping, dialog between farm
workers, barking of a dog, and various other sounds. For the recorded samples, a total
of 12,000 recorded files were collected from 10–20 December 2019. A CNN-based deep
learning model was developed to classify the data into two classes by extracting only
677 cattle voice samples and 1000 samples for other sounds. The structure of the CNN
model is depicted in Figure 5.
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Figure 5. Two-dimensional convolutional neural network (CNN) model for classifying cattle voice
and other noises.

The classification accuracy of the developed model was evaluated using the original
data of the files whose audio noises were removed and mask smoothed through the STFT
filter. Precision, recall, and accuracy were used to determine the effectiveness of the two
self-diagnostic methods. When evaluating the model, the relationship between the model’s
predicted label and the actual correct label was considered. The result is presented as true
and false as the classification model also returns true and false, dividing the case into the
2 × 2 matrix shown in Table 1.

Table 1. Confusion matrix for the diagnostic model evaluation.

Model Classification Results
Actual Results

True False

True True positive (TP) False positive (FP)
False False negative (FN) True negative (TN)

Although accuracy is commonly used to evaluate categorization techniques, the
measure adopted in this study is considerably less sensitive to variations in the number of
correct decisions than to precision and recall. The accuracy (αi) is given by Equation (6):

αi =
TPi + TNi

TPi + TNi + FPi + FNi
(6)

2.3.3. CNN Model for Cattle Behavioral Voice Classification

The CNN model we adopted for cattle behavioral voice classification was composed of
convolution, pooling, and fully connected layers and consisted of two activation functions:
a rectified linear activation unit (Relu) and Softmax. A CNN applies the same equation as
an Artificial neural network’s perceptron, and it updates the parameters by training the
model with weights as expressed in Equation (7) [41]:

θt+1 = θt + ∆θt (7)
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The Adadelta function was used to optimize the CNN model used in the actual model
training, which can be seen more specifically in Equations (8)–(10) than in Equation (7).
Adadelta optimization was used, and it is widely used in the field of deep learning among
gradient descent-based optimization methods [42]. Adadelta is an extension of Adagrad
with the aim of minimizing the intense and monotonically declining learning rate [43,44],
and it limits the window of the accumulated past gradients to a fixed size rather than
accumulating all past squared gradients [43]. The vector of a diagonal matrix (E

[
∆θ2]

t)
with the decaying average over past squared gradients was represented as shown in
Equation (8):

E
[
∆θ2

]
t
= γE

[
∆θ2

]
t−1

+ (1 + γ)∆θ2
t (8)

The root mean squared error of the parameter updates is given as

RMS[∆θ]t =
√

E[∆θ2]t + ε (9)

Finally, the Adadelta update rule is given by Equation (10):

∆θt = −
RMS[∆θ]t−1

RMS[g]t
gt (10)

where θ is the weight, t is the updating step, gt is the gradient at time step t, ε is the
smoothing term for avoiding a division by zero (10−7 was used), and γ is the momentum
term (0.95 was used).

The vocal sounds of cattle were collected from the livestock house between January
and December 2018. The cattle used in the experimental were Korean native cattle (Bos
taurus coreanae): 130 breeding cattle (12–40 months old), 30 calves (6–8 months) old, 50 calves
(under 6 months old), and 15 calves as dairy cattle. The breeding cattle density was
maintained at 10 animals/10 m2, and a total mixed ration feed was fed to the cattle twice a
day based on the Korean cattle specification standards.

The collected voice data were labeled into four classes by collecting the three groups
of cattle’s behaviors and one normal voice of cattle. To classify the recorded sound, the
voice data were used to identify the event time by analyzing the video and farm owner’s
daily records; the data were also used to label the sound generated at that time. The labeled
classes were investigated by animal physiological analysis through previous experiments.
Supplementary Materials File 1 includes a few audio samples for four classes of sounds to
confirm the quality of the acquired sounds.

• Estrus call: the sound of cattle estrus call was collected from 130 Korean cattle breeding
cattle (aged 12 to 40 months). This corresponds to the sound produced by individual
cows, identified as estrous cows, which are cows that have succeeded in conceiving
through artificial insemination. At this time, the vocals produced by the cow through
the voice were recorded each voice datum was collected. The proportion of prim-
iparous cattle vocalizing individuals tended to be higher than that of multiparous
cattle.

• Food anticipating call: the cattle were in a situation where the feeding time was
delayed by up to 3 h (by more than 1 h for 30 Korean calves aged 6 to 8 months). At
this time, the acquired sounds were collected and labeled as “Food anticipating call”.

• Cough sound: A recording device was installed in an area with the coughing cows
and the recorded files were analyzed. The cough voices were collected under expert
judgment at the point of the cow coughing.

• Normal call: The calls were not classified in these three cases and were classified into
one class and labeled as “normal call.”

The classified classes and quantity for each sample are described in Table 2. Three
main sounds were used to classify the meaning of the cattle’s voices. The repeated voices of
the cattle under special circumstances were recorded, class labels were set, and data were
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collected. The other class was not classified as behavioral, but the sounds recorded from
the cattle’s voices were collected and regarded as one class. The three classification classes
were alerting sounds, and the farmer considered it as a class that needed management
when there was such an alarm.

Table 2. Categories of animal sounds (n classes for cattle).

Index Value Sample Quantity

0 Estrus call 207
1 Cattle food anticipating call 178
2 Cough sound 56
3 Normal call 456

The behavioral voice classification model of cattle employed a CNN model with the
structure shown in Figure 6. Compared with the noise classification model, the 2D convo-
lutional layer was deeper, and the number of parameters was larger. In this model, input
data identified as cattle voice were used as a model for the cattle behavioral classification.
Among the 897 samples collected, 717 were used for training, and 179 samples were used
for test validation.
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3. Results
3.1. Noise Filter and Mask Smoothing Results

In this study, sound files stored from 12 installed voice acquisition sensors were treated
using STFT-based noise reduction. The effect of removing noises when applying the filter
is illustrated in Figure 7, which depicts the audio sound of the cattle estrus call.
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The bottom part of Figure 7 depicts the sound and voice information in the STFT
area, and it can be seen that the microphone’s white noise is continuously detected below
approximately 400 Hz. Additionally, the background noise around the farm was detected
in the first half of the voice, but the amplitude was weak. Cattle’s voice was observed
in the range of approximately 2 to 3 s. The result of measuring the parameters of noise
components through STFT analysis is shown in Figure 8. The noise thresholds were
obtained through mean power and standard deviation corresponding to noise components
for each frequency band which has a different range for each audio sample. The noise-
removed voice is omitted as shown in Figure 9a; Figure 9b depicts the STFT analysis
after applying the correction effect to the noise-removed voice information through mask
smoothing. This process was applied to all speech samples, and a performance comparison
of the deep learning classification model was performed before and after the noise filtering.
The first model is a classification model of cattle voices and farm noises.
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3.2. Deep Neural Network Classification Performance

From the first model, approximately 360 samples were prepared as a validation set
from 1667 cattle sounds and other sound classifications, and the classification accuracy of
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the trained model was compared in Figures 10 and 11. The CNN model achieved more
than 99.9% accuracy in the training and 91.38% in the validation. Table 3 presents the
classification results of the CNN model in cattle vocalization in terms of true negative,
false positive, false negative, true positive, false recognition rate, and true recognition rates.
For both models, the true recognition rate was slightly higher than the false recognition
rate. For example, in the classification between cattle voice and other sounds, the true
recognition rate was 92.10%, the false recognition rate was 90.86%, and the total accuracy
was 91.38%. The measurement error between the two classified samples was negligible.
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Table 3. Accuracy of the CNN model for cattle vocalization classification without noise filtering.

Without Noise Filtering With Noise Filtering

True positive 140 141
False positive 12 11
True negative 189 199
False negative 19 10

True recognition rate (%) 92.10 92.76
False recognition rate (%) 90.86 95.21

Accuracy, αi (%) 91.38 94.18

By training the same CNN model through noise filtering using the same sample,
slightly improved classification results were obtained. As shown in Figure 11, a 99.9%
accuracy was obtained for the training set and approximately 94.18% accuracy for the
validation set.
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Figure 12 illustrates the results of learning the voice information of four behavioral
classifications of cattle through the CNN model. The classification accuracy of the four
classes was approximately 81.96%. For this model, the accuracy converged after approxi-
mately 40 epochs to complete the fitting model. Figure 13 depicts the classification accuracy
of each of the four classes as on the verification set. As shown in the graph, the accuracy of
the voice produced by the cattle at estrus was highest at 95.4%; similarly, it was approxi-
mately 86% for the coughing sound, 74% for the cattle’s feed-based sound, and 76% for
sounds without special meaning. Particularly, approximately 18% and 14% of the cases
were situations in which the feed reclining sound and normal cattle’s voices were mistaken
for estrus sound, respectively.
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3.3. Developed Web-Based Sound Information Monitoring System

The developed noise filtering and cattle voice prediction model was provided on a
web platform, as shown in Figure 14. The web phase was configured to enable the farm
owner see the time of the collected sound voice, the class of the sound voice predicted
through the CNN model, and the probability of the corresponding class. The web platform
was configured to be mobile-friendly.

Animals 2021, 11, x FOR PEER REVIEW 14 of 18 
 

 

Figure 14. Sound monitoring analysis: WEB UI appearance (a) and mobile view (b). 

4. Discussion 
For speech classification using deep learning, studies have shown that RNN and 

CNN models achieve excellent performance in the case of Google’s VGGnet [45,46]. How-
ever, it is difficult to directly compare VGGnet with our work because the sound classifi-
cation sample classes of Google were diverse. Nevertheless, the implication is that the 
classification accuracy of the audio class improved compared with the existing deep learn-
ing methods. The sounds of various bird species have been classified, which is a case of 
intensive animal sounds classification [47]. Nanni et al. [45] compared the performances 
of deep learning technology on the representative public animal sound datasets; the per-
formance comparison is summarized in Table 4. This table is a representative reference 
for the animal speech classification accuracy of the existing deep learning technologies. 
Additionally, exhaustive tests have been performed on the fusion between an ensemble 
of handcrafted descriptors and an ensemble system based on a CNN [48], and the possi-
bility was higher for the classification performance of the CNN-based ensemble system. 

Table 4. Summary of prediction accuracies of animal sound classification. 

Animals or 
Dataset 

Classification Target Approach Descriptor Accuracy (%) 

BIRD [49] Forty-six species 
Handcrafted 
features with 

SVM 
BSIF 88.8 

WHALE [48] Whale identification Deep learning CNN 97.8 
BIRDZ [50] Eleven bird species  Vgg-19 96.6 

Cow [19] Oestrus detection 
Ensembles of 
deep learning 

Fus_Spec + Fus_Scatter + 
CNN 

98.7 

Sheep, cattle, 
dogs [30] 

Classification between 
three animals’ vocal 

MFCC with 
SVM 

Correlation-based Feature 
Selection 

Over 94 accu-
racy 

Chicken [51] Avian-influenza detection 
MFCC with 

SVM 
Discrete wavelet transform 

At least 95.78 
(cattle) 

Chicken [52] Eating behavior Deep learning PV-net 96.0 

Recent attempts have been made to analyze livestock voices in relation to animal 
welfare in livestock facilities. A case study has also been conducted to determine poultry 

(a) 
(b) 

Figure 14. Sound monitoring analysis: WEB UI appearance (a) and mobile view (b).

4. Discussion

For speech classification using deep learning, studies have shown that RNN and CNN
models achieve excellent performance in the case of Google’s VGGnet [45,46]. However, it is
difficult to directly compare VGGnet with our work because the sound classification sample
classes of Google were diverse. Nevertheless, the implication is that the classification
accuracy of the audio class improved compared with the existing deep learning methods.
The sounds of various bird species have been classified, which is a case of intensive
animal sounds classification [47]. Nanni et al. [45] compared the performances of deep
learning technology on the representative public animal sound datasets; the performance
comparison is summarized in Table 4. This table is a representative reference for the animal
speech classification accuracy of the existing deep learning technologies. Additionally,
exhaustive tests have been performed on the fusion between an ensemble of handcrafted
descriptors and an ensemble system based on a CNN [48], and the possibility was higher
for the classification performance of the CNN-based ensemble system.

Table 4. Summary of prediction accuracies of animal sound classification.

Animals or Dataset Classification Target Approach Descriptor Accuracy (%)

BIRD [49] Forty-six species Handcrafted features
with SVM BSIF 88.8

WHALE [48] Whale identification Deep learning CNN 97.8
BIRDZ [50] Eleven bird species Vgg-19 96.6

Cow [19] Oestrus detection Ensembles of
deep learning

Fus_Spec +
Fus_Scatter + CNN 98.7

Sheep, cattle,
dogs [30]

Classification
between three
animals’ vocal

MFCC with SVM Correlation-based
Feature Selection Over 94 accuracy

Chicken [51] Avian-influenza
detection MFCC with SVM Discrete wavelet

transform At least 95.78 (cattle)

Chicken [52] Eating behavior Deep learning PV-net 96.0
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Recent attempts have been made to analyze livestock voices in relation to animal
welfare in livestock facilities. A case study has also been conducted to determine poultry
eating behavior from vocalization signals using deep learning [52]. Similarly, more studies
are examining the correlation between the voice of a specific animal and certain behavioral
meanings. This present study is a case of applying a CNN model for classification through
MFCC, which is an approach that has not been previously attempted for the behavioral
classification of cattle. It was significant in the collection of animal ecological speech sam-
ples, and statistical significance could not be determined by analyzing the characteristics of
the existing sound parameters (maximum frequency, maximum frequency band, average
amplitude, etc.).

Because various sounds are detected in the barn’s open area, it is difficult to extract the
voices of cattle. To solve this problem, noise filtering technology was applied, and a model
for classifying cattle vocalization and other sounds was first applied. A second model was
used for the behavioral classification of the cattle’s voices. Notably, the four behavioral
classification accuracies of cattle voices were approximately 81.96%. One of the classified
sounds was normal sound, and the correct recognition rate was approximately 76%. This
sound was installed and obtained in situations where the behavioral meaning could not
be determined from the information obtained through the sensors. However, the sound
may overlap with those of another class, and the most likely sound is the horn sound.
Although it is outside the scope of this study, there is the possibility of distinguishing
between individuals through deep learning models in the phonetic classification of cattle.
In this study, the difference between individual cows was excluded from the model training.
Hence, analyzing these parts with the video image is expected to yield better results in
future research.

5. Conclusions

In this study, a deep learning speech classification model was developed to determine
the status of cattle by monitoring the voices of cattle in a livestock facility. Classification
of cattle noises and other noise as well as behavioral classification between cattle sounds
were performed; the accuracy of each was 91.38%. The noise in the sound was removed
through STFT analysis, after which the performance improved to approximately 94.18% in
the classification of cow sounds and other sounds. The voices detected as cattle’s vocals
were used to monitor the current cow status through a four-behavioral-classification model,
and the final classification accuracy of the developed model was 81.96%.

Finally, the developed model was deployed as a web platform to provide useful
information to farm owners by classifying voice files obtained from 12 sound measuring
sensors installed in a livestock facility and visualizing the information on the web. It is
expected that these attempts will contribute to the welfare of animals in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-261
5/11/2/357/s1, Supplementary File 1: A few sound samples used for checking the audio quality.
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