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Abstract: In genome-wide association studies, detecting high-order epistasis is important for an-
alyzing the occurrence of complex human diseases and explaining missing heritability. However,
there are various challenges in the actual high-order epistasis detection process due to the large
amount of data, “small sample size problem”, diversity of disease models, etc. This paper proposes a
multi-objective genetic algorithm (EpiMOGA) for single nucleotide polymorphism (SNP) epistasis
detection. The K2 score based on the Bayesian network criterion and the Gini index of the diversity
of the binary classification problem were used to guide the search process of the genetic algorithm.
Experiments were performed on 26 simulated datasets of different models and a real Alzheimer’s
disease dataset. The results indicated that EpiMOGA was obviously superior to other related and
competitive methods in both detection efficiency and accuracy, especially for small-sample-size
datasets, and the performance of EpiMOGA remained stable across datasets of different disease mod-
els. At the same time, a number of SNP loci and 2-order epistasis associated with Alzheimer’s disease
were identified by the EpiMOGA method, indicating that this method is capable of identifying
high-order epistasis from genome-wide data and can be applied in the study of complex diseases.

Keywords: genome-wide association studies; high-order epistasis; genetic algorithms; multi-objective
optimization; Alzheimer’s disease

1. Introduction

A genome-wide association study (GWAS) involves the examination of genetic varia-
tions in a given genome to identify genetic variations associated with a phenotype. This
type of study has become a powerful tool for detecting single nucleotide polymorphisms
(SNPs) and has detected a number of single SNPs associated with complex diseases [1].
However, the analysis of SNPs cannot fully explain the pathogenesis of complex human
diseases. After the comprehensive screening of susceptible genes, the cumulative genetic
risk of all relevant SNPs is often lower than the susceptibility due to genetics, which is
called missing heritability [2]. One possible source of this unaccounted risk is the interac-
tion between multiple SNPs or epistasis. Therefore, it is very important to detect high-order
epistasis for the analysis of complex diseases.

However, there are several challenges associated with detecting high-order epistasis
on a whole-genome scale. First, detection of high-order epistasis is the process of screening
a high-dimensional search space constituted by SNP data, which entails an enormous
computational burden. In particular, with the rapid development of high-throughput
sequencing technology, a large amount of SNP data has been obtained, resulting in a
geometric increase in the computational amount of the detection process. At the same time,
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the large amount of SNP data also creates a “small sample size problem”: the number of
samples contained in a GWAS dataset is much smaller than the number of SNPs [3]. In
addition, the diversity of complex disease models also requires that the detection methods
can be applied to different situations without potential preference.

In the face of these challenges, a variety of epistasis detection methods have been
proposed in recent years, the theoretical basis of which presents the situation of a diversified
development of statistics theory, informatics theory, etc. In statistics, logistic regression
analysis is the most basic epistasis detection method [4]. Although the detection results
are simple and easy to explain, there are obvious shortcomings, such as overfitting and a
large amount of calculation. Additional epistasis detection methods based on statistical
theory include the multiple functional regression model (MFRG) [5], variance analysis-
based method called FastANOVA [6], and the BEAM method based on Bayesian theory [7].
However, the complexity of statistical factors and parameters, low detection efficiency
and low accuracy in statistical theory limit its application in high-order epistasis detection.
In recent years, information gain, mutual information and the K2 score of the Bayesian
network have been widely used. The detection methods also show diversified development.
In case-control studies, the epistasis detection methods can be mainly divided into three
categories: exhaustive methods, search algorithms and machine learning.

Exhaustive methods verify all possible SNP combinations in the data set, which can
effectively avoid the omission of epistasis detection, but require a massive amount of
computation. BOOST is a classic multistage exhaustive approach that defines SNP epistasis
through logistic regression and divides the entire detection process into search and filter
phases [8]. The efficiency of this method is comparatively high, but it is applicable to
detecting the interaction between only two SNPs, leading to limited utility. FDHE-IW is
a multistage exhaustive method applicable to high-order epistatic detection [9]. In this
method, two new indexes, symmetric uncertainty and interaction weight factor based on
mutual information and joint entropy, are proposed as criteria for searching and screening.

Search algorithms include stochastic methods and heuristic searches. Stochastic meth-
ods are mostly realized by random sampling and a probability calculation. For example,
BEAM detects suspected SNPs and their interactions via a Bayesian partitioning model and
computes the posterior probabilities of the candidates belonging to true-associated SNPs
and epistasis via Markov Chain Monte Carlo (MCMC) sampling [7]. A heuristic search is
an approximate search with the guidance of heuristic information, which can effectively
reduce the search space and find the optimal solution as soon as possible. This type of
search includes the detection method FHSA-SED [10] with the harmony search algorithm
and ant colony optimization algorithms MACOED [3], epiACO [11] and AntEpiSeeker [12].
Epi-GTBN is an epistasis mining approach based on a genetic algorithm and the Bayesian
network [13] in which a heuristic search strategy applies a genetic algorithm to the Bayesian
network and calculates the BIC score to guide the search process and the evaluation index
of the Bayesian network.

Machine learning methods are also able to detect the epistasis of SNPs, such as the
support vector machine [14], random forest [15], neural network, or association rules [16].
SNPrule is an epistasis detection method based on predictive rule learning [17] that can infer
possible higher-order epistasis by identifying the predictive rules contained in epistasis
interactions. In the process of machine learning, the requirement of sample size and the
amount of calculation on cross-validation limit its application in higher-order epistasis
detection. In addition, there are other drawbacks to machine learning, such as difficulty in
explaining the results and the tendency of overfitting.

Most of these studies show the potential preference of disease models or perform
poorly in small sample size problems. Therefore, this paper proposes a multi-objective
epistasis detection method based on a genetic algorithm, called the multi-objective genetic
algorithm (EpiMOGA). In this approach, multi-objective optimization is applied to the
fitness function in the genetic algorithm and multiple candidate solutions are searched
to solve the complex pattern optimization problem. We verified the performance of
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EpiMOGA in both simulation data and a real dataset and compared the results with
some representative methods, including FDHE-IW [9], BOOST [8], Epi-GTBN [13], and
SNPrule [17]. Experimental results suggest that EpiMOGA performs robustly in datasets
with different characteristics and disease models. Most importantly, this method performs
particularly well in datasets with a small sample size.

2. Materials and Methods

To compare the performance of the EpiMOGA method in different disease models and
characteristics, GAMETES [18] was used to generate 26 simulated datasets. Using 2-order
epistasis detection as an example, the performance of EpiMOGA in all simulated datasets
was tested and compared with other comparative methods. At the same time, the epistasis
detection of the real Alzheimer’s disease dataset was completed using EpiMOGA.

2.1. Simulated Datasets

GAMETES is a fast, flexible, and precise tool for generating complex n-locus datasets
with random architectures [18]. Genetic constraints and the description of n-order epistasis
characteristics were realized through stipulating heritability (h2), minor allele frequency
(MAF) and prevalence (P(D)). The heritability h2 is the proportion of the population
variance due to genetic differences [19], with values ranging from 0 to 1, and can represent
the degree to which the expression of a trait is affected by genetic differences. Given the
heritability h2 and MAF of SNPs, the P(D) of different disease models can be calculated
under the assumption of Hardy-Weinberg Equilibrium (HWE). GAMETES can also set
other parameters, such as the number of samples in the disease group, the number of
samples in the control group, and the number of SNPs.

By setting the heritability, the minor allele frequency and the number of samples,
26 simulation datasets were generated that were divided into two models: disease models
with marginal effects (DME) and disease models with no marginal effects (DNME). There
are three different DME categories: the multiplication effect model, the threshold effect
model and the concrete model [20], which will be called DME model 1, DME model 2, and
DME model 3, respectively. Finally, 100 datasets were generated for each parameter setting,
with each dataset containing 100 SNPs. More information about the disease models can be
found in the Supplementary Materials.

2.2. Real GWAS Dataset

To further verify the performance of EpiMOGA, we used it to analyze a real dataset
on Alzheimer’s disease. Alzheimer’s disease is a progressive neurodegenerative disease
with an insidious onset, which is believed to be a complex disease that is affected by both
epistasis and the environment [21]. Its clinical symptoms include memory impairment,
cognitive impairment, executive dysfunction, and impairment of visuospatial skills [21].
The pathogenesis of Alzheimer’s disease is related to a variety of factors and a single gene
cannot fully explain the high heritability, so it is more meaningful to conduct epistasis
detection of Alzheimer’s disease.

We downloaded the genetic data of 305 Alzheimer’s patients and 127 control group
cases from the ADNI database (http://adni.loni.usc.edu/). A total of 620,901 SNPs were
identified by the platform Illumina human610-quad BeadChip. This is a typical small
sample dataset, in which the sample size is far smaller than the number of SNPs.

First, quality control was performed on the dataset. All SNP loci were screened by call
ratio, MAF and the Hardy Weinberg equilibrium test. SNP loci with a call ratio less than
0.95, MAF less than 0.05, p-value from the Hardy-Weinberg test less than 0.05, or p-value
from the Chi-squared test less than 0.05 were removed from the AD dataset. For each sam-
ple, if the call rate was < 95%, the sample was excluded. Finally, the AD dataset contained
22,164 SNPs and 432 samples, including 305 case samples and 127 control samples.

http://adni.loni.usc.edu/
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2.3. Problem Description

Let X = {X1, X2, . . . , XN} be a set of SNP variables with N SNP sites of L samples.
The homozygous major allele (AA), the heterozygous allele (Aa), and the homozygous
minor allele (aa) are denoted by 0, 1, and 2, respectively. Let Y be the phenotypic variable
with a value of

{
y1, y2, . . . , yJ

}
. J represents the number of phenotype states Y, which is

equal to 2 in the case-control dataset. We denote the control group and the case group as
0 and 1, respectively.

Let S = {S1, S2, . . . , SK}(i < N, Si ∈ X) be a K-order epistasis model, where Si is an
SNP loci. F(S, Y) is a score function to evaluate the correlation between the K-order epis-
tasis model S and phenotype Y. The smaller magnitudes of F(S, Y) indicate a stronger
correlation between the K-SNP model and the phenotype. The high-order epistasis detec-
tion problem can be transformed into an optimal solution problem by the score function.
The mathematical model of epistasis detection can be expressed as

min
X

F(S, Y), X =
(
XS1 , XS2 , . . . , XSK

)
(1)

where Si(i = 1, 2, . . . , K) represents the i–th SNP site, and XSi is the expression value of
the ith SNP.

2.4. Bayesian Network Scoring and Gini Index

The Bayesian network (BN) model is a probabilistic graph model that can be repre-
sented by a directed acyclic graph. The BN model can represent the causal relationship
by linking edges between nodes. In a GWAS study, nodes represent genetic variants and
disease status, and the conditional dependence relationship between the corresponding
nodes can be represented by a set of directed edges (more details about the BN can be found
in the Supplementary Materials). Therefore, the BN scoring criterion is also applicable to
the scoring function of epistasis detection.

Thus, we choose the K2 score based on the BN scoring criterion [22] as one objective.
The K2 score can be used as a measure of correlation; the lower the logarithm score is, the
stronger the association between the SNP subset and the disease.

In addition, the Gini index, the diversity index of the binary classification problem,
was selected as the other objective. The Gini index (Gini coefficient) is a measure of
statistical dispersion, which can be used to measure the impurity of a data partition or the
inequality among values of a frequency distribution [23]. The lower the Gini index is, the
better the capability of the corresponding SNPs to distinguish between the disease and
control groups, which means the stronger the association between the SNP subset and the
disease is.

The K2 score and Gini index can be described as:

K2− Score = ∏I
i=1

[
(J − 1)!

(ni + J − 1)!∏
J
j=1Nij!

]
, (2)

GI− Score =
I

∑
i=1

Pi

(
1−

J

∑
j=1

P2
i,j

)
=

I

∑
i=1

ni
n

(
1−

J

∑
j=1

(
nij

ni
)

2
)

, (3)

where I is the number of possible combinations of genotypes theoretically possible (I = 3K

for the K-way SNP combination), ni is the number of cases with the ith genotype combi-
nation, nij is the number of cases where the disease node takes the jth phenotype, and
pi,j
(

pi,j = nij/ni
)

means the estimated probability of the association between the i–th geno-
type combination and the j–th phenotype. It can be seen from the calculation formula of the
two scores that the genotype frequency of K-SNP needs to be calculated only once to obtain
the K2 score and Gini index, which is conducive to reducing the computational burden.

In the Supplementary Materials, the results of single-objective detection and multi-objective
detection are compared through simulation experiments. The results show that the multi-
objective method is more suitable for epistasis detection than the single-objective method.
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2.5. Pareto Optimal Approach

In EpiMOGA, we designated two objectives: the K2 score and the Gini index. The
higher-order epistasis detection problem was transformed into a multi-objective optimiza-
tion problem with an SNP set from GWAS data as the solution space. The mathematical
model can be described as:

min
{

f1(Xi) = K2− Score(Xi)
f2(Xi) = GI − Score(Xi)

}
, (4)

However, in practice, it is difficult to achieve the optimal solution of both objectives. In
general, the situation will be that the solution has better performance on one objective and
may perform worse on the other compared with other solutions. Therefore, the problem
of multi-objective optimization usually does not seek the unique optimal solution but is
transformed into finding the nondominated solution through the Pareto optimal approach.
Suppose X1 and X2 are two solutions of the multi-objective problem. If one of the following
conditions is satisfied:

(1) f1(X1) < f1(X1)&& f2(X1) < f2(X2),
(2) f1(X1) = f1(X1)&& f2(X1) < f2(X2),
(3) f1(X1) < f1(X1)&& f2(X1) = f2(X2),

the solution X1 is said to dominate the solution X2. The relationship between the two
solutions has only two possibilities: either one dominates the other or neither dominates [3].
If solution X1 was not dominated by other solutions, X1 could be called a nondominant
solution. The nondominant solution set is the candidate set that we want to search.

2.6. EpiMOGA

The EpiMOGA proposed in this paper is a multi-objective heuristic high-order epis-
tasis detection method, and the whole process can be divided into two parts: search and
screening. On the one hand, to maintain better performance in different sample sizes and
solve the small sample size problem, we applied a heuristic algorithm to the epistasis
search process. Using a genetic algorithm instead of a general exhaustive search can speed
up the search process and reduce the computational complexity. On the other hand, to
reduce the potential bias and adapt to different disease models, the Pareto optimal method
was applied to the fitness function of the genetic algorithm to achieve multi-objective
optimization.

A genetic algorithm is a random search algorithm based on the survival of the fittest
principle and the genetic mechanism of Darwinian evolution [24]. Compared with the
traditional optimization method, a genetic algorithm includes multiple possible solutions
in the initial population and performs genetic operations and evaluation on multiple
solutions in each iteration. This method can effectively reduce the risk of falling into local
optimization and has good global search ability, which is widely used in combinatorial
optimization problems. Therefore, the results of a genetic algorithm are dependent on the
quality of the initial population. In the EpiMOGA method, the range of the initial solution
was expanded by searching several times, and different candidate subsets of the output
were screened to reduce this dependence.

Figure 1 is the flow chart of the EpiMOGA algorithm and Algorithm 1 is the pseu-
docode of the EpiMOGA algorithm. The method can be divided into the following steps:
population initialization, genetic operations (selection, crossover, and variation) and screening.
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Algorithm 1. EpiMOGA pseudocode
Input:
Num: the number of the initial population, positive integers greater than 1
X: m × n matrix consisted of 0 and 1, representing the states of m samples at n SNP sites.
Y: 1 ×m vector consisted of 0 and 1, representing the state of m samples.
Maxtimes:Maximum number of iterations
Output: Best: the set of optimal SNP combinations

01: begin
02: For i = 1:Num
03: Initial population_i
04: Evaluate population:fitvalue
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2.6.1. Encoding Schemes, Initializing the Population

Encoding is the process of transforming the parameters of a problem space into
chromosomes or individuals with a certain structure in the genetic space. Encoding
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schemes should meet the requirements of completeness, soundness and nonredundancy.
General chromosome encoding methods include binary encoding, real encoding, and
character encoding. Based on the large number of SNPs, the real encoding method was
selected in the EpiMOGA algorithm. A K-SNP was represented by K real numbers, which
was the order of SNP loci in the GWAS dataset. The chromosome encoded by K-SNP and
the initialized population can be expressed as:

Xi = (Si1, Si2, . . . , SiK), POP = (X1, X2, . . . , XPs), (5)

where Xi is the i–th chromosome in the genetic algorithm and Sit(t = 1, 2, . . . , K) means
the order of the SNP in the GWAS dataset, with values ranging from 1 to N. POP is a K× Ps
matrix, representing the initial population, where Ps is the size of the initial population.

The process of population initialization consists of generating random numbers in the
range of 1 to N that represent SNP sites in the corresponding order.

2.6.2. Genetic Operations

Genetic operations include selection, crossover and mutation, respectively simulating the
biological phenomena of natural selection, biological reproduction and gene mutation. The
search process of the genetic algorithm was guided by the iteration of the genetic operation.

Selection Operation

The selection operation in a genetic algorithm is a process of natural selection based
on fitness. In each generation, the fitness of each individual in the population is evaluated,
and multiple individuals are stochastically selected from the current population (based on
their fitness) [24]. Common selection operators include roulette wheel selection, stochastic
tournament, and expected value selection. EpiMOGA mainly uses the roulette selection
method, which is a playback random sampling method. The probability Pi of Xi being
selected is calculated using the following equation:

Pi =
fi

∑Ps
i=1 fi

, (6)

where fi is the fitness value of chromosome i and Ps is the size of the population.

Crossover Operation

The crossover operation in a genetic algorithm is a process in which a pair of chromo-
somes randomly exchange some loci according to certain rules to form two new individ-
uals. Common crossover operators include one-point crossover, uniform crossover, and
arithmetic crossover. The EpiMOGA algorithm mainly uses one-point crossover, which
is suitable for real number encoding. When the random number (ranging from 0 to 1)
is less than the crossover probability Pc, the crossover point is selected randomly, and
part of the chromosomes of the paired individuals are exchanged at this point (see the
following operation).

Xi = (Si1, Si2, . . . , SiK)
Xj = (Sj1, Sj2, . . . , SjK)

cpoint = round(rand∗K)→
Xi
′ = (Si1, Si2, . . . , SiCpoint , SjCpoint+1, . . . , SjK)

Xj
′ = (Sj1, Sj2, . . . , SjCpoint , SiCpoint+1, . . . , SiK)

, (7)

where Xi, Xj represents a pair of chromosomes, X′i , X′j represents new chromosomes
formed by crossover, and Cpoint is a randomly selected point.

Mutation Operation

The mutation operation in a genetic algorithm refers to the process in which some
gene loci in the individual coding string are replaced with other values according to certain
rules to form new chromosomes. Common mutation operators include simple mutation,
uniform mutation, and boundary mutation. The EpiMOGA algorithm mainly uses simple
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mutation. When the random probability is less than the mutation probability Pm, the value
of a certain gene locus or a certain number of loci is randomly assigned for the mutation
operation (see the following operation):

Xi = (Si1, Si2, . . . , SiK)
Mpoint = ceil(rand∗K)

→ Xi
′ = (Si1, Si2, . . . , SiMpoint , . . . , SiK)

SiMpoint = ceil(rand ∗ N),
(8)

where Xj represents a chromosome, Xj represents a new chromosome formed by the
mutation operation and Mpoint represents the variation point.

In the process of population initialization and genetic operation, it should be noted that
a new chromosome should be tested to determine whether the following two conditions
are met: there were no duplicated SNPs in the chromosome and no duplicated chromo-
somes in the population. Only chromosomes that meet these criteria can be preserved in
the population.

2.6.2.4. Fitness Function

In the optimized genetic algorithm, different individuals in the population (candidate
solutions) can be divided into two sets without superposition according to the Pareto
optimal method: a dominant solution set and a nondominant solution set. The fitness
function generally uses the numerical form to evaluate the merits of a solution. The higher
the fitness value is, the better the solution. Therefore, in the EpiMOGA method, the
nondominant solution was regarded as the better individual and the fitness value was
determined according to the number of solutions that it dominated. Furthermore, the
fitness value of the dominant solution was uniformly set to 1. These is the pseudocode of
the fitness function calculation in EpiMOGA in Algorithm 2.

Algorithm 2. Twoobjection() pseudocode
Input:
X: m × n matrix consisted of 1 and 0, representing the states of m samples at n SNP sites.
Y: 1 ×m vector consisted of 0 and 1, representing the state of m samples.
Pop:t × K matrix, represents t K-SNP combinations
Output:
Objvalue: 1 × t vector, representing the fitness value of t K-SNP combinations, which is a positive
integer greater than or equal to 1.

01: begin
02: Initialization: objvalue(1:pm) = 2
03: For i = 1:t
04: [objvalue1(i), objvalue2(i)] = TwoScore01(X(:,pop(i,:)),y);
05: end
06: For each i, j = 1:t
07: If((objvalue1(j)<objvalue1(i))&&(objvalue2(j)<objvalue2(i)))||((objvalue1(j)<objvalue1(i))
&&(objvalue2(j)==objvalue2(i)))||((objvalue1(j)==objvalue1(i))&&(objvalue2(j)<objvalue2(i)))
08: objvalue(j) = objvalue(j) + objvalue(i);
09: objvalue(i) = 1;
10: break;
11: end
12: end

2.6.2.5. Screening Candidate Sets

The screening of candidate sets was also based on the K2 score and the Gini score.
According to the Pareto optimal method, the candidate sets obtained from multiple searches
were divided into nondominant solution sets and dominant solution sets. Among them,
the nondominant solution set was output as the elite set and became the final result of the
EpiMOGA method.
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3. Evaluation Criteria

In a GWAS, we generally regard that disease-related SNP combinations are positive
and disease-unrelated SNP combinations are negative, leading to an imbalanced problem
in the GWAS dataset exemplified by the existence of a much larger number of negatives
than positives. For example, a simulated dataset that is made up of 100 SNPs can produce
C2

100 = 4950 different 2-SNP combinations. In these combinations, only one of them is truly
associated with disease, indicating positive, and all other 4949 are negative. Therefore,
more appropriate indicators should be selected to evaluate the quality of detection results.

In the simulation experiment, we choose Power and F_measure to evaluate the perfor-
mance of the algorithm from two aspects, detection efficiency and detection accuracy. The
specific definition is as follows:

1. Power measures the ability of algorithms to detect functional SNP combinations
from all datasets, which is used for comparing the detection efficiency of different methods.
The specific calculation is as follows:

Power =
DT
D

, (9)

where D is the number of datasets and DT denotes the number of datasets that accurately
identify functional SNP combinations.

2. The F_measure is a comprehensive index based on recall and precision. Recall, also
known as sensitivity, measures the identification ability of positive samples by calculating
the proportion of true positive outputs in the total positive output. In addition, precision
calculates the proportion of true positive outputs in the total output. Since the total number
of results is not taken into account in the calculation of recall but is related to the value of
precision, there is a contradiction between recall and precision in that enhancing recall by
increasing the total number of results may cause a drop in precision. The F_measure is the
harmonic mean of recall and precision and reflects the detection accuracy of a method. The
calculation formula is as follows:

recall =
TP

TP + FN
,

precision =
TP

TP + FP
,

F_measure =
2

1/precision + 1/recall

4. Results
4.1. Simulation Experiments and Results
4.1.1. Parameter Setting

In the simulation experiment, to compare the performance of the methods in different
situations, we designed 3 simulation experiment cases that included 26 simulation datasets.
Taking 2-order epistasis detection as an example, EpiMOGA was compared with other
comparative epistasis detection methods (including Epi-GTBN, BOOST, SNPrule and
FDHE-IW) in terms of detection efficiency given by Power and detection accuracy given
by the F_measure. Parameter adjustment was unnecessary in the BOOST method. In
SNPRuler, we set the listSize to 2000, depth to 2 and updateRatio to 0.5. Population size
was the common important parameter in both EpiMOGA and Epi-GTBN. Therefore, we
set the population size to 50 in these methods to ensure a fair comparison. Similarly, the
probability of variation and the probability of crossover were set as 0.01 and 0.6, respectively.
The number of the initial population Num is a unique parameter of EpiMOGA that was set
as 60 after a series of simulation experiments (details of the experiments can be found in
the Supplementary Materials).
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4.1.2. Simulation Experiment Case 1

We used the three DME introduced in the materials section to generate 15 datasets
with sample sizes of 200, 400, 600, 800 and 1600 when MAF = 0.1, which were used to
analyze the influence of the disease model and sample size on the performance of methods.
Figure 2 shows the detection efficiency in terms of Power and accuracy in terms of the
F_measure of the different methods in the 15 simulation datasets.

Genes 2021, 12, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 2. Detection efficiency and accuracy comparisons between EpiMOGA and other methods on 3 DME models. 

In the DME1 dataset with a sample size of 400, the detection accuracy of EpiMOGA 

was 0.09 lower than that of the BOOST method, but the detection efficiency of EpiMOGA 

was more than ten times that of the BOOST method. Therefore, we can see that EpiMOGA 

is obviously more suitable for this dataset compared to the BOOST method. 

At the same time, EpiMOGA also performs well in datasets with large sample sizes. 

Campared with Epi-GTBN, we found that if two method have similar value on one 

objective, Epi-GTBN is more likely to be worse than EpiMOGA on the other. As an 

example, for the DME2 dataset with a sample size of 800, the two index values of 

EpiMOGA and Epi-GTBN are shown in Table 1. 

Table 1. Two index values of EpiMOGA and Epi-GTBN in the DME2 dataset (sample size = 800). 

Method Power F-Measure 

EpiMOGA 0.90 0.9072 

Epi-GTBN 0.99 0.3004 

In Table 1, we can see that the detection efficiency of EpiMOGA was slightly lower 

than that of Epi-GTBN, but it also reached 90%. Moreover, the detection accuracy of 

EpiMOGA is three times that of Epi-GTBN. Therefore, it is reasonable to believe that 

EpiMOGA is more suitable and performs better than Epi-GTBN on this dataset. 

In summary, compared with other methods, EpiMOGA significantly optimized the 

detection performance on small datasets of three different disease models. In larger 

sample sizes, EpiMOGA maintained a good and stable detection performance. 
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In the DME1 dataset with a sample size of 400, the detection accuracy of EpiMOGA
was 0.09 lower than that of the BOOST method, but the detection efficiency of EpiMOGA
was more than ten times that of the BOOST method. Therefore, we can see that EpiMOGA
is obviously more suitable for this dataset compared to the BOOST method.

At the same time, EpiMOGA also performs well in datasets with large sample sizes.
Campared with Epi-GTBN, we found that if two method have similar value on one objec-
tive, Epi-GTBN is more likely to be worse than EpiMOGA on the other. As an example,
for the DME2 dataset with a sample size of 800, the two index values of EpiMOGA and
Epi-GTBN are shown in Table 1.

Table 1. Two index values of EpiMOGA and Epi-GTBN in the DME2 dataset (sample size = 800).

Method Power F-Measure

EpiMOGA 0.90 0.9072
Epi-GTBN 0.99 0.3004

In Table 1, we can see that the detection efficiency of EpiMOGA was slightly lower than
that of Epi-GTBN, but it also reached 90%. Moreover, the detection accuracy of EpiMOGA
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is three times that of Epi-GTBN. Therefore, it is reasonable to believe that EpiMOGA is
more suitable and performs better than Epi-GTBN on this dataset.

In summary, compared with other methods, EpiMOGA significantly optimized the
detection performance on small datasets of three different disease models. In larger sample
sizes, EpiMOGA maintained a good and stable detection performance.

4.1.3. Simulation Experiment Case 2

In the same disease model DME2, 12 simulation datasets with MAF set to 0.05, 0.1,
and 0.2 and the sample size set to 200, 400, 600, and 800 were generated to compare
the performance of different characteristics. Figure 3 shows the detection efficiency and
accuracy of different methods in 12 simulation datasets.
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different MAF and sample sizes.

In Figure 3, we can see that the performance of EpiMOGA in small datasets is still
superior to that of other methods with the change in MAF. At the same time, EpiMOGA
performed very well on the 4 datasets with MAF = 0.05 and was far superior to other
methods in both evaluation indexes. In other datasets, the evaluation index of EpiMOGA
was obviously better than that of SNPrule. On all datasets, the F_measure of FDHE-IW and
BOOST was similar to that of EpiMOGA, but these methods were far lower than EpiMOGA
on Power. We can also see that the Power of EpiMOGA was equivalent to that of Epi-GTBN,
but EpiMOGA was obviously better on the F_measure. As an example, on the dataset
with a sample size of 600 and MAF = 0.2, the two indexes of EpiMOGA, FDHE-IW and
Epi-GTBN are shown in Table 2.
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Table 2. Two index values of EpiMOGA, FDHE-IW, BOOST and Epi-GTBN (MAF = 0.2,
sample size = 600).

Method Power F-Measure

EpiMOGA 0.88 0.7273
FDHE-IW 0.39 0.7529

BOOST 0.34 0.6887
Epi-GTBN 0.98 0.3925

In Table 2, we can see that FDHE-IW and Epi-GTBN were slightly better than the
EpiMOGA method on one objective and far lower than EpiMOGA on the other objective. To
conclude, EpiMOGA performed better in both detection efficiency and detection accuracy,
especially for small sample datasets.

4.1.4. Simulation Experiment Case 3

Three simulation datasets with an MAF of 0.2 and heritability of 0.01, 0.05, and 0.1
were generated to compare the performance of different methods on DNME. Figure 4
shows the detection efficiency and accuracy of the different methods.
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Figure 4. Detection performance comparisons between EpiMOGA and other comparative methods on DNME models with
3 different parameters.

In Figure 4, we can see that the performance of these methods was similar, except
for FDHE-IW. Compared with the results of the DME models, SNPrule performed signif-
icantly better on the DNME models, while the opposite occurred in FDHE-IW because
of the potential preference for the disease model. This phenomenon did not exist in the
EpiMOGA method.

We also have a simulation experiments case about the number of SNP loci and the
details about this experiments case can be found in Supplementary Materials.

4.2. Real Experiment and Results on the Alzheimer’s Disease Dataset

The EpiMOGA method was used to perform 2-order epistasis detection on Alzheimer’s
disease data. After searching and filtering by the EpiMOGA method, 89 2-order SNP pairs
were output as the final result. In further analysis, Chi-squared tests were performed on
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89 pairs of SNPs; if their p-values were less than 0.001, SNP combinations were retained.
Subsequently, a total of 48 pairs of SNPs were obtained, including 58 SNP loci. Figure 5
shows the final generated network diagram using Cytoscape [25].
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In Figure 5, each dot represents an SNP site and the line between the two dots
represents a 2-SNP. The larger area and the darker color of the dot mean that there are
the more SNP sites are connected. Similarly, the stronger association between 2-SNP and
Alzheimer’s disease, the thicker a line is.

Among the 58 SNP loci, 31 SNPs were in the coding region and 27 SNPs were in
the noncoding region. Some of genes have been reported to be related to Alzheimer’s
disease. For example, rs42733 is an A/G SNV variation in the coding cyclic adenosine
monophosphate (cAMP) response element binding protein (CREB) 5 gene. CREB signaling
plays a major role in long-term memory formation. Defective CREB signaling underlies
impaired hippocampal neurogenesis and cognitive deficits in Alzheimer’s disease [26].
rs16984129 is an SNP loci in the ARMCX5-GPRASP2 gene, which is also known as P60TRP.
The protein coded by this gene was initially identified to be downregulated in the temporal
lobe of brains in Alzheimer’s disease patients [27] and has been described as a potential
target for the development of strategies for inhibiting the early signaling mechanisms in-
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volved in neurodegenerative diseases such as AD [28]. rs9949508 is located on the DLGAP1
gene, which is also called GKAP or SAPAP1, and rs6530517 is a G/T SNV variation in the
FRMPD4 gene, while encoded protein FRMPD4 (FERM and PDZ domain-containing 4)
is a neural scaffolding protein [29]. Both of these proteins interact with PSD-95 [30]. Im-
portant variations in the distribution pattern of PSD-95 represent a marker in AD and
contribute to functional deterioration by impairing the neuronal network [31]. rs11564101
is a G/A/T/C SNV variation in the mitoguardin (MIGA) 2 gene, which is a mitochondrial
protein encoding gene. Experiments show that the loss of a MIGA leads to mitochondrial
defects and neurodegeneration and results in fragmented mitochondria [32]. Mutations in
core members of the mitochondrial fission/fusion machinery are responsible for severe
neurodegenerative diseases, such as Alzheimer’s disease. rs12631896 is an SNP loci in the
CACNA2D3 gene. Studies have shown that CACNA2D3 is associated with cognitive ability
and intelligence and is a predisposing risk factor for Alzheimer’s disease [33].

Several genes are also related to the clinical symptoms of Alzheimer’s disease. rs7358822
is an SNV variation in the ATP8A2 gene. ATp8A2 is a known coding gene associated
with complex neurological diseases and has high mRNA expression in hippocampal
neurons [34]. Mutations in the ATP8A2 gene have been reported to cause severe recessive
neurological diseases in humans, characterized by encephalopathy, intellectual disability,
cerebellar atrophy and optic atrophy [35]. rs7285350 is located in the LARGE1 gene region.
LARGE was found to be a component of the AMPA-type glutamate receptor (AMPA-R)
protein complex, a main player for learning and memory in the brain [36]. Mutations in the
human LARGE gene result in severe intellectual disability and affect learning and memory,
which is consistent with the clinical symptoms of Alzheimer’s disease. rs12395602 is a
variant loci of the gene CNKSR2. CNKSR2 is highly expressed in the brain and is known
to play a role in synaptogenesis [37]. Absent CNKSR2 causes intellectual, attention, and
language deficits [38], which are consistent with the clinical manifestations of Alzheimer’s
disease. rs25707 is located on the gene FMR1. Studies have shown important roles of
FMRP in synaptic plasticity and proper functioning of the neural network [39]. This genetic
change causes a risk for the development of neurodegenerative diseases [40]. In addition,
rs17021105 is located on the GRID2 gene. The coding protein GRID2 is considered to be a
suppressor in neurodegeneration [41]. Therefore, it is reasonable to surmise that rs7358822,
rs7285350, rs12395602, rs25707 and rs17021105 are correlated with Alzheimer’s disease.

In addition, rs12870203 is a variant on the MTUS2 gene, which is also called CAZIP.
One study suggested a role of CAZIP in the development and function of the nervous
system in vertebrates [42]. rs2186327 and rs2262256 are located in the coding region of
the TIAM-1 gene. TIAM-1 has been implicated in the development of the central nervous
system [43] and contributes to neurite extension in defined neuronal populations [44]. The
decay of neurons is also a cause of neurodegenerative diseases. rs28736870 is an SNV
variation in the GTPBP6 gene. One study showed that the overexpression of GTPBP6
is negatively correlated with speech cognition and has a causal relationship with neu-
ral development and speech function [45]. rs5933762, rs723259 and rs5933775 are SNP
variants located in the coding region of the SHROOM2 gene. The influence and clinical
phenomenon of SHROOM2 missense have not been found in the existing literature. In the
test results, SHROOM2 showed an epistatic role with other Alzheimer’s disease-related
genes. Therefore, we speculate that MTUS2, GTPBP6, TIAM-1 and SHROOM2 are likely
associated with Alzheimer’s disease.

Table 3 lists the top ten 2-SNP combinations with p-values from Chi-squared tests,
including SNP loci information, p-value of a single SNP site, p-value of 2-SNP and the
prediction accuracy of the support vector machine (SVM). By comparing the p-values, we
can see that the p-value of 2-SNP was far less than that of a single SNP, indicating that
epistasis does exist. Moreover, we can see from the last column that the SVM prediction
accuracies of these 2-SNP combinations were approximately 70%, which may be worth
study for biologists. (Additional information about the 3-order epistasis detection on
Alzheimer’s disease data can be found in the Supplementary Materials).
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Table 3. Top-10 epistatic interactions associated with AD.

Order SNP1 P1 SNP2 P2 P SVM

1 rs17021105 1.52934 × 10−7 rs8083566 3.48624 × 10−5 1.30237 × 10−9 0.720265781
2 rs7003370 1.93263 × 10−6 rs264173 0.00032777 2.73286 × 10−8 0.694629014
3 rs2832810 6.48301 × 10−5 rs7285350 0.040037803 2.91614 × 10−8 0.694518272
4 rs852549 0.001864809 rs7358822 0.000190734 2.06066 × 10−7 0.706256921
5 rs2010668 0.00234868 rs7358822 0.000190734 2.77707 × 10−7 0.706256921
6 rs2832727 0.000632929 rs7285350 0.040037803 3.38987 × 10−7 0.701605759
7 rs8083566 3.48624 × 10−5 rs723259 0.01579838 3.40313 × 10−7 0.73654485
8 rs10853690 3.48624 × 10−5 rs723259 0.01579838 3.40313 × 10−7 0.73654485
9 rs42733 0.025710022 rs7358822 0.000190734 5.87876 × 10−7 0.706256921
10 rs2832841 5.07116 × 10−5 rs5933762 0.000330143 7.53923 × 10−7 0.727131783

Note: In the table, P1 is the p-value of the Chi-square test on SNP1, P2 is the p-value of the Chi-square test on SNP2, and P is the p-value of
the Chi-square test on this 2-SNP combination.

In summary, the results of EpiMOGA detection in the dataset on Alzheimer’s disease
were reliable and had a certain biological significance.

5. Discussion

A genome-wide association analysis is mainly used to detect the correlation between
a single SNP locus and a phenotype [1]. The results of a GWAS cannot explain the lack
of heritability because of ignoring the interaction between genes (epistasis), which limits
its ability to analyze complex diseases. Epistatic detection can help us better explore the
occurrence of complex diseases and have a positive significant impact on the prevention,
discovery and treatment of complex diseases. In this paper, we proposed a multi-objective
epistasis detection method named EpiMOGA.

EpiMOGA is an epistasis detection method that completes a spatial search through
a genetic algorithm and carries out screening based on a multi-objective function. The
K2 score based on the BN criterion [22] and the Gini index of diversity of the binary
classification problem [23] were used as the search and screening objectives. Through
the Pareto optimal approach, the epistasis detection problem was extended to find a
nondominated set of solutions. In the genetic algorithm, the individuals in the population
were divided into two parts, the dominant solution set and the nondominant solution set,
and the fitness value of the nondominant solution set was determined according to the
number of the dominant solution. After several iterations of the genetic operation, the
optimal solution was obtained as the candidate set. Due to the dependence of the genetic
algorithm on the initial population, as well as the randomness of the genetic operation,
the candidate set obtained by a single search could not guarantee global optimization.
Therefore, EpiMOGA performed several search operations to obtain multiple independent
candidate solution sets, in which the nondominant solutions were selected as the final
detection result.

Experimental results in simulated datasets and an Alzheimer’s disease dataset showed
that EpiMOGA is an effective method for epistasis detection. Compared with other com-
parative methods, EpiMOGA can maintain good detection performance with balanced
detection efficiency and detection accuracy in datasets with different characteristics and
disease patterns. At the same time, EpiMOGA also shows a strong advantage in small
datasets, in which both of the evaluation criteria are obviously optimized. Under the
dilemma of a small sample size problem caused by a large number of SNP data, EpiMOGA
has a more extensive application.

EpiMOGA also has some limitations, such as the dependence on parameters. In
EpiMOGA, increasing the number of searches can effectively reduce the impact of the
initial population and the risk of local optimization. However, as the number of searches
increases, the run time also increases. In simulation experiment case 2, we observed that
the detection efficiency of EpiMOGA remained above 90% but showed a decreasing trend
with the increase in MAF. One reason for this result is the effect of the parameter settings
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on the efficiency of the method. Therefore, to improve the performance of EpiMOGA, it
is necessary to select different and appropriate parameters when detecting epistasis in
different datasets.

In the analysis of the dataset on Alzheimer’s disease, we found that a number of
SNP sites in the noncoding genomic region were recognized. The function of SNP in the
noncoding genomic region should be a part of future research, as it can be conducive to
research on complex diseases. The other important future direction is determining how to
add prior knowledge to the method to accelerate the search process.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073
-4425/12/2/191/s1, Figure S1: K-SNP epistasis Bayesian network model, Figure S2: Detection
efficiency and accuracy comparisons between EpiMOGA and the single-objective method, Figure
S3: A line diagram of the standardized values of the Power and time, Figure S4: Detection efficiency
comparisons between EpiMOGA and other comparative methods on DME models with 5 different
SNP number, Figure S5: The detect time of EpiMOGA and Epi_GTBN on different datasets, Figure
S6: SNP-SNP network of 3-order epistasis detection, Table S1: Penetrance functions of the three
DME epistasis models, Table S2: Penetrance tables of the DME and DNME epistasis models with
different sets of parameters, Table S3: Top-10 3-order epistasis interactions associated with AD. All
the simulate data and code can be found here: https://github.com/ycfszd1996/EpiMOGA.
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