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Abstract: The increasing availability of molecular data provided by next-generation sequencing
(NGS) techniques is allowing improvement in the possibilities of diagnosis and prognosis in renal
cancer. Reliable and accurate predictors based on selected gene panels are urgently needed for
better stratification of renal cell carcinoma (RCC) patients in order to define a personalized treatment
plan. Artificial intelligence (AI) algorithms are currently in development for this purpose. Here, we
reviewed studies that developed predictors based on AI algorithms for diagnosis and prognosis
in renal cancer and we compared them with non-AI-based predictors. Comparing study results,
it emerges that the AI prediction performance is good and slightly better than non-AI-based ones.
However, there have been only minor improvements in AI predictors in terms of accuracy and the
area under the receiver operating curve (AUC) over the last decade and the number of genes used
had little influence on these indices. Furthermore, we highlight that different studies having the
same goal obtain similar performance despite the fact they use different discriminating genes. This
is surprising because genes related to the diagnosis or prognosis are expected to be tumor-specific
and independent of selection methods and algorithms. The performance of these predictors will be
better with the improvement in the learning methods, as the number of cases increases and by using
different types of input data (e.g., non-coding RNAs, proteomic and metabolic). This will allow for
more precise identification, classification and staging of cancerous lesions which will be less affected
by interpathologist variability.

Keywords: renal cancer; machine learning; artificial neural networks; support vector machines;
random forests; NGS

1. Introduction

Renal cell carcinoma (RCC) is not a single entity but rather a heterogeneous set
of tumors classified in about 40 subtypes, of which clear cell (ccRCC), papillary and
chromophobe RCC account for 70%, 10–15% and 5%, respectively [1]. ccRCC is usually
asymptomatic in the early stages, and about 25–30% of patients present metastasis at
the time of diagnosis. Detecting ccRCC in the early stage would significantly ameliorate
the prognosis, even though localized ccRCC removal by nephrectomy does not eliminate
the high risk of metastatic relapse [1,2]. Therefore, also considering the increase in the
number of RCC cases, development of efficient strategies for an early diagnosis and for the
identification of tumors with a worse prognosis is very important.

In fact, tumor staging is not only a valuable prognostic factor, but it is also used to
determine the right treatment strategy for patients and to predict the risk of metastasis
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development. The currently adopted prognostic factors for RCC include the TNM staging
system, the four-tiered WHO/ISUP (International Society of Urological Pathology) grading
system, histologic subtype, presence of the sarcomatoid component, microvascular inva-
sion, tumor necrosis and invasion of the collecting system [3]. In case of the metastatic RCC,
the most effective prognostic factors are the histological subtype and the presence of the
sarcomatoid component [4]. Nomograms, models based on different prognostic factors that
affect survival, have been developed to improve the prediction of patient outcomes [5–7].
Among these factors, or variables, we mention sex, race, marital status, smoking history,
type 2 diabetes mellitus, age at diagnosis, T stage, N stage, M stage, Fuhrman nuclear
grade and surgical approach.

At the same time, the use of molecular data has been explored to improve the relia-
bility of diagnosis and prognosis in RCC. Currently, next-generation sequencing (NGS)
techniques offer the opportunity to extract a multitude of new features, genomic and
transcriptomic, potentially related to the phenotype. For example, gene variations, RNA
expression, alternative RNA splicing events and gene fusions data from a biopsy are rela-
tively easily obtainable [8]. However, the procedures for identification which, of the many
possible variables, are indeed related to the diagnosis and/or prognosis are challenging.
Thanks to bioinformatic and statistical methods, it is possible to reduce the number of
variables, for example, by identifying gene groups with a correlated expression and se-
lecting a representative gene for each group [9]. Application of these filters results in a
reduced number of variables suitable for analysis by typical algorithms of machine learning.
Artificial intelligence algorithms can learn the relationships among data, even if they are
non-linear relationships. A simple example would be a case in which the expression of five
genes is related to the diagnosis of cancer, but it is unknown what weight to attribute to
each gene and what formula links the gene expression to the diagnosis. By analyzing many
cases, artificial intelligence algorithms would be able to learn the relationship that links the
input variables (sociological, clinical, molecular) to an output variable, such as diagnosis
or prognosis or the response to treatments [10,11]. In other words, these algorithms act as
classifiers that, by integrating molecular information from medical big data, will allow for
the selection of specific treatments, thus making a “precision medicine”.

2. Machine Learning Algorithms

In this section, the main algorithms used to implement diagnostic and prognostic
predictors starting from molecular variables in RCC will be summarized. However, exten-
sive and recent reviews of the history of AI and its applications in medicine and oncology
were carried out by Hamamoto et al. [12] and Hamet et al. [13]. More specific applications
in urologic oncology have been carried out [14], including those based on radiological
images for diagnostic and prognostic purposes in RCC [15] or those for prediction of RCC
incidence over time [16,17].

Machine learning, the algorithms to implement AI, can be divided into two main
types: supervised and unsupervised learning [18]. The former method is used for ex-
tracting features from input data to make predictions and address the classification and
regression tasks. The classification problem is used to map input to output labels, that is, to
predict discrete data, for example, distinguishing between healthy and sick. The regression
problem is used to map an input to a continuous output, that is, to predict survival [19].
Unsupervised learning learns the inherent structure of data without labels being provided
and the most common task is clustering. It should be noted that since no labels are used, in
most cases, there is no specific way to assess model performance. Some of these algorithms
include k-means clustering and principal component analysis [20]. The studies that will be
examined in the next section adopted supervised learning, so now we will mention these
algorithms.

The best-known artificial intelligence algorithms are artificial neural networks (ANNs),
structures that mimic the neuronal topology of the human brain. They can have several
artificial neurons (or nodes) organized in layers, and neurons of each layer can implement
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different transfer functions. All of this ensures a great flexibility in dealing with different
tasks. Generally, the available cases are divided into a training set and a test set (for
example, in a 70:30 ratio) but sometimes into training, validation and test sets (for example,
in a 70:15:15 ratio). These algorithms perform well if the training data are numerous,
representative of reality and not contradictory. Many training attempts must be made
before the desired performance is achieved, and during these attempts, it may be necessary
to modify the network structure, i.e., number of nodes and the type of transfer function.

While an advantage of ANNs is their ability to discover and model complex rela-
tionships among data, they present two weaknesses. Firstly, since ANNs are non-linear
algorithms, training usually results in a relative minimum of the error function (between
obtained and expected outputs) and not in the absolute minimum. The second is the
overfitting of the data, which is a condition that occurs when the algorithm does not
generalize the data profile but tries to follow them so precisely that it ends up chasing
noise. Fortunately, this drawback can be easily noticed; in fact, too high performance on
training data and very poor performance on test data indicate overfitting. Overfitting can
also be prevented by applying methods that interrupt the learning cycles of the algorithm
when the performance of the two datasets (training and test) starts to diverge [21].

Support vector machines (SVM) are also algorithms used for classification. During
the learning process, these algorithms look for a hyperplane separating the two datasets
(for example, healthy from sick or short from long survival). SVMs do not use all the data
for the learning but rather only one datum representing the closest point between the two
sets (called support vectors). Usually, these algorithms are linear; therefore, they reach the
absolute minimum of the error function. Moreover, they are particularly suitable when
there is a clear separation between the data groups to be classified. Instead, they have poor
performance in the case of noisy data [22].

The random forests algorithm (RFs) combines the predictions of many decision trees
(forests) into a single model. Each decision tree learns from a subset of elements chosen
randomly from all available training data (bootstrap). Subsequently, the average of the
predictions of each decision tree (bagging) is calculated, allowing obtaining the final
predictions [23].

Finally, Lasso regression (least absolute shrinkage and selection operator regression)
is an algorithm that performs independent variable selection (feature selection) and regu-
larization (to reduce variance). It can select important predictors of a model [24,25].

However, there are several challenges in the application of machine learning to large
amounts of data, such as genomic data. The first problem, which we have already men-
tioned, concerns data overfitting that occurs because the dimension of the input is much
larger, at least one order of magnitude, than the sample number, and this is also known
as the “large p, small n problem”. Second, the influence of each input variable on the
prediction is difficult to assess because of the multiple non-linear operations. The third
problem is called the “black box problem”, that is, it is not possible to understand the
reason that generates the results and to predict the behavior of the system due to the
complexity of the machine learning techniques. Since the European Union’s General Data
Protection Regulation (GDPR) of 2018 requires the transparency of AI, it will be necessary
to address the black box issue [26].

3. Artificial Intelligence-Based Predictors in RCC

In this review, we investigated and reported the state of art of the application of AI
for diagnosis and prognosis in renal cancer using only molecular data as input, the most
commonly selected genes, and we analyzed the non-AI-based predictors making a compar-
ison between the two approaches. A Pubmed search was conducted using the keywords
“artificial intelligence”, “machine learning algorithm”, “renal cell carcinoma”, “renal can-
cer”, “kidney cancer” and excluding the keywords “radiomic”, “imaging”, “histopathology
images”, “CT-based”, “tomography” and “MRI”.
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Most of published studies are focused on the prediction of prognosis and diagnosis in
clear cell RCC since this is the most dominant type of renal cancer; therefore, more data are
available and, consequently, the algorithms can be better trained. Only two publications,
of the same authors, concern predictions on the papillary cancer type [27,28].

Usually, the RNA-seq gene expression and, in some cases, methylation data were
obtained from The Cancer Genome Atlas (TGCA) resource, thus ensuring the uniformity of
the starting data. Various authors used level 3 TGCA data [27,29,30], i.e., already aligned
to the reference genome and quantified, but we must consider that also these processed
data are dependent on the algorithm and its parameters [31]. In other papers, the transcript
quantification was calculated by RSEM software [32,33].

The first phase of the analyses consists in identifying the most differentially expressed
genes (DEGs) between the control and treated condition. This objective is not trivial;
in fact, there are still limitations and biases that do not allow capturing all the DEGs
due to the preparation of the library, the different representativeness as a function of
the RNA length, the alignment of the reads and the tests for expression [34–37]. For the
identification of DEGs, edgeR [38,39] and DEseq2 [40] R packages were used. Instead,
differential methylation was calculated by R package limma [40] or the minfi package
tool [28]. A downside in applying these methods lies in the assumption that there is no
potential correlation between groups of genes. However, in biological reality, there may be
gene–gene interactions that play a key role in specific conditions, whereby groups of genes
could show an effect as a group, but not as single genes [41].

The second phase of the analyses consists in a reduction in the starting data (feature
selection) to only the most important ones for discriminating cases, and this represents a
challenge. In several studies, the feature selection was obtained through various methods,
for example, using clustering algorithms, principal component analysis or random forests.
In particular, as selection criteria, we start from simple methods, statistical P-values and
fold changes [38]. More elaborate methods are another option, such as the “Symmetri-
calUncertAttributeSetEval” (of the Waikato Environment for Knowledge Analysis) and
the “Fast Correlation Based Feature” algorithm [29,30], and these methods are based on
performance in terms of discriminatory power (ROC) or on an SVM model [30]. It is also
worth mentioning the minimum redundancy maximum relevance method [42], feature
selection by the “Fast Correlation Based Feature” algorithm or joint statistical measures and
logistic regression [32]. Finally, Ping et al. used the random forests algorithm for variable
selection, after calculating the adjusted false discovery rate [33]. Similarly, the shrunken
centroids and random forests (varSelRF) methods [27,28] and Lasso regression [39,40] were
used for selecting features for predictors.

Table 1 shows a summary of the studies that used machine learning techniques for RCC
diagnosis and prognosis prediction. In a study from 2014, the authors tried to discriminate
ccRCC clinical tumor stages (early stages (I, II) and late stages (III, IV)) employing four
different supervised machine learning algorithms (J48, naïve Bayes, sequential minimal
optimization and random forest). The initial 20,534 genes from TCGA (The Cancer Genome
Atlas) were reduced to 62 and their expression in 475 tumor samples was used for algorithm
training [29]. The random forest based classifier reached the best performance, that is,
88.89% sensitivity, 76.84% accuracy and an auROC of 0.778.

Furthermore, in order to distinguish cancer from non-cancer samples, RNA-seq data
of 537 ccRCC patients collected in TCGA were used to train a supervised learning classifier
based on a support vector machine (linear kernel), and the receiver operating characteristic
(ROC) curve was adopted to measure the performance of this classifier [38]. The algorithm
performance seems very good, as seen from the values of sensitivity of 96.5%, specificity of
97% and the area under the receiver operating curve (AUC) of 98.7%, but unfortunately,
they are referred to overall performance (training and test set). Instead, it would be
interesting to evaluate the performance on test sets alone. Moreover, another weakness is
that 186 genes were used, and it would be interesting to reduce the number of variables for
classification.
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Table 1. The table collects the studies that used machine learning techniques to predict diagnosis and prognosis.

Aim Technique and Data Results Reference

ccRCC stages (I and II vs. III and IV)

J48, naïve Bayes, sequential
minimal optimization and

random forest on RNA-seq data
from TCGA

62 genes selected. Random forest was
the best predictor: 88.89% sensitivity,
76.84% accuracy and auROC of 0.778

Jagga et al., 2014 [29]

ccRCC vs. normal SVM on RNA-seq data
from TCGA

186 selected genes, overall sensitivity
96.5%; overall specificity 97%; overall

AUC 98.7%
Yang et al., 2014 [38]

ccRCC survival (< or ≥5 years) SVM and KNN learning on
RNA-seq data from TCGA

SVM (AUC 0.6042; total accuracy
0.6111) KNN (AUC 0.6444; total

accuracy 0.6481)
Schwartzi et al., 2015 [42]

ccRCC stages (I and II vs. III and IV)
SVM, random forests, SMO, naïve

Bayes, J48 on RNA-seq data
from TCGA

64 and 38 genes selected. SVM was
the best predictor: sensitivity 73.44%,
specificity 71.43%, accuracy 72.64%,

0.81 ROC (on validation data)

Bhalla et al., 2017 [30]

Papillary RCC stages KNN, SVM, naïve Bayes, random
forests, shrunken centroid

104 selected genes. Shrunken was the
best predictor: PR-AUC 0.81, MCC

0.71, accuracy 88.5% (in an
independent dataset)

Singh et al., 2018 [27]

ccRCC survival Lasso regression on TCGA data
4 gene methylation data. According to

ROC curve: 1-year survival rates
0.794, 3-year 0.752, 5-year 0.731

Tang et al., 2020 [40]

ccRCC stages (I, II and III, IV)
SVM, logistic regression, MLP,

random forests and naïve Bayes
on TCGA data

23 genes selected. SVM was the best
predictor: accuracy 81.15%, AUC 0.86

(in a testing set)
Li et al., 2020 [32]

Papillary RCC stages

Random forests, naïve Bayes,
linear-SVM, KNN, shrunken

centroid, group Lasso, BEMKL on
TCGA data

DNA methylation in addition to
previously selected [27] 104 features.
Random forests and group Lasso (for

both MCC 0.77, PR-AUC 0.79,
accuracy 90.4)

Singh et al., 2020 [28]

PCA: principal component analysis; AUC: area under the receiver operating curve; SVM: support vector machine; MLP: multi-layer
perception; RF: random forest; KNN: k-nearest neighbor; auROC: area under the receiver operating characteristic curve; PR-AUC: maximum
area under the precision recall curve; MCC: Matthews correlation coefficient; BEMKL: Bayesian efficient multiple kernel learning.

A study published in 2015 focused on prediction of kidney cancer survival (< or
≥5 years) using TCGA RNA-seq data of 220 patients [42]. It was a complex study because
the authors tested different datasets for training machine learning algorithms. In particular,
both multimodal RNA-seq data (gene, exon, isoform and junction) and unimodal data
(only gene, only exon, etc.) were used, and the results were compared by the area under
the receiver operating curve (AUC). The support vector machine (SVM) and k-nearest
neighbor (KNN) methods trained by multimodal data showed slightly better predictive
accuracy (SVM_AUC = 0.6042, KNN_AUC = 0.6444) in comparison to all unimodal datasets.
Unfortunately, the sample size was small, and the total accuracy of the predictions resulted
limited. Similarly to Jagga et al. [29], another study used RNA-seq expression data from a
slightly higher number of ccRCC cases (n = 523) to train SVM, random forests, SMO, naïve
Bayes and J48 algorithms [30]. The SVM reached a maximum accuracy of 72.64% and an
ROC of 0.81 using 64 genes on the validation dataset (RCSP-set-Weka) and similar accuracy
using 38 genes (RCSP-set-Weka-Hall). However, the performance improvements were
limited compared to the previously cited article. In a recent study, ccRCC patients were
classified in low- and high-risk categories based on methylation data of only four genes.
In fact, using the Lasso regression, classification performances assessed on the testing
group by the ROC curve were 0.794, 0.752 and 0.731 for the 1-, 3- and 5-year survival
rates, respectively [40]. At the same time, using only 23 genes and the SVM algorithm, an
accuracy of 81.15% and an AUC of 0.86 have been achieved [32].

In 2018 and 2020, the same authors dealt with papillary renal cell carcinoma (PRCC)
to discriminate between early and late stages of the disease. In particular, 104 genes were
selected from gene expression profiles derived from 161 patients and used in a shrunken
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classifier [27]. A test on an independent RNA-seq dataset showed a maximum area under
the precision recall curve (PR-AUC) of 0.81, a Matthews correlation coefficient (MCC) of
0.71 and accuracy of 88.5%. The integration of DNA methylation and gene expression data
gave slightly better performance compared to the previous work [28].

A very recent study adopted different algorithms (SVM, decision tree, RF and ANN)
to predict stages in ccRCC [43]. Unfortunately, large numbers of genes were used (12,897,
7251 and 6880), and the resulting performance was scarce.

We did not include two studies in Table 1 as they used learning methods only for vari-
able selection [33,39]. Regarding these two studies, Li et al. developed a risk score model
based on only 15 genes to predict the survival of patients with ccRCC who were subjected
to surgery [33]. In particular, starting from gene expression data of 533 ccRCC patients,
discriminating genes were selected using the random forests algorithm. The results seem
in line with those obtained in the previous studies; in fact, the risk score was significantly
associated with overall survival (OS) and recurrence-free survival. Moreover, the risk score
for the AUC was 0.78. Meanwhile, Zhang et al. selected four differentially expressed
methylation-driven genes to construct a risk score prognostic model in ccRCC [39]. For the
overall survival, the AUCs for 1, 5 and 10 years were 0.734, 0.717 and 0.758, respectively.

It is difficult to compare the performance of these different prediction algorithms,
since they concern different RCC subtypes and each predictor is fed with different types
and numbers of genes. Furthermore, among the prognosis predictors in ccRCC, some
algorithms have been trained to predict survival, and others to distinguish early from
late stages, which, although they are two strongly correlated variables, are not identical.
It should be taken into account that the specific parameters used by programmers to
implement each specific algorithm are not known in detail. However, the best performance
was achieved in the most recent study on ccRCC prognosis (AUC 0.86) which also used
the fewest genes, by employing an SVM that performed better than logistic regression,
multi-layer perception (MLP), random forests and naïve Bayes.

4. Commonly Selected Genes

We performed features comparisons to identify which selected genes were in common
among studies regarding ccRCC prognosis in Table 1. Since genes can have synonymous
names, we obtained their official names if these were not already adopted in the original
papers, in order to obtain comparable gene lists. We identified few common genes: ATG13,
HBG1 and HUS1B were the features shared among three studies, whereas CACNA1D,
CASP9, CENPBD1, CTSG, EIF5B, EYA1, FABP7, FGFR3, GPR68, LINC01512, NFE2L3,
RXRA, SLC22A16, SMIM3, SMLR1, TBX18, TMEM244, TNFSF4, TOB1 and UFSP2 were
common between only two lists.

The HUS1B (Checkpoint protein HUS1B) gene forms a complex with Rad9 and Rad1
which are involved in response to damaged DNA, triggering cell cycle checkpoint signaling
and DNA repair mechanisms [44]. CACNA1D (Voltage-dependent L-type calcium channel
subunit alpha-1D) is lowly expressed in RCC [45], and the expression level of CASP9
(Caspase-9) is altered in RCC by rs12124078 SNP [46], while CTSG (Cathepsin G) inhibition
enhances apoptosis in human renal carcinoma (Caki) cells [47]. The FABP7 (Fatty acid-
binding protein, brain) gene is usually overexpressed in ccRCC compared to normal
kidney, and its expression positively correlates with advanced clinical stage, poor survival
and distant metastasis [48,49]. FGFR3◦(fibroblast growth factor receptor 3) regulates cell
proliferation, differentiation and apoptosis and it is frequently mutated in metastatic
RCC [50] and downregulated in ccRCC [51]. High NFE2L3 (Nuclear factor erythroid
2-related factor 3) gene expression levels are associated with poor survival in ccRCC [52].

From this comparison, it emerges that different studies with the same goal, for exam-
ple, prognosis prediction in ccRCC, selected different gene lists, but all their algorithms
performed well. On the other hand, other studies with the specific purpose of selecting
prognostic genes in ccRCC, which also used the TCGA source, obtained lists of genes that
are different from each other and from the above-mentioned genes [53–56].
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Despite joining all genes used by studies for ccRCC prognosis predictions, none
of them were in common with the genes used for the papillary-type RCC predictions,
confirming that the two cancer variants are very different at the molecular level.

5. Comparisons with Non-Artificial Intelligence-Based Predictors

We then analyzed the published studies which used non-AI-based predictors for
diagnosis or prognosis in RCC to compare their performance with that of the predictors
reported in Table 1. We selected some studies in which predictors were developed based
on clustering or PCA of gene expression data. These studies, reported in Table 2, used
microarray data, while studies reported in Table 1 used RNA-seq data.

Although these studies are not directly comparable to the above-mentioned ones
because the AUC was not calculated, they generated lists of genes different from the
above-mentioned studies but significantly associated with survival or tumor grade.

All studies demonstrated to have selected genes highly correlated to the overall
survival, and one study reported a successful discrimination of patients from healthy indi-
viduals [57]. Regarding studies about ccRCC diagnosis, the genes CA9, FABP7, NDUFA4L2,
PTHLH and SLC6A3 were common among the study using clustering/PCA (Table 2) and
the one using learning algorithms (Table 1). Among these, FABP7 was already observed in
the previously described analysis. CA9 (Carbonic anhydrase 9) and NDUFA4L2, a NADH
dehydrogenase subunit, are strong candidate biomarkers for ccRCC metastasis [58–60];
moreover, NDUFA4L2 overexpression contributes to increase the drug resistance of ccRCC
cells [61]. The overexpression of PTHLH (Parathyroid hormone-related protein) in ccRCC
patients is associated with poor prognosis [62]. Further, SLC6A3 (Sodium-dependent
dopamine transporter) is associated with ccRCC diagnosis and prognosis [46,63].

Regarding studies about ccRCC prognosis, we joined the genes selected from these
previous studies (reported in Table 2) with those selected more recently using advanced
techniques (reported in Table 1) and then we compared these two lists. The common genes
were F2RL1, FABP7, GPX3, HOXC10, ITGA2, LGALS2, LGALSL, MPZL2, NNMT, RGS1,
S100A4, SLPI, SPINT2, TNFAIP6, UFSP2, VCAM1 and VEGFA.

Beside FABP7, the role of GPX3 (Glutathione peroxidase 3), NNMT (Nicotinamide
N-methyltransferase), S100A4 (Protein S100-A4), SPINT2 (Kunitz-type protease inhibitor 2),
TNFAIP6 (Tumor necrosis factor-inducible gene 6 protein), VCAM1 (vascular cell adhesion
molecule 1) and VEGFA◦ (vascular endothelial growth factor A) is already known. In
particular, the expression of GPX3 is decreased in ccRCC [64,65]. NNMT has been suggested
as a diagnostic [66–68] and prognostic biomarker [69]. S100A4 could be a valid prognostic
marker, since it is associated with ccRCC proliferation, migration and metastasis [70,71].
SPINT2 is lowly expressed in ccRCC and may act as a tumor suppressor gene, since
its knockdown induces increased invasiveness, migration and bone metastasis [72–74].
TNFAIP6 mRNA expression is upregulated in ccRCC [75–77]. In addition, the expression
of its protein (TSG-6) is upregulated in inflammatory states and by growth factors [78].
VCAM1 is upregulated in ccRCC and pRCC and downregulated in chromophobe RCC and
oncocytoma [79]. It is also highly predictive for survival of patients with RCC [79]. VEGFA
is a growth factor involved in angiogenesis, cell migration and apoptosis. This gene is
upregulated in many tumors, including RCC, and its expression is correlated with tumor
stage and progression [80]. It is targeted by miR-106a-5p, but expression of this microRNA
is drastically decreased in ccRCC [81].
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Table 2. The table collects the studies that used different techniques than machine learning to predict diagnosis and
prognosis.

Aim Technique and Data Results Reference

ccRCC survival at 5 years Clustering on cDNA microarray
(29 patients)

40 genes correlated with survival (Kaplan–Meier,
p < 0.0001) and histological grade. Takahashi et al., 2001 [82]

metastatic ccRCC
subgroups

Clustering on cDNA microarray
(58 patients)

45 genes distinguishing groups for overall
survival (p = 0.001) Vasselli et al., 2003 [83]

ccRCC survival
after surgery

Clustering and supervised PCA
on cDNA microarray

(177 patients)

259 genes correlated with survival (p < 0.001 by
the log-rank test on test set) Zhao et al., 2006 [84]

Top 4 genes correlated with survival (p = 0.02)

ccRCC vs. normal
Clustering and PCA on cDNA

microarray (16 patients)

21 genes over expressed in ccRCC compared to
normal tissues

Skubitz et al., 2006 [57]
ccRCC subgroups Fewer genes distinguishing 2 ccRCC subgroups

likely related to pathologic grade

ccRCC survival
PCA and clustering and logical
analysis on cDNA microarray

(48 patients)

110 genes associated with tumor stage (p = 0.009)
and grade (p = 0.0007) and survival (median

survival of 8.6 vs. 2.0 years, p = 0.002)
Brannon et al., 2010 [85]

6. Discussion

The use of the patient’s clinical and molecular variables is very useful for obtaining
new information important for personalized therapy development. Today, we have much
more molecular information available thanks to next-generation sequencing techniques
and therefore more possibilities to identify the truly discriminating molecular features.
There are several bioinformatic methods for the identification of discriminating variables,
which subsequently will be used by the various artificial intelligence algorithms. These
variables, such as transcripts, proteins or metabolites, could also represent new therapeutic
targets.

Artificial intelligence systems are able to learn the relationships among data only by
looking at the examples and are able to capture and reproduce non-linear relationships
among the data. These algorithms are constantly being improved to ensure that they
can learn better and faster and be more robust to the noise in the data. Another issue is
that most machine learning algorithms are so-called “black boxes”, that is, they derive an
internal model of the functioning of reality, but this cannot be explained.

These machine learning methods can also stratify patients more accurately, identifying
those who present a low-stage but high-risk expression profile tumor and therefore should
receive adjuvant therapies and major attention. On the other hand, patients with a high-
stage but low-risk expression profile could receive less aggressive treatments under close
observation. However, these objectives remain challenging, especially when considering
the great molecular heterogeneity of kidney tumors.

In this study, firstly, we show that artificial intelligence algorithms yield fairly accurate
predictions, even with a low number of variables (Table 1), but there is still a need to
continue efforts to improve predictions. Secondly, among studies pursuing the same aim
and starting from the same data (TCGA), good performance is obtained despite only a few
discriminating variables being common. This may be due to the employment of different
algorithms for the feature selection and the fact there are groups of genes with very similar
expression profiles for which different algorithms choose different genes to represent the
same class. Third, the comparison between AI- and non-AI-based predictors was not
possible since different parameters are used to describe performance. For the same reason,
the comparison with nomograms is not possible when the C-index is provided [5,86,87]
but only when the AUC is present. In this case, a nomogram reached an AUC of 0.813 and
0.799 for the 3-year and 5-year survival, respectively [7]. Similar performance (0.801 AUC)
is obtained by integrating expression data in predicting a high ISUP (International Society
of Urological Pathology) grade of ccRCC [88]. These results, obtained with very simple
and transparent systems, are similar to or slightly lower than those of AI systems.
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In colon and breast cancers, AI predictors reached an accuracy of 0.767 and 0.807,
respectively, for disease recurrence [89]. Better results were obtained in the prediction
of survival at 1 year and 5 years in esophageal carcinoma (0.883 and 0.884 AUC) [90].
Therefore, in other cancers, the results of the predictions are similar to those obtained for
RCC.

To increase the accuracy of predictions in prognosis, data on mutations have been
integrated with those of gene expression [91–93]. However, it is difficult to train an expert
system to consider the mutation load of a sample since the effect of a mutation depends on
the function of the gene and its position along the gene [94]. Unfortunately, since there is
no such detailed information, all mutations are grouped together, and this diminishes the
predictive power of expert systems.

In the future, thanks to the greater availability of data in TCGA, it will be possible to
realize gender-, ethnic- and RCC variant-specific predictors.

7. Conclusions

AI-based predictors are powerful tools that can be continuously trained as new data
become available. In this review, we summarized recent studies that adopted these predic-
tors for diagnosis and prognosis in RCC. We show the good performances obtained so far,
but also the need for improvement in order to achieve real clinical usefulness.
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