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Summary

A growing need exists for reliable in vivo measurement of neuroinflammation to better 

characterize the inflammatory processes underlying various diseases and to inform the 

development of novel therapeutics that target deleterious glial activity. Positron emission 

tomography (PET) is well suited to quantify neuroinflammation and has the potential to 

discriminate components of the neuroimmune response. However, PET imaging is not currently 

used to measure neuroinflammation in clinical practice, in part because of the complexity of the 

brain’s varied immune responses and the technical challenges associated with reliable 

quantification. Despite these challenges, PET studies have consistently identified associations 

between neuroimmune response and pathophysiology in Alzheimer’s disease and chronic 

traumatic encephalopathy. Recently, positive results have been observed with second-generation 

radioligands as markers of immune response in immune-mediated diseases, such as multiple 

sclerosis and HIV-related cognitive impairment, as well as in neurodegenerative disorders, 

epilepsy, and stroke. A small but growing number of studies have similarly suggested that PET 

imaging of neuroinflammation could play a role in drug discovery. However, interpreting 
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neuroinflammation PET studies remains somewhat controversial because of limited understanding 

regarding the cellular mechanisms that underlie changes in PET signal. Future studies are needed 

to improve our knowledge of how immune response contributes to neurological disease and how it 

might be therapeutically modified.

1.0 Introduction

Recent discovery of glial-expressed risk variants associated with neurodegenerative 

diseases1, coupled with increasing evidence supporting neuroimmune modulation as a 

strategy for drug development, underscore the critical need for reliable in vivo measurement 

of neuroinflammation, which would enable research into the neuroimmune mechanisms that 

contribute to neurological disease and inform clinical trial design. Due to its ability to 

measure select proteins at low concentrations, positron emission tomography (PET) is 

particularly well-suited to quantify neuroinflammation and has the potential to discriminate 

components of the neuroimmune response (Figure 1). However, obstacles to reliable PET 

measurement of neuroinflammation include misperceptions and limitations regarding 18 

kDa translocator protein (TSPO; the most common neuroinflammatory target), such as high 

nonspecific binding and sensitivity to a genetic polymorphism that affects binding affinity of 

early TSPO radioligands, as well as a paucity of non-TSPO targets with validated 

radioligands. In addition, the only validated non-TSPO target in recent use is the astrocyte-

expressed protein monoamine oxidase B (MAO-B), which has its own limitations (e.g., 

expression by neurons).

Fortunately, there are several reasons for optimism. First, combining TSPO PET with other 

biomarkers has provided insights into the temporal and spatial relationships between 

neuroinflammation and the canonical pathologies underlying brain disorders such as 

Alzheimer’s disease. Second, tissue studies have begun to clarify the meaning of increased 

TSPO PET signal in certain diseases. Third, improved TSPO radioligands, particularly 

[11C]ER176, have overcome some of the major disadvantages of earlier tracers. Finally, 

novel non-TSPO targets are under investigation, and several radioligands are in various 

stages of early development.

This review provides a critical assessment of the role of PET imaging of neuroinflammation 

in neurological disorders. Rather than provide an exhaustive, historical list of all published 

PET studies, the review only discusses disorders for which at least one positive study was 

conducted using a second-generation TSPO radioligand. These include multiple sclerosis 

(MS), HIV-associated cognitive impairment, Alzheimer’s disease (AD), frontotemporal 

dementia, chronic traumatic encephalopathy (CTE), Huntington’s disease, amyotrophic 

lateral sclerosis, epilepsy, and stroke. Other disorders such as corticobasal degeneration, 

progressive supranuclear palsy, and dementia with Lewy bodies were excluded because they 

have not yet been studied with second-generation TSPO radioligands. In addition, only 

negative studies using second-generation radioligands in Parkinson’s disease (PD) have been 

published; however, the possible role of TSPO PET in drug discovery for PD is discussed. 

Disorders are discussed based on similarities in terms of proposed relatedness to 
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neuroinflammatory response. Classic immune-related disorders are discussed first, followed 

by neurodegenerative disorders, and then epilepsy and stroke.

2.0 Overcoming obstacles to identifying neuroinflammation using PET 

imaging

In our experience, the major obstacles to reliable PET measurement of neuroinflammation 

include misperceptions regarding TSPO as a biomarker, the limitations associated with early 

TSPO radioligands, and the paucity of non-TSPO targets with validated radioligands. 

Fortunately, recent multimodal imaging and tissue studies have increased our understanding 

of the meaning of the TSPO PET signal, and radioligand development has improved the 

ability to measure TSPO in vivo.

Although widely used as an inflammatory biomarker, TSPO has important caveats that 

require consideration to avoid misinterpreting PET imaging results. First, while TSPO is 

predominantly expressed in brain by microglia,2 expression by other cell types must be 

considered. TSPO was originally found in peripheral tissue,3 and is also expressed in brain 

by astrocytes4 and vascular endothelium.5 Migration of peripheral myeloid cells into brain 

can also contribute to the TSPO signal.6 Therefore, the relative contribution of TSPO 

radioligand binding by microglia versus other cells depends on the disease studied. For 

example, some,7, 8 though not all,9 autopsy studies have shown that microglia are the 

predominant TSPO-positive cells in the brain of individuals with AD. Similarly, TSPO in 

human MS lesions is mostly expressed in microglia but also in astrocytes, though to a lesser 

extent.5 However, disease stage can, in some cases, also influence cellular expression of 

TSPO. For instance, in an experimental stroke models in rats, TSPO-expressing microglia 

were first found in the ischemic lesion; days later, TSPO-expressing astrocytes were found 

in the surrounding area.10 In addition, the meaning of increased TSPO binding remains 

controversial, even within the proportion of signal due to microglia. Rodent studies found 

that increased TSPO expression signals a shift from resting to activated morphology in 

microglia, resulting in the widely held view that increased TSPO binding equates to 

microglial activation.11 However, human tissue studies do not necessarily support this view. 

Pro-inflammatory conditions did not increase TSPO expression in a study using human 

microglia, suggesting that radioligand binding may reflect microglial density rather than 

microglial phenotype.12 Furthermore, while human autopsy studies identified TSPO-

expressing microglia proximal to neuritic plaques in the AD brain,7, 8 one AD study 

demonstrated that area fraction of TSPO immunoreactivity did not correlate with that of 

microglial activation (defined as CD68 immunoreactivity).9 In addition, while increased 

TSPO immunoreactivity was detected in brain and spinal cord tissue from individuals with 

MS, TSPO was found in both pro-inflammatory and anti-inflammatory microglia (defined 

by co-expression of CD40 or CD206, respectively).5 Nevertheless, immunohistochemistry 

results do not always agree with PET results. TSPO antibodies attach to the C terminus of 

the target protein, while radioligands bind to its active site. Furthermore, autoradiography 

and PET represent the available number of binding sites, not just the total amount of protein, 

and both techniques are inherently more quantifiable than immunostaining. Therefore, while 

TSPO binding should not be broadly assumed to reflect the extent of microglial activation, 
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disease- and species-specific tissue studies should guide the interpretation of increased 

TSPO signal.

Another challenge intrinsic to TSPO PET is determining which radioligand to use, given the 

tracers available and their varying limitations. The prototypical radioligand [11C]-(R)-

PK11195 has low signal-to-noise ratio, which limits its ability to detect subtle changes in 

TSPO density.13 While second-generation radioligands have improved ratios of specific-to-

nonspecific binding, they are sensitive to a common polymorphism (rs6971) in the TSPO 
gene.14 Individuals with two copies of the rare allele (low affinity binders) bind these 

radioligands with a lower affinity than those with two copies of the major allele (high 

affinity binders), and heterozygotes (mixed affinity binders) express both high and low 

binding sites in similar proportions. Thus, individuals with the same TSPO density but 

different genotypes will produce different PET signals. This obstacle has been addressed by 

performing TSPO genotyping prior to imaging (to exclude low affinity binders) and by 

including binding affinity as a statistical covariate.15, 16 One study compared four 

carbon-11-labeled TSPO radioligands ([11C]-(R)-PK11195, [11C]PBR28, [11C]DPA-713, 

and [11C]ER176) and found that [11C]DPA-713 had the greatest signal-to-noise ratio in 

human brain.17 However, [11C]ER176 also had a high signal-to-noise ratio, was least likely 

to generate brain-penetrant radiometabolites, and was sufficiently insensitive to the rs6971 

polymorphism to allow reliable TSPO measurement in low affinity binders.17 Thus, current 

evidence suggests that [11C]ER176 is the best available TSPO radioligand. While 

[18F]GE180 has been described as a “third-generation” TSPO radioligand, this tracer has 

unfavorable kinetics for human brain imaging due to low penetration into brain from the 

vascular compartment;18 thus, we do not advise use of this tracer.

Another potential obstacle for TSPO PET is lack of a true reference region. TSPO is 

diffusely expressed throughout the brain, and accurate measurement of its density relies on 

kinetic modeling using the metabolite-corrected arterial input function (AIF). Different 

methods have attempted to circumvent the need for arterial sampling, including cluster 

sampling techniques19 and the use of “pseudo-reference” regions.20, 21 Although AIF-free 

methods inherently introduce bias, several such studies have detected increased TSPO in 

various neurological disorders, with colocalization to abnormalities in other biomarkers.
22, 23 In addition, AIF-free methods often reduce variance caused by inter-subject differences 

in physiological TSPO expression, thus improving power for statistical analysis.21 Because 

binding behavior may differ among different radioligands and diseases, we recommend 

validating pseudo-reference methods against arterial sampling prior to their application. The 

diffuse nature of TSPO is less of an issue in focal disorders such as stroke, where 

contralateral tissue of the same volume can be used for comparison. However, Wallerian 

degeneration or diaschisis may affect regions distant to focal injury,24 potentially influencing 

results.

Finally, although [11C]ER176 has emerged as the preferred TSPO radioligand, TSPO 

appears to reflect a broad spectrum of immune responses; thus, more precise targeting of 

inflammatory mechanisms will require novel radioligands for novel biomarkers. The only 

non-TSPO radioligand in recent usage is [11C]deuterium-L-deprenyl, a radioligand for 

MAO-B. However, while MAO-B is expressed by astrocytes, it is also expressed by 
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pyramidal neurons in AD brain,25 and physiological signal in basal ganglia—due to its high 

dopamine turnover—may limit sensitivity to detect changes in this region.26 Novel 

inflammatory targets include cyclooxygenase-1 (COX-1) and COX-2, colony stimulating 

factor 1 receptor (CSF1-R), and the P2X purinergic receptor 7 (P2X7R). To date, no 

radioligand for any of these targets has been fully validated in human disease although each 

shows promise for more precisely measuring neuroimmune response. Discussion of these 

emerging targets can be found in our companion review in The Lancet Psychiatry.27 Table 1 

summarizes the neuroinflammatory radioligand studies performed in humans in the last five 

years, noting those using non-TSPO radioligands, arterial sampling, or autopsy tissue, as 

well as studies in which neuroinflammation PET has been incorporated into clinical trials.

3.0. Neuroimmunological and infectious disorders

3.1 Multiple Sclerosis

Most PET studies quantifying neuroinflammation in MS have used TSPO as the PET target. 

Numerous studies have found increased TSPO expression in MRI-defined white matter 

lesions in individuals with relapsing-remitting MS (RRMS) or secondary progressive MS 

(SPMS).28–31 The fact that white matter lesions, which are indistinguishable on MRI, have 

different patterns with TSPO PET suggests that TSPO PET can detect pathophysiological 

heterogeneity to which MRI is insensitive.28, 29 As may be expected, the molecular changes 

detected by TSPO PET precede the structural changes detected by MRI.31 In addition to the 

higher signal in lesions, non-lesional white matter in MS also shows greater TSPO signal 

than in age-matched controls.28, 32, 33 This increase is associated with greater brain atrophy 

and worse disability.20, 29, 34 Higher signal also predicts the appearance of new lesions, 

worsening brain atrophy, and a more severe trajectory of disability worsening over the 

subsequent 12 months.20, 28 Increased signal in cortical grey matter has also been detected, 

which again correlates with disability and cognitive impairment.32, 34 The effect of standard 

medications (including glatiramer acetate, fingolimod, and atalizumab) on TSPO signal has 

been assessed in a handful of studies, all of which have shown modest reductions in the 

signal in either lesional or non-lesional white matter.35–38

While previous neuropathology studies identified activated microglia as the source of TSPO 

in lesions,8 a recent comprehensive assessment of post-mortem MS brain demonstrated that 

TSPO is not preferentially expressed on activated microglia but, rather, is found equally 

across all microglial phenotypes.5 Furthermore, although microglia are the main contributors 

to TSPO signal in white matter lesions, a substantial contribution (~25%) is made from 

astrocytes and, to a lesser extent, endothelial cells.5 It should also be noted that TSPO PET 

studies in MS participants relative to controls identified much smaller differences than might 

be expected from pathological investigations. This could be due to the relatively small size 

of the lesions or could reflect differences in the configuration of TSPO between in vitro and 

in vivo states.

3.2 HIV Cognitive Impairment

Cognitive impairment remains prevalent among individuals infected with human 

immunodeficiency virus (HIV), including those using effective antiretroviral therapy.39, 40 

Microglial activation and reactive astrocytosis are among the posited contributing factors to 
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cognitive impairment in HIV. One [11C]-(R)-PK11195 PET study found higher regional 

binding in HIV+ participants (cognitively impaired and unimpaired) relative to uninfected 

controls, with the highest binding observed in those with HIV-associated dementia.41 A 

second [11C]-(R)-PK11195 PET study found higher binding in cognitively intact HIV+ 

participants compared to uninfected controls,42 while a third study found no difference 

between HIV+ individuals (cognitively impaired or unimpaired) and controls.43 For studies 

using the second-generation radiotracers [11C]DPA-71344 or [11C]PBR28,45 higher regional 

binding was found in virally-suppressed HIV+ individuals compared to uninfected controls. 

Those with HIV-associated dementia had higher [11C]DPA-713 binding in frontal cortex,44 

and subsequent analyses using data from HIV+ individuals revealed inverse correlations 

between regional [11C]DPA-713 binding and performance in particular cognitive domains.46 

In HIV+ individuals, [11C]PBR28 PET also revealed region-specific (hippocampus, 

thalamus) associations between higher binding and lower performance in memory and 

verbal learning.45 Inconsistencies between these studies may stem from differences between 

radioligands, clinical characteristics within patient and control groups, and analytic methods. 

Nevertheless, taken together the data suggest that TSPO may be regionally elevated and 

linked to domain-specific cognitive impairment in treated HIV.

4.0 Neurodegenerative disorders

4.1 Alzheimer’s disease (AD)

Both human and preclinical PET studies have linked neuroinflammation with AD pathology. 

Most TSPO PET studies have shown increased binding in AD participants compared to 

controls, particularly in fronto-temporal regions, with more modest increases observed in 

neocortical regions in individuals with mild cognitive impairment (MCI) (see47 for a meta-

analysis). Presymptomatic carriers of autosomal dominant AD mutations48 showed 

increased binding as assessed using [11C]deuterium-L-deprenyl, a radioligand for MAO-B. 

While these studies suggest astrocytosis as a pathological entity in early-stage AD, MAO-B 

is also expressed by pyramidal neurons in AD brain.25 Transgenic AD mouse studies found 

increased TSPO and MAO-B binding on PET, often confirmed with autoradiography.49, 50

The exact pathological stimulus for increased TSPO in AD remains unclear. Studies have 

observed increased TSPO binding in asymptomatic individuals with incidental amyloid 

positivity23, 51 and in participants meeting clinical criteria for amnestic MCI or mild AD 

with absence of amyloid binding on PET.23, 52 This suggests that TSPO may increase in 

response to both amyloid deposition and amyloid-independent neurodegeneration. 

Multimodal PET studies have looked for spatial correlations between TSPO binding and 

both amyloid plaque and neurofibrillary tau burden. Studies comparing TSPO and amyloid 

binding have been inconsistent, showing no correlation,15, 53 positive correlations,51, 54–56 

and negative correlations.57 Nevertheless, three of four studies found positive correlations 

between TSPO and tau binding.22, 23, 54, 58 One study identified distinct patterns of TSPO 

binding in different clinical variants of AD,59 similar to previously reported patterns of tau 

pathology60 (Figure 2). Notably, both TSPO and tau binding were increased in younger AD 

participants than in older ones.61, 62 Therefore, TSPO may have a stronger relationship with 

tau than with amyloid, at least during the clinical stages of AD.
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Whether increased TSPO binding in the early stages of AD represents a beneficial or 

maladaptive glial response remains controversial. Cross-sectional studies in AD found that 

TSPO binding is associated with worse cognitive impairment.15, 63 In addition, the first 

longitudinal TSPO PET studies in AD showed overall increased binding as the disease 

advanced.61, 64 However, amyloid-positive individuals with MCI had greater [18F]DPA-714 

binding than individuals with AD, and greater [18F]DPA-714 binding was associated with 

higher Mini-Mental State Exam (MMSE) score.51 Another study found that six of eight 

individuals with MCI (four of whom were amyloid-negative) showed a mean reduction in 

[11C]-(R)-PK11195 binding at follow-up.65 The authors interpreted these results as evidence 

for a bimodal pattern of neuroimmune activation in AD, with a beneficial phase of glial 

behavior occurring prior to dementia onset followed by a detrimental phase of pro-

inflammatory glial activity that worsened throughout the dementia stage.66 In another study, 

[11C]deuterium-L-deprenyl binding decreased over time in individuals with autosomal 

dominant AD, although no change was seen in individuals with sporadic MCI.67 That MCI 

participants with higher [11C]PBR28 binding had less cortical atrophy on MRI68 supports 

the notion that TSPO-expressing microglia may have a beneficial effect early in AD. 

However, the results from that study could be interpreted another way, given that larger 

cortical volume is a marker of “brain reserve”—the ability to retain cognitive function 

despite increasing pathology.69 In that context, MCI participants with less atrophy could be 

more resilient to the damaging effects of microglial and/or astrocyte activation, allowing a 

similar degree of cognitive impairment as those with more atrophy despite greater amounts 

of TSPO binding. Alternatively, inflammation-induced neuronal and glial swelling could 

result in increased cell volume, as posited by one [11C]deuterium-L-deprenyl study showing 

that MAO-B binding was associated with greater cortical thickness.70 The bimodal 

hypothesis of TSPO binding in AD progression has not been consistently supported in the 

literature, given that [18F]DPA-714 binding was found to increase in both MCI and AD 

participants over time,55 and several studies have observed a more or less linear increase in 

PBR28 binding across the clinical AD spectrum.15, 21, 23

4.2. Frontotemporal dementia

PET studies have consistently observed increased TSPO binding in individuals with 

clinically-diagnosed frontotemporal dementia (FTD). Using a reference region method, the 

first study found that five FTD participants showed an average increase in [11C]-(R)-

PK11195 binding in left dorsolateral prefrontal cortex, right hippocampus, right 

parahippocampus, and bilateral putamen compared to eight controls.71 An [11C]PBR28 

study that used arterial sampling found increased binding in four individuals with FTD and 

further confirmed the lack of comorbid AD pathology with amyloid PET (Figure 3).72 While 

participants lacked genetic or neuropathological determination of underlying histopathology, 

the pattern of [11C]PBR28 binding mirrored that of FDG hypometabolism. In both studies, 

the patients had varied clinical presentations and patterns of atrophy on MRI. In a larger 

study, the topographic pattern of [11C]-(R)-PK11195 binding discriminated FTD subtypes 

from each other and from controls.73 That study also found that, in autopsy tissue, the 

density of microglia, particularly in those with activated morphology, correlated with the 

extent of abnormal protein aggregation (phosphorylated tau or TAR DNA-binding protein 

43).
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4.3 Chronic Traumatic Encephalopathy

Chronic traumatic encephalopathy (CTE) is pathologically defined by deposits of 

phosphorylated tau in a perivascular distribution, particularly in the depths of cortical sulci.
74 CTE has been found in human brain following traumatic brain injury (TBI), including 

sports-related, repetitive concussion incurred through American football.74, 75 Prolonged 

microglial activation after repeated TBI has been hypothesized to contribute to CTE.76 

Indeed, increased [11C]-(R)-PK11195 or [11C]PBR28 binding has been reported in the 

brains of TBI participants,77, 78 even years after injury.79 In addition, higher [11C]DPA-713 

binding was found in young NFL players in medial temporal cortex and supramarginal gyrus 

(Figure 4).80 Relatively high levels of [11C]DPA-713 binding were also observed in the 

supermarginal gyrus in a study of older players decades after their last NFL play.81 Whole 

brain images included in each [11C]DPA-713 PET study80, 81 suggested widespread 

distribution of high TSPO beyond the examined regions of interest. However, the clinical 

implications of high TSPO signal in former NFL players remain elusive. No cognitive 

deficits were found in the cross-sectional population of active and recently former NFL 

players with high [11C]DPA-713 binding.80 Longitudinal investigation of the relationship 

between neuroimmune activation marked by high TSPO and TBI-associated behavioral 

decline is needed.

4.4. Huntington’s Disease

The neurodegenerative disorder Huntington’s disease (HD) is associated with increased 

gliosis and expression of glial fibrillary acidic protein (GFAP) and complement proteins, 

particularly in the striatum.82 Increased pro-inflammatory cytokines are found in HD gene 

carriers.83

Early PET studies showed that asymptomatic gene carriers and HD participants had 

increased [11C]-(R)-PK11195 binding.84, 85 In a more recent study, pre-manifest HD carriers 

had greater [11C]-(R)-PK11195 binding in cortical, basal ganglia, and thalamic brain 

regions;86 radioligand binding in somatosensory cortex also correlated with plasma 

concentrations of interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor (TNF)-α. 

Second-generation TSPO radioligands have shown similar results. For instance, one study 

found that HD participants had greater [11C]PBR28 binding in putamen and pallidum than 

controls (Figure 3);87 however, arterial sampling was not performed, and only relative 

[11C]PBR28 binding was reported (using whole brain as a reference region). While a similar 

approach has been used in [11C]PBR28 studies of chronic pain88 and amyotrophic lateral 

sclerosis (ALS),89 this methodology has not been validated against a “gold-standard” kinetic 

modeling approach.

4.5 Amyotrophic Lateral Sclerosis

An [11C]-(R)-PK11195 study first identified increased TSPO binding in motor cortex and 

associated brain regions of individuals with ALS,90 and the finding has since been 

reproduced using second-generation TSPO radioligands. Interestingly, increased TSPO 

binding in motor cortex significantly correlated with severity of upper motor neuron 

symptoms with both [11C]-(R)-PK11195 and [11C]PBR28.89, 90 Furthermore, studies using 

larger populations of individuals with either ALS or primary lateral sclerosis (PLS) reported 
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that increased [11C]PBR28 binding in motor cortex also correlated with other MR image 

parameters such as diffusion tensor imaging and cortical thickness measured both cross-

sectionally and longitudinally.91–93 [18F]DPA714 studies also found increased TSPO 

binding in the motor cortex, although these did not evaluate correlation with clinical severity.
94 As an extension of these findings, a therapeutic trial using [11C]PBR28 PET as a 

biomarker of neuroinflammation was conducted in individuals with ALS, but the results 

identified no difference between pre- and post-treatment TSPO uptake, possibly due to low 

statistical power.95 With regard to radioligands targeting other neuroinflammatory mediators 

than TSPO, a preliminary result with [11C]JNJ717, a P2X7 radioligand, found no such 

increase in ALS participants.96

5.0 Epilepsy

Several PET studies targeting TSPO support the role of neuroinflammation in 

epileptogenesis or ictogenesis, although most of these studies were based on small sample 

sizes. Initial case reports with [11C]-(R)-PK11195 PET imaging demonstrated a focal 

increase of TSPO uptake co-localized with the seizure focus;97, 98 a subsequent study 

revealed that this uptake had even greater intensity and spatial extent in post-seizure status 

(~36 hours) compared to the seizure-free period, perhaps due to transient seizure-induced 

inflammation.99

In more extensive studies conducted with second-generation TSPO radioligands, 

[11C]PBR28 uptake was found to be higher ipsilateral to the seizure focus in 16 participants 

with unilateral temporal lobe epilepsy (TLE).100 Using full quantitation of TSPO binding, 

the same group demonstrated that [11C]PBR28 binding was higher in TLE participants than 

healthy controls for all ipsilateral as well as some contralateral temporal regions.101 When 

the same evaluation was done in participants with neocortical seizure foci, nine of 11 

participants had significant asymmetry in seizure foci, although the absolute binding levels 

in patients did not significantly differ from those in healthy controls.102

PET imaging of neuroinflammation in epilepsy has thus far investigated pathophysiology 

without correlating it with clinical severity or prognosis, suggesting that additional studies 

with full quantitative methods are needed before clinical application.

6.0 Stroke

Studies using [11C]-(R)-PK11195 in acute ischemic stroke observed widespread TSPO 

binding at the primary infarct site and in the peri-infarct lesions.103 During the chronic 

phase, increased TSPO binding also involved sites distant from the primary stroke lesion, 

perhaps as a result of Wallerian degeneration of neuronal tracts.103, 104 One case report 

found increased binding in a subacute lacunar infarction as assessed via [11C]PBR28.105 

Using [11C]vinpocetine, a radioligand that binds with moderate affinity to TSPO but has 

favorable brain penetration, another study also demonstrated increased TSPO binding in the 

peri-stroke region for several weeks after ischemic stroke.106 An [18F]DPA714 study in nine 

individuals with recent ischemic stroke found co-localized uptake within areas of ischemic 
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infarction as well as extension beyond the region corresponding to blood-brain barrier 

damage.107

In contrast to such well-reproduced findings in acute or subacute ischemic stroke, 

hemorrhagic stroke has rarely been investigated with PET imaging of neuroinflammation. 

One [11C]-(R)-PK11195 study reported low uptake in hematomas, with two of five 

participants showing widespread increases in TSPO binding in the perihematomal region 

compared to the contralateral hemisphere.108 However, it remains unknown whether these 

peri-lesional or distant increases of TSPO are associated with any favorable or unfavorable 

clinical outcomes.

7.0 Neuroinflammation PET in drug development

Although TSPO PET does not have an established clinical application, evidence supports 

potential use in drug development. First, TSPO density may predict treatment response in 

some instances. For example, greater TSPO binding in major depressive episodes was 

associated with greater reduction of symptoms after treatment with celecoxib,109 suggesting 

that TSPO PET may play a potential role in participant stratification, similar to how amyloid 

PET is currently employed to select participants for AD trials. Second, TSPO has served as a 

surrogate biomarker in proof-of-concept studies, although some results have been difficult to 

interpret. For instance, while minocycline treatment led to reduced [11C]PBR28 binding in 

individuals with brain trauma, it also increased plasma concentrations of neurofilament light 

chains, raising the question of whether reduced TSPO signal is necessarily beneficial.78 In 

another example, after treatment with a myeloperoxidase inhibitor, individuals with PD 

showed mean reductions in [11C]PBR28 binding in nigro-striatal regions, with a 13·2–15·7% 

decrease in distribution volume (VT) from baseline.110 However, similar decreases were 

found in all other measured brain regions, indicating a global effect on TSPO binding and 

raising the question of whether the treatment resulted in a change in microglial (or astrocyte) 

function or just depletion of TSPO protein. Notably, despite three well-designed studies 

using [11C]PBR28 or [18F]FEPPA, no second-generation TSPO study has shown increased 

binding in individuals with PD.111–113 Conversely, the same myeloperoxidase inhibitor 

failed to reduce [11C]PBR28 binding in individuals with multiple system atrophy (MSA)114. 

Phase 3 studies are needed to determine whether these changes in TSPO binding equate to 

clinical efficacy. Emerging non-TSPO biomarkers are also expected to be useful in 

evaluating novel treatments, particularly those targeting the same protein as the radioligand. 

For example, CSF1R radioligands could be used for target engagement studies of CSF1R 

antagonists.

8.0 Conclusions and future directions

While neuroinflammatory PET has largely been limited to targeting TSPO, this imaging 

modality has far-reaching potential. Although emerging non-TSPO radioligands may soon 

allow more precise investigation of the mechanisms underlying specific immune response, 

for the time being TSPO PET remains the most extensively studied method for spatial 

measurement of neuroinflammation.
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In neurology, the most consistent TSPO imaging results have arguably been in: 1) AD, 

where inflammation may more closely reflect the distribution of tau than of amyloid and 

where neuroinflammation may have a meaningful—though not necessarily linear—

relationship to disease progression; and 2) CTE, where five of five studies of recent or 

remote TBI found elevated TSPO levels. Yet, discrepancies in the TSPO literature remain, 

the most striking being in MS, in which a prominent in vitro TSPO signal is nevertheless 

much less able to be imaged. This and other in vitro/in vivo discrepancies for TSPO could 

reflect disruption of the in vivo multimeric complex during tissue preparation, as occurs for 

other multimeric complexes. This phenomenon could be present in other disorders and could 

explain the subtle genotype effect on in vivo binding to peripheral organs seen with [11C]-

(R)-PK11195 and [11C]ER176 despite these two radioligands having similar in vitro affinity 

between high and low affinity binders.115, 116

As noted above, TSPO PET has potential for drug development in select instances. For 

instance, TSPO binding changes over time in AD, is modifiable by minocycline and 

myeloperoxidase inhibition, predicts response to COX inhibition during major depressive 

episodes, and is increased in presymptomatic HD mutation carriers. Thus, this imaging 

modality may have important clinical applications in determining which individuals are most 

likely to respond to novel drugs and which stage of disease is optimal for treatment.

Overall, our view is that this is a promising time for neuroinflammation PET, in that 

improved TSPO radioligands may be used as broad markers of immune response. 

Depending on their success, emerging biomarkers may allow more precise targeting of 

specific proteins involved in immune response; these could be used alone or in combination 

to delineate the mechanisms underlying neurological disease. Finally, neuroinflammation 

PET may be most useful in the context of clinical trials, in terms of both predicting and 

monitoring response to treatment in early drug discovery.
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Figure 1. Neuroinflammation
Relationship between neurons and glial cells (microglia and astrocytes). Microglia become 

activated in response to several immunological signals, including from cytokines and 

aggregated proteins. This activation may be either protective or toxic for the surrounding 

glial cells and neurons. Proteins expressed by glial cells are established and proposed targets 

for positron emission tomography (PET) imaging to quantify neuroinflammation (red text).

Abbreviations: ATP: adenosine triphosphate; CX3CL1: CX3C chemokine ligand 1; TNF-

alpha: tumor necrosis factor alpha; IL-6: interleukin-6; NO: nitric oxide; TSPO: 18 kDa 

translocator protein; COX: cyclooxygenase; P2X7R: P2X purinergic receptor 7; CSF-1R: 

colony stimulating factor 1 receptor; MAO-B: monoamine oxidase B.

Modified with permission from.128
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Figure 2. TSPO and tau imaging: Alzheimer’s Disease (AD) versus Posterior Cortical Atrophy 
(PCA).
Topographical distribution of translocator protein (TSPO) resembles that of tau pathology in 

different clinical subtypes of Alzheimer’s disease (AD). Left panel: Surface-based 

projection maps showing differences in [11C]PBR28 binding (measured as standardized 

uptake value ratio (SUVR), cerebellar reference) between individuals with AD and age-

matched controls for posterior cortical atrophy (PCA, a visual variant of AD, top) and 

typical amnestic presentation of AD (bottom). Contrast threshold is P < 0.05 after family-

wise correction for multiple comparisons and TSPO genotype, age, and education as 

covariates. Color bars denote T-values. Right panel: Single-subject PET SUVR images from 

a separate study in which [18F]AV-1451 was used to label neurofibrillary tau deposits. 

Representative participants with PCA (top) or amnestic AD (bottom) are shown. 

[11C]PBR28 images adapted from59 and [18F]AV-1451 images adapted from.60 The 

[18F]AV-1451 images are printed and adapted by permission of Oxford University Press on 

behalf of the Guarantors of Brain. OUP and the Guarantors of Brain are not responsible or in 

any way liable for the accuracy of the adaptation.
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Figure 3. TSPO imaging in Huntington’s Disease (HD) and Frontotemporal Dementia (FTD)
(A) Averaged [11C]PBR28 PET images from three controls and seven individuals with 

Huntington’s disease (HD). PET images represent standardized uptake value ratio (SUVR; 

normalized to whole brain activity) using images acquired 60–90 minutes post-injection. 

Increased binding in bilateral basal ganglia was found in the HD participants. (B) 

Representative [11C]PBR28 PET images from an individual with frontotemporal dementia 

(FTD) and an age-matched control, both high affinity binders. Images represent total 

distribution volume, corrected for free fraction of radioligand in plasma (VT/fP). Increased 

binding was most notable in frontal and temporal lobes. Adapted from.72, 87 Reprinted with 

permission from,87 copyright 2018 American Chemical Society.
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Figure 4. TSPO imaging of Chronic Traumatic Encephalopathy (CTE)
Compared to demographically- and genotype-matched controls, binding of [11C]DPA-713 in 

gray matter was 53% higher in the brains of former National Football League (NFL) players 

with the mixed affinity binding (MAB) genotype and 34% higher in NFL players with the 

high affinity binding (HAB) genotype. Comparative mean [11C]DPA-713 binding [total 

distribution volume (VT)] is displayed for individuals with the MAB genotype (upper panel, 

six controls, five NFL players) and those with the HAB genotype (lower panel, five controls, 

seven NFL players). Adapted from.80
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