Skip to main content
. 2021 Jan 23;11(2):150. doi: 10.3390/brainsci11020150

Table 4.

Comparisons of Methods for ALS, Control, Neurological Control and Parkinson Disease.

ACC GM ERR PREC SENS SPEC F-M MCC YI Kappa
ALS Bayesian Network 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Neural Network 0.985 0.985 0.015 1.000 0.971 1.000 0.985 0.971 0.971 0.971
Logistic Regression 0.975 0.975 0.025 1.000 0.951 1.000 0.975 0.952 0.951 0.951
Naive Bayes 0.971 0.970 0.029 0.962 0.981 0.960 0.971 0.941 0.941 0.941
J48 0.980 0.980 0.020 1.000 0.961 1.000 0.980 0.962 0.961 0.961
SVM 0.980 0.980 0.020 1.000 0.961 1.000 0.980 0.962 0.961 0.961
Kstar 0.975 0.976 0.025 0.990 0.961 0.990 0.975 0.951 0.951 0.951
k-NN 0.956 0.956 0.044 0.990 0.922 0.990 0.955 0.914 0.912 0.912
Control Bayesian Network 0.917 0.874 0.083 0.791 0.810 0.944 0.800 0.747 0.754 0.747
Neural Network 0.882 0.813 0.118 0.714 0.714 0.926 0.714 0.640 0.640 0.640
Logistic Regression 0.868 0.845 0.132 0.642 0.810 0.883 0.716 0.638 0.692 0.631
Naive Bayes 0.882 0.854 0.118 0.680 0.810 0.901 0.739 0.668 0.711 0.664
J48 0.887 0.902 0.113 0.661 0.929 0.877 0.772 0.718 0.805 0.700
SVM 0.892 0.897 0.108 0.679 0.905 0.889 0.776 0.719 0.794 0.706
KStar 0.907 0.888 0.093 0.735 0.857 0.920 0.791 0.735 0.777 0.732
k-NN 0.912 0.891 0.088 0.750 0.857 0.926 0.800 0.746 0.783 0.744
Neurological Control Bayesian Network 0.902 0.816 0.098 0.778 0.700 0.951 0.737 0.678 0.651 0.677
Neural Network 0.848 0.738 0.152 0.615 0.600 0.909 0.608 0.513 0.509 0.513
Logistic Regression 0.848 0.668 0.152 0.655 0.475 0.939 0.551 0.471 0.414 0.462
Naive Bayes 0.809 0.568 0.191 0.519 0.350 0.921 0.418 0.317 0.271 0.309
J48 0.819 0.532 0.181 0.571 0.300 0.945 0.393 0.320 0.245 0.299
SVM 0.843 0.650 0.157 0.643 0.450 0.939 0.529 0.449 0.389 0.439
KStar 0.853 0.670 0.147 0.679 0.475 0.945 0.559 0.485 0.420 0.474
k-NN 0.833 0.661 0.167 0.594 0.475 0.921 0.528 0.432 0.396 0.428
Parkinson Bayesian Network 0.956 0.903 0.044 0.727 0.842 0.968 0.780 0.759 0.810 0.756
Neural Network 0.941 0.869 0.059 0.652 0.789 0.957 0.714 0.686 0.746 0.682
Logistic Regression 0.946 0.898 0.054 0.667 0.842 0.957 0.744 0.721 0.799 0.715
Naive Bayes 0.936 0.840 0.064 0.636 0.737 0.957 0.683 0.650 0.694 0.648
J48 0.922 0.832 0.078 0.560 0.737 0.941 0.636 0.600 0.677 0.593
SVM 0.941 0.842 0.059 0.667 0.737 0.962 0.700 0.669 0.699 0.667
KStar 0.941 0.920 0.059 0.630 0.895 0.946 0.739 0.721 0.841 0.707
k-NN 0.917 0.857 0.083 0.536 0.789 0.930 0.638 0.607 0.719 0.593