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Abstract: This paper proposes a method for deriving interpretable common factors based on canonical
correlation analysis applied to the vectors of common factors and manifest variables in the factor
analysis model. First, an entropy-based method for measuring factor contributions is reviewed.
Second, the entropy-based contribution measure of the common-factor vector is decomposed into
those of canonical common factors, and it is also shown that the importance order of factors is that of
their canonical correlation coefficients. Third, the method is applied to derive interpretable common
factors. Numerical examples are provided to demonstrate the usefulness of the present approach.
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1. Introduction

In factor analysis, extracting interpretable factors is important for practical data analy-
sis. In order to carry it out, methods for factor rotation have been studied, e.g., varimax [1]
and orthomax [2] for orthogonal rotations and oblimin [3] and orthoblique [4] for oblique
rotations. The basic idea for factor rotation in factor analysis is owed to the criteria of
simple structures of factor analysis models by Thurstone [5], and the methods of factor
rotation are constructed with respect to maximizations of variations of the squared factor
loadings in order to derive simple structures of factor analysis models. Let Xi be manifest
variables, let ξ j be latent variables (common factors), let εi be unique factors related to Xi,
and finally, let λij be factor loadings that are weights of common factors ξ j to explain Xi.
Then, the factor analysis model is given as follows:

Xi = ∑m
j=1 λijξ j + εi, i = 1, 2, . . . , p, (1)

where 

E(Xi) = E(εi) = 0, i = 1, 2, . . . , p;

E
(
ξ j
)
= 0, j = 1, 2, . . . , m;

Var
(
ξ j
)
= 1, j = 1, 2, . . . , m; Cov(ξk, ξl) = φkl ;

Var(εi) = ω2
i > 0, i = 1, 2, . . . , p;

Cov(εk, εl) = 0, k 6= l.
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To derive simple structures of factor analysis models, for example, in the varimax method,
the following variation function of squared factor loadings is maximized with respect to
factor loadings:

V =
p

∑
i=1

m

∑
j=1

(
λ2

ij − λ2
)2

, (2)

where λ2 = 1
pm ∑

p
i=1 ∑m

j=1 λ2
ij. In this sense, the basic factor rotation methods can be

viewed as those for exploratively analyzing multidimensional common-factor spaces. The
interpretation of factors is made according to manifest variables with large weights in
common factors. As far as we know, novel methods for factor rotation have not been
investigated except for rotation methods similar to the above basic ones. In real data
analyses, manifest variables are usually classified into some groups of variables in advance
that may have common factors and concepts for themselves. For example, suppose we
have a test battery including the following five subjects: Japanese, English, Social Science,
Mathematics, and Natural Science. It is then reasonable to classify the five subjects into two
groups, {Japanese, English, Social Science} and {Mathematics, Natural Science}. In such
cases, it is meaningful to determine common factors related to the two manifest variable
groups. For this objective, it is useful to develop a novel method to derive the common
factors based on a factor contribution measure. In conventional methods of factor rotation,
for example, as mentioned above, variation function (2) for the varimax method is not
related to factor contribution.

An entropy-based method for measuring factor contribution was proposed by [6],
and the method can measure factor contributions to manifest variables vectors and can
decompose the factor contributions into those of manifest subvectors and individual
manifest variables. By using the method, we can derive important common factors related
to the manifest subvectors and the manifest variables. The aim of the present paper is to
propose a new method for deriving simple structures based on entropy, that is, extracting
common factors easy to interpret. In Section 2, an entropy-based method for measuring
factor contribution [6] is reviewed to apply its properties for deriving simple structures in
factor analysis models. Section 3 discusses canonical correlation analysis between common
factors and manifest variables, and the contributions of common factors to the manifest
variables are decomposed into components related to the extracted pairs of canonical
variables. A numerical example is given to demonstrate the approach. In Section 4,
canonical correlation analysis is applied to obtain common factors easy to interpret, and
the contributions of the extracted factors are measured. Numerical examples are given to
illustrate the present approach, and finally, Section 5 provides discussions and conclusions
to summarize the present approach.

2. Entropy-Based Method for Measuring Factor Contributions

First, in order to derive factor contributions, factor analysis model (1) with error
terms εi, i = 1, 2, . . . , p, which are normally distributed, can be discussed in the frame-
work of generalized linear models (GLMs) [7]. A general path diagram among manifest
variables Xi, i = 1, 2, . . . , p and common factors ξ j, j = 1, 2, . . . , m in the factor analysis
model is illustrated in Figure 1. The conditional density functions of manifest variables of
Xi, i = 1, 2, . . . , p, given the factors ξ j, j = 1, 2, . . . , m, are expressed as follows:

fi( xi|ξ) = 1√
2πω2

i
exp

(
−
(

xi−∑m
j=1 λijξ j

)2

2ω2
i

)

= exp

(
xi ∑m

j=1 λijξ j− 1
2

(
∑m

j=1 λijξ j

)2

ω2
i

− x2
i

2ω2
i
− log

√
2πω2

i

)
, i = 1, 2, . . . , p.
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Let θi = ∑m
j=1 λijξ j and d

(
xi, ω2

i
)
= − x2

i
2ω2

i
− log

√
2πω2

i . Then, the above density function

is described in a GLM framework as

fi( xi|ξ) = exp

(
xiθi − 1

2 θ2
i

ω2
i

+ d
(

xi, ω2
i

))
, i = 1, 2, . . . , p. (3)

According to the local independence of the manifest variables in factor analysis model (1),
the conditional density function of X =

(
X1, X2, . . . , Xp

)T given ξ = (ξ1, ξ2, . . . , ξm)
T is

expressed as

f (x|ξ) =
p

∏
i=1

exp

(
xiθi − 1

2 θ2
i

ω2
i

+ d
(

xi, ω2
i

))
= exp

(
∑p

i=1
xiθi − 1

2 θ2
i

ω2
i

+ ∑p
i=1 d

(
xi, ω2

i

))
. (4)
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Figure 1. Path diagram of a general factor analysis model.

Let g(ξ) be the joint density function of common-factor vector = (ξ1, ξ2, . . . , ξm)
T ; let

fi(xi) be the marginal density functions of Xi, i = 1, 2, . . . , p; and let us set

KL(X, ξ) =
x

f (x|ξ)g(ξ) log
f (x|ξ)
f (x)

dxdξ +
x

f (x)g(ξ) log
f (x)

f (x|ξ)dxdξ, (5)

cKL(Xi, ξ) =
x

fi( xi|ξ)g(ξ) log
fi( xi|ξ)
fi(xi)

dxidξ +
x

fi(xi)g(ξ) log
fi(xi)

fi( xi|ξ)
dxidξ,

i = 1, 2, . . . , p.
(6)

where “KL” stands for “Kullback–Leibler information” [8]. From (3) and (4), we have

KL(Xi, ξ) =
Cov(Xi, θi)

ω2
i

=
m

∑
j=1

λijCov
(
Xi, ξ j

)
ω2

i
, i = 1, 2, . . . , p; (7)

KL(X, ξ) =
p

∑
i=1

Cov(Xi, θi)

ω2
i

=
p

∑
i=1

m

∑
j=1

λijCov
(
Xi, ξ j

)
ω2

i
. (8)

The above quantities (7) and (8) are interpreted as the signal-to-noise ratios for dependent
variables Xi and predictors θi; and the signal-to-noise ratio for dependent-variable vectors
X and common-factor vector ξ, respectively.

From (7) and (8), the following theorem can be derived [6]:
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Theorem 1. In factor analysis model (1), let X =
(
X1, X2, . . . , Xp

)T and ξ = (ξ1, ξ2, . . . , ξm)
T. Then,

KL(X, ξ) =
p

∑
i=1

KL(Xi, ξ).

Consistently, the following theorem, which is actually an extended version of Corollary 1
in [6], can be also obtained:

Theorem 2. Let manifest variable subvectors X(a), a = 1, 2, . . . , A be any decomposition of
manifest variable vector X =

(
X1, X2, . . . , Xp

)T . Then,

KL(X, ξ) =
A

∑
a=1

KL
(

X(a), ξ
)

. (9)

Following Eshima et al. [6], the contribution of factor vector ξ = (ξ1, ξ2, . . . , ξm)
T to

manifest variable vector X =
(
X1, X2, . . . , Xp

)T is thus defined as

C(ξ → X) = KL(X, ξ),

so that, in Theorem 2, the contributions of factor vector ξ = (ξ1, ξ2, . . . , ξm)
T to manifest

variable vectors X(a), a = 1, 2, . . . , A are defined by

C
(

ξ → X(a)
)
= KL

(
X(a), ξ

)
, a = 1, 2, . . . , A.

Let ξ\j be subvectors of all variables ξi except ξ j from ξ = (ξ1, ξ2, . . . , ξm)
T , i.e.,

ξ\j =
(
ξ1, ξ2, . . . , ξ j−1, ξ j+1, . . . , ξm

)T , j = 1, 2, . . . , m;

and let KL
(

X, ξ\j
∣∣∣ξ j

)
and KL

(
X(a), ξ\j

∣∣∣ξ j

)
be the conditional Kullback–Leibler information

as defined in (5) and (6). The contributions of common factors ξ j are defined by

C
(
ξ j → X

)
= KL(X, ξ)− KL

(
X, ξ\j

∣∣∣ξ j

)
,

C
(

ξ j → X(a)
)
= KL

(
X(a), ξ

)
−KL

(
X(a), ξ\j

∣∣∣ξ j

)
, j = 1, 2, . . . , m.

Remark 1. Information KL
(

X, ξ\j
∣∣∣ξ j

)
and KL

(
X(a), ξ\j

∣∣∣ξ j

)
can be expressed by using the

conditional covariances Cov
(
Xi, θi

∣∣ξ j
)
. For example,

KL
(

X, ξ\j
∣∣∣ξ j

)
=

p

∑
i=1

Cov
(
Xi, θi

∣∣ξ j
)

ω2
i

.

Finally, the following decomposition of KL(X, ξ) holds for orthogonal factors ([6], Theorem 3):

Theorem 3. If the common factors are mutually independent, it follows that

C(ξ → X) =
m

∑
j=1

A

∑
a=1

C
(

ξ j → X(a)
)
= ∑m

j=1 ∑p
i=1 C

(
ξ j → Xi

)
.

The entropy coefficient of determination (ECD) [9] between ξ and X is defined by

ECD(ξ, X) =
KL(ξ, X)

KL(ξ, X) + 1
,

so that the total relative contribution of factor vector ξ to manifest variable vector X in
entropy can be defined as
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R̃C(ξ → X) = ECD(ξ, X) =
C(ξ → X)

C(ξ → X) + 1
,

while, for a single factor ξ j, two relative contribution ratios can be defined:

RC
(
ξ j → X

)
=

C
(
ξ j → X

)
C(ξ → X)

=
KL(X, ξ)− KL

(
X, ξ\j

∣∣∣ξ j

)
KL(ξ, X)

,

R̃C
(
ξ j → X

)
=

C
(
ξ j → X

)
KL(ξ, X) + 1

=
KL(X, ξ)− KL

(
X, ξ\j

∣∣∣ξ j

)
KL(ξ, X) + 1

(see [6] for details).
Second, factor analysis model (1) in a general case is discussed. Let Σ be the variance–

covariance matrix of manifest variable vector X =
(
X1, X2, . . . , Xp

)T ; let Ω be the p× p
variance–covariance matrix of unique factor vector ε =

(
ε1, ε2, . . . , εp

)T ; let Λ be the p×m
factor loading matrix of λij; and let Φ be the correlation matrix of common-factor vector
ξ = (ξ1, ξ2, . . . , ξm)

T . Then, model (1) can be expressed as

X = Λξ + ε

and we have
Σ = ΛΦΛT + Ω.

Now, the above discussion is extended in a general factor analysis model (1) with the
following variance–covariance matrix of X and ε:(

ΛΦΛT + Ω ΛΦ

ΦΛT Φ

)
. (10)

Let θ = Λξ be the predictor vector of manifest variable vector XT =
(
X1, X2, . . . , Xp

)
. Then,

the contribution of common-factor vector ξ to manifest variable vector X is defined by the
following generalized signal-to-noise ratio:

E
(

XTΩ−1θ
)
=

E
(

XT
~
ΩΛξ

)
|Ω| =

tr
~
ΩΛΦΛT

|Ω| , (11)

where
~
Ω is the cofactor matrix of Ω. The signal is tr

~
ΩΛΦΛT and the noise |Ω|, and both

are positive. Hence, the above quantity is defined as the explained entropy with the factor
analysis model, and the same notation KL(X, ξ) as above is used, having to do with the
Kullback–Leibler information for the factor analysis model with normal distribution errors
(4). Similarly, in the general model, as in (9), signal-to-noise ratio (11) is decomposed into

tr
~
ΩΛΦΛT

|Ω| =
p

∑
i=1

Cov(Xi, θi)

ω2
i

=
p

∑
i=1

m

∑
j=1

λijCov
(
Xi, ξ j

)
ω2

i
,

so the above theorems hold true as well. Thus, the results mentioned above are applicable
to factor analysis models with error terms with non-normal distributions.

3. Canonical Factor Analysis

In order to derive interpretable factors from the common-factor space, we propose tak-
ing advantage of the results of canonical correlation analysis applied to manifest variables
and common factors. This approach can be referred to as “canonical factor analysis” [10].
In the factor analysis model (1), the variance–covariance matrix of X =

(
X1, X2, . . . , Xp

)T

and ξ = (ξ1, ξ2, . . . , ξm)
T is given by (10). Then, we have the following theorem:
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Theorem 4. For canonical correlation coefficients ρk, k = 1, 2, . . . , m between X and ξ in factor
analysis model (1) with (10), it follows that

KL(X, ξ) =
m

∑
j=1

ρ2
j

1− ρ2
j

.

Proof. Let B(1), B(2), and F be m × p, (p−m) × p, and m × m matrices, respectively;
let V(1) = (V1, V2, . . . , Vm)

T = B(1)X, V(2) = B(2)X, and η = (η1, η2, . . . , ηm)
T = Fξ. It

is assumed that
(
Vj, ηj

)
are the pairs of canonical variables with correlation coefficients

ρj, j = 1, 2, . . . , m; that matrices

(
B(1)

B(2)

)
and F are nonsingular; and that V(1) and V(2)

are statistically independent. Since all pairs of canonical variables
(
Vj, ηj

)
and V(2) are

mutually independent, we have

KL
(

V(2), η
)
= 0, KL

(
V(1), ηj

)
= KL

(
Vj, ηj

)
, j = 1, 2, . . . , m.

From Theorem 2, it follows that

KL(X, ξ) = KL(V, Fξ) = KL

((
V(1)

V(2)

)
, η

)
= KL

(
V(1), η

)
+ KL

(
V(2), η

)
= KL

(
V(1), η

)
=

m
∑

j=1
KL
(

V(1), ηj

)
=

m
∑

j=1
KL
(
Vj, ηj

)
=

m
∑

j=1

ρ2
j

1−ρ2
j
.

This completes the theorem. �

In the proof of the above theorem, we have

KL
(
X, ηj

)
= KL

(
Vj, ηj

)
=

ρ2
j

1− ρ2
j

, j = 1, 2, . . . , m. (12)

It implies that

C
(
ηj → X

)
= C

(
ηj → Vj

)
=

ρ2
j

1− ρ2
j

;

R̃C
(
ηj → X

)
=

KL
(
X, ηj

)
KL(X, ξ) + 1

=
KL
(
X, ηj

)
KL(η, V) + 1

=

ρ2
j

1− ρ2
j

∑m
a=1

ρ2
a

1− ρ2
a
+ 1

;

RC
(
ηj → X

)
=

KL
(
X, ηj

)
KL(ξ, X)

=
KL
(
Vj, ηj

)
KL(V, η)

=

ρ2
j

1− ρ2
j

∑m
a=1

ρ2
a

1− ρ2
a

, j = 1, 2, . . . , m.

Theorem 4 shows that the contribution of common-factor vector ξ to manifest variable
vector X is decomposed into those of canonical common factors ηj, i.e.,

KL(X, ξ) =
m

∑
j=1

KL
(
X, ηj

)
=

m

∑
j=1

KL
(
Vj, ηj

)
, j = 1, 2, . . . , m.

Let us assume
1 > ρ2

1 ≥ ρ2
2 ≥ . . . ≥ ρ2

m ≥ 0. (13)
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According to the entropy-based criterion in Theorem 4, the order of importance of canonical
common factors is that of canonical correlation coefficients. The interpretation of factors
ηj can be made with the corresponding manifest canonical variables Vj and the factor
loading matrix of canonical common factors η = Fξ. For the canonical common factors, the
factor loading matrix can be obtained as Λ∗ = ΛF−1. We refer to the canonical correlation
analysis in Theorem 4 as canonical factor analysis [10].

Theorem 5. In factor analysis model (1), for any p× p and m×m nonsingular matrices P and Q,
the canonical factor analysis between manifest variable vector PX and common-factor vector Qξ is
invariant.

Proof. Since the variance–covariance matrix of PX and Qξ is given by(
P 0
0 Q

)(
Σ ΛT

Λ Im

)(
P 0
0 Q

)T

,

the theorem follows. �

Notice that we also have

KL(PX, Qξ) = KL(X, ξ).

From the above theorem, the results of the canonical factor analysis do not depend on
the initial common factors ξ j in factor analysis model (1). For factor analysis model (1), it
follows that

KL(X, ξ) =
m

∑
j=1

KL
(
Vj, ηj

)
=

p

∑
i=1

KL(Xi, ξ),

implying that

tr
~
ΩΛΦΛT

|Ω| =
m

∑
j=1

ρ2
j

1− ρ2
j

=
p

∑
i=1

R2
i

1− R2
i

,

where Ri are the multiple correlation coefficients between manifest variables Xi and factor
vector ξ = (ξ1, ξ2, . . . , ξm), i = 1, 2, . . . , p.

Numerical Example 1

Table 1 shows the results of orthogonal factor analysis (varimax method by S-PLUS
ver. 8.2) as reported in [6]; the same example is used here to demonstrate the canonical
factor analysis mentioned above. In Table 1, manifest variables X1, X2, and X3 are scores
in some subjects in the liberal arts, while variables X4 and X5 are those in the sciences.
We refer to the factors as the initial common factors. In this example, from Table 1, the
variance–covariance matrices in (10) are given as follows:

Σ =


1 0.54 0.39 0.42 0.36

0.54 1 0.49 0.38 0.22
0.39 0.49 1 0.21 0
0.42 0.38 0.21 1 0.54
0.36 0.22 0 0.54 1

,

Φ =

(
1 0
0 1

)
.

where covariance matrix ΛT is given in Table 1.
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Table 1. Factor loadings of orthogonal (varimax) factor analysis.

X1 X2 X3 X4 X5

ξ1 0.60 0.75 0.65 0.32 0.00
ξ2 0.39 0.24 0.00 0.59 0.92

uniqueness 0.50 0.38 0.58 0.55 0.16

Uniqueness is the proportion of unique factor εi related to manifest variable Xi .

From the above matrices, to obtain the pairs of canonical variables, linear transformation
matrices B(1) and F in Theorem 4 are as follows:

B(1) =

(
0.19 0.20
0.32 0.58

0.06 0.20 0.94
0.37 0.00 −0.65

)
,

and

F =

(
0.32 0.95
0.95 −0.32

)
.

By the above matrices, we have the following pairs of canonical variables (Vi, ηi) and their
squared canonical correlation coefficients ρ2

i :
V1 = 0.19X1 + 0.20X2 + 0.06X3 + 0.20X4 + 0.94X5,

η1 = 0.32ξ1 + 0.95ξ2,
ρ2

1 = 0.88,
V2 = 0.32X1 + 0.58X2 + 0.37X3 + 0.07X4 − 0.65X5,

η2 = 0.95ξ1 − 0.32ξ2,
ρ2

2 = 0.73.

According to the above canonical variables, the factor loading for canonical factors ηi, i = 1, 2
is calculated with the initial loading matrix Λ and the rotation matrix F, and we have

Λ∗T =
(
ΛF−1)T

=

(
0.32 0.95
0.95 −0.32

)−1( 0.6 0.75
0.39 0.24

0.65 0.32 0.00
0.00 0.59 0.92

)
=

(
0.56 0.47
0.45 0.64

0.21 0.66 0.87
0.62 0.12 −0.29

)
.

From the above results, the first canonical factor η1 can be viewed as a general common
ability (factor) to solve all five subjects. The second factor η2 can be regarded as a factor
related to subjects in the liberal arts, which is independent of the first canonical factor. In the
canonical correlation analysis, the contributions of canonical factors are calculated. Since
the multiple correlation coefficient between η1 and X = (X1, X2, . . . , X5)

T is ρ2
1 = 0.88 and

that between η2 and X is ρ2
2 = 0.73, we have

C(η1 → X) =
ρ2

1
1− ρ2

1
= 7.06, C(η2 → X) =

ρ2
2

1− ρ2
2
= 2.70.

Let ξ = (ξ1, ξ2). From the above results, we have

C(ξ → X) = KL(ξ, X) = C(η1 → X) + C(η2 → X) = 9.86,
C̃R(ξ → X) =

KL(ξ,X)
KL(ξ,X)+1 = 0.91(= ECD(ξ, X)).

From this, 91% of the variation of manifest random vector X in entropy is explained by
the common latent factors ξ. The contribution ratios of canonical common factors are
calculated as follows:

CR(η1 → X) =
7.06

7.06 + 2.70
= 0.72, CR(η2 → X) = 2.70.
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The contribution of the first canonical factor is about 2.6 times greater than that of the
second one.

4. Deriving Important Common Factors Based on Decomposition of Manifest
Variables into Subsets

From (9) in Theorem 2, KL(X, ξ) is decomposed into those for manifest variable
subvectors X(a), KL

(
X(a), ξ

)
, a = 1, 2, . . . , A. Thus, we have the following theorem:

Theorem 6. Let manifest variable vector X be decomposed into subvectors X(a), a = 1, 2, . . . , A.
Let ρ(a)j, j = 1, 2, . . . , m(a) be the canonical correlation coefficients between manifest variable
subvector X(a) and common-factor vector ξ, a = 1, 2, . . . , A in the factor analysis model (1), where
m(a) ≤ min

{
dimension of X(a), m

}
. Then, KL(X, ξ) is decomposed into canonical components

as follows:

KL(X, ξ) =
A

∑
a=1

m(a)

∑
j=1

ρ2
(a)j

1− ρ2
(a)j

.

Proof. For manifest variable vector X(a) and common-factor vector ξ, applying canonical
correlation analysis, we have m(a) pairs of canonical variables

(
V(α)

j , η
(α)
j

)
with squared

canonical correlation coefficients ρ2
(a)j, j = 1, 2, . . . , m(a). Then, applying Theorem 4 to

KL
(

X(a), ξ
)

it follows that

KL
(

X(a), ξ
)
=

m(a)

∑
j=1

KL
(

V(α)
j , η

(α)
j

)
=

m(a)

∑
j=1

ρ2
(a)j

1− ρ2
(a)j

, a = 1, 2, . . . , A.

From Theorem 2, the theorem follows. �

Remark 2. As shown in the above theorem, the following relations hold:

KL
(

X(a), η
(α)
j

)
= KL

(
V(α)

j , η
(α)
j

)
=

ρ2
(a)j

1− ρ2
(a)j

, j = 1, 2, . . . , m(a); a = 1, 2, . . . , A.

In this sense,

C
(

η
(a)
j → X(a)

)
=

ρ2
(a)j

1− ρ2
(a)j

, j = 1, 2, . . . , m(a); a = 1, 2, . . . , A.

To derive important common factors, the above theorem can be used. In many of
the data in factor analysis, manifest variables can be classified into subsets that have
common concepts (factors) to be measured. For example, in the data used for Table 1,
it is meaningful to classify the five variables into two subsets X(1) = (X1, X2, X3) and
X(2) = (X4, X5), where the first subset is related to the liberal arts and the second one is
related to the sciences. In

(
X(1), ξ

)
and

(
X(2), ξ

)
, it is possible to derive the latent ability

for the liberal arts and that for the sciences, respectively.
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4.1. Numerical Example 1 (Continued)

For
(

X(1), ξ
)

and
(

X(2), ξ
)

, two sets of canonical variables are obtained, respectively,
as follows: η

(1)
1 = 0.95ξ1 + 0.32ξ2, V(1)

1 = 0.52X1 + 0.76X2 + 0.39X3, ρ2
(1)1 = 0.77,

η
(1)
2 = 0.32ξ1 − 0.95ξ2, V(1)

2 = 0.71X1 − 0.07X2 − 0.71X3, ρ2
(1)2 = 0.12, η

(2)
1 = 0.06ξ1 + 1.00ξ2, V(2)

1 = 0.18X4 + 0.98X5, ρ2
(2)1 = 0.97,

η
(2)
2 = 1.00ξ1 − 0.06ξ2, V(2)

2 = 0.83X4 − 0.55X5, ρ2
(2)2 = 0.03.

According to the above canonical variables, we have the following factor contributions:
C
(

η
(1)
1 → X(1)

)
= C

(
η
(1)
1 → V(1)

1

)
=

0.77
1− 0.77

= 3.27, CR
(

η
(1)
1 → X(1)

)
= 0.96,

C
(

η
(1)
2 → X(1)

)
=

0.12
1− 0.12

= 0.14. CR
(

η
(1)
2 → X(1)

)
= 0.04;

 C
(

η
(2)
1 → X(2)

)
= 6.14, CR

(
η
(2)
1 → X(2)

)
= 0.97,

C
(

η
(2)
2 → X(2)

)
= 0.17, CR

(
η
(2)
2 → X(2)

)
= 0.03.

From the above results, canonical factors η
(1)
1 and η

(2)
1 can be interpreted as general common

factors for the liberal arts and for the sciences, respectively. By using the factors, the factor
loadings are given in Table 2. In this case, Table 2 is similar to Table 1; however, the factor
analysis model is oblique and the correlation coefficient between η

(1)
1 and η

(2)
1 is 0.374.

The contributions of the factors to manifest variable vector X = (X1, X2, X3, X4, X5) =(
X(1), X(2)

)
are calculated as follows:

 C
(

η
(1)
1 → X

)
= 6.563, CR

(
η
(1)
1 → X

)
= 0.687, C̃R

(
η
(1)
1 → X

)
= 0.60,

C
(

η
(2)
1 → X

)
= 4.223. CR

(
η
(2)
1 → X

)
= 0.442, C̃R

(
η
(2)
1 → X

)
= 0.39.

In this case, factors η
(1)
1 and η

(2)
1 are correlated, so it follows that

CR
(

η
(1)
1 → X

)
+ CR

(
η
(2)
1 → X

)
= 1.129 > 1.

Table 2. Factor loadings by using canonical common factors η
(1)
1 and η

(2)
1 .

X1 X2 X3 X4 X5

η
(1)
1

0.62 0.80 0.70 0.31 −0.06

η
(2)
1

0.19 −0.02 −0.22 0.49 0.94
uniqueness 0.50 0.38 0.58 0.55 0.16

4.2. Numerical Example 2

Table 3 shows the results of the maximum likelihood factor analysis (orthogonal) for
six scores Xi, i = 1, 2, . . . , 6 ([11], pp. 61–65); such results are treated as the initial estimates
in the present analysis. In this example, variables are classified into the following three
groups: variable X1 is related to the Spearman’s g factor; variables X2, X3, and X4 account
for problem-solving ability; and variables X5 and X6 are associated with verbal ability [11];
however, it is difficult to explain the three factors by using Table 3. In this example, the
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present approach is employed for deriving the three factors. From (10) and Table 3, the
correlation matrix of the manifest variables is given as follows:

^
Σ =



1 0.417 0.576
0.417 1 0.567
0.576 0.567 1

0.312 0.576 0.514
0.306 0.265 0.263
0.427 0.355 0.354

0.312 0.306 0.427
0.576 0.265 0.355
0.514 0.263 0.354

1 0.193 0.193
0.193 1 0.799
0.193 0.799 1

.

Let X(2) = (X2, X3, X4), let X(3) = (X5, X6), and let ξ = (ξ1, ξ2). Canonical correlation
analysis is carried out for (X1, ξ),

(
X(2), ξ

)
, and

(
X(3), ξ

)
, and we have the following

canonical variables, respectively:

η
(1)
1 =

1√
0.672 + 0.372

(0.64ξ1 + 0.37ξ2) = 0.87ξ1 + 0.50ξ2, V(1)
1 = X1, ρ2

(1)1 = 0.55

 η
(2)
1 = 0.52ξ1 + 0.85ξ2, V(2)

1 = 0.24X2 + 0.96X3 + 0.14X4, ρ2
(2)1 = 0.83,

η
(2)
2 = 0.85ξ1 − 0.52ξ2, V(2)

2 = 0.81X2 − 0.59X3 − 0.02X4, ρ2
(1)2 = 0.00, η

(3)
1 = 0.99ξ1 − 0.12ξ2, V(3)

1 = 0.99X5 + 0.11X6, ρ2
(3)1 = 0.96,

η
(3)
2 = 0.12ξ1 + 0.99ξ2, V(3)

2 = 0.64X5 − 0.77X6, ρ2
(3)2 = 0.01.

The contributions of canonical factors η
(k)
i , i = 1, 2; k = 2.3 are calculated as follows:

C
(

η
(2)
1 → X(2)

)
= C

(
η
(2)
1 → V(2)

1

)
=

0.83
1− 0.83

= 4.88, CR
(

η
(2)
1 → X(2)

)
= 1.00,

C
(

η
(2)
2 → X(2)

)
=

0.00
1− 0.00

= 0.00. CR
(

η
(1)
2 → X(1)

)
= 0.00;


C
(

η
(3)
1 → X(3)

)
=

0.96
1− 0.96

= 24.00, CR
(

η
(3)
1 → X(3)

)
= 0.99,

C
(

η
(2)
2 → X(2)

)
= 0.01, CR

(
η
(2)
2 → X(2)

)
= 0.01.

The common factor η
(1)
1 (= g) can be interpreted as the Spearman’s g factor (general intelli-

gence) and canonical common factors η
(2)
1 and η

(3)
1 can be interpreted as problem-solving

ability and verbal ability, respectively. The correlation coefficients between the three factors
are given by

Corr
(

g, η
(2)
1

)
= 0.88, Corr

(
g, η

(3)
1

)
= 0.80, Corr

(
η
(2)
1 , η

(3)
1

)
= 0.42.

The contributions of the above three factors to manifest variable vector X = (X1, X2, X3, X4,
X5, X6) are computed as follows:

C(g→ X) = 19.93, CR(g→ X) = 0.68 C̃R(g→ X) = 0.66

C
(

η
(2)
1 → X

)
= 9.77, CR

(
η
(2)
1 → X

)
= 0.33, C̃R

(
η
(2)
1 → X

)
= 0.32,

C
(

η
(3)
1 → X

)
= 25.02, CR

(
η
(3)
1 → X

)
= 0.85, C̃R

(
η
(3)
1 → X

)
= 0.82.

The common-factor space is two-dimensional, and the factor loadings with common factors
η
(2)
1 and η

(3)
1 are calculated as in Table 4. The table shows a clear interpretation of the

common factors. Thus, the present method is effective for deriving interpretable factors in
situations such as that of this example. The expressions of the factor analysis model can
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also be given by factor vectors
(

g, η
(2)
1

)
and

(
g, η

(3)
1

)
, respectively. The present method is

applicable for any subsets of manifest variables.

Table 3. The initial maximum likelihood estimates of factor loadings (varimax).

X1 X2 X3 X4 X5 X6

ξ1 0.64 0.34 0.46 0.25 0.97 0.82
ξ2 0.37 0.54 0.76 0.41 −0.12 −0.03

uniqueness 0.45 0.59 0.21 0.77 0.04 0.33

Table 4. The factor loadings with common factors η
(2)
1 and η

(3)
1 .

X1 X2 X3 X4 X5 X6

η
(2)
1

0.49 0.63 0.89 0.48 −0.01 0.07

η
(3)
1

0.39 0.01 0.00 0.00 0.98 0.79
uniqueness 0.45 0.59 0.21 0.77 0.04 0.33

5. Discussion

In order to find interpretable common factors in factor analysis models, methods
of factor rotation are often used. The methods are based on maximizations of variation
functions of squares of factor loadings, and orthogonal or oblique factors are applied. The
factors derived by the conventional methods may be interpretable; however, it may be more
useful to propose a method for detecting interpretable common factors based on factor
contribution measurement, i.e., importance of common factors. An entropy-based method
for measuring factor contribution [6] can measure the contribution of the common-factor
vector to the manifest variable vector, and one can decompose such a contribution into those
of single manifest variables (Theorem 1) and into that of some manifest variable subvectors
as well (Theorem 2). A characterization in the case of orthogonal factors can be also given
(Theorem 3). The paper shows that the most important common factor with respect to
entropy can be identified by using canonical correlation analysis between the factor vector
and the manifest variable vector (Theorem 4). Theorem 4 shows that the contribution of
the common-factor vector to the manifest variable vector can be decomposed into those
of canonical factors and that the order of canonical correlation coefficients is that of factor
contributions. In most multivariate data, manifest variables can be naturally classified into
subsets according to common concepts as in Examples 1 and 2. By using Theorems 2 and 5,
canonical correlation analysis can also be applied to derive canonical common factors from
subsets of manifest variables and the initial common-factor vector (Theorem 6). According
to the analysis, interpretable common factors can be obtained easily, as demonstrated in
Examples 1 and 2. In Example 1, Tables 1 and 2 have similar factor patterns; however, the
derived factors in Table 1 are orthogonal and those in Table 2 are oblique. In Example 2,
it may be difficult to interpret the factors in Table 3 produced by the varimax method.
On the other hand, Table 4, obtained by using the present method, can be interpreted
clearly. Finally, according to Theorem 5, the present method produces results that are
invariant with respect to linear transformations of common factors, so that the method is
independent of the initial common factors. The present method is the first one to derive
interpretable factors based on a factor contribution measure, and the interpretable factors
can be obtained easily through canonical correlation analysis between manifest variable
subvectors and the factor vectors.
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