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Supplementation with Proline Improves Haemato-Biochemical
and Reproductive Indicators in Male Rabbits Affected by
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Simple Summary: The exposure of rabbits, such as other mammals, to environmental heat stress
drastically affects homeostasis and reproductive function. The current trial indicates that a dietary
supplementation with 50–100 mg/kg DM of proline improves redox status, blood metabolites,
and reproductive traits of rabbit bucks.

Abstract: Twenty-four adult rabbit bucks (n = 6 per treatment) were fed a basal diet supplemented
with 0 (control), 50, 100, and 150 mg proline/kg dry matter (DM) diet for 12 weeks to determine
possible usefulness for alleviating the negative impact of environmental heat stress on redox status,
haemato-biochaemical attributes and semen quality. There were significant dose–response effects,
with increments in levels of dietary proline (LDP) quadratically improving red blood cell counts
(p = 0.017), rectal temperature (p = 0.009), and respiratory rate (p < 0.001). Increasing LDP cubically
affected superoxide dismutase activity in blood plasma (p = 0.012) and total antioxidant capacity in
both blood and seminal plasma (p < 0.001 and p = 0.006, respectively). The optimal response was
observed at 30 and 80 mg proline/kg DM for blood and seminal plasma, respectively. With regards
to homeostasis indexes, increments in LDP cubically modified blood plasma concentrations of total
protein (p = 0.002) and albumin (p < 0.001), with an optimal response found at 70 mg proline/kg
DM. A linear relationship (p = 0.005) was also observed between LDP and blood plasma glucose
concentrations, with the optimal response being found at 100 mg proline/kg DM. Increasing LDP
also showed positive effects on reproductive traits, with quadratic increases in blood plasma testos-
terone and cortisol concentrations (p < 0.001; optimal responses at 50 and 60 mg proline/kg DM,
respectively), a positive linear relationship with in libido, ejaculate volume, sperm concentration and
total sperm count (p < 0.001 for all; optimal responses observed at 100 mg proline/kg DM) and a
quadratic increase in total functional sperm fraction (p < 0.001; optimal response at 70 mg proline
mg/kg DM). Hence, the optimal positive effects of dietary proline supplementation on redox status,
blood metabolites, and reproductive traits of rabbit bucks may be achieved at 50–100 mg/kg DM.
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1. Introduction

The exposure of mammals such as rabbits to environmental heat stress drastically
affects homeostasis. Heat stress alters animal behavior, causes metabolic/hormonal im-
balances, and promotes free radical production, leading to inadequate productive and
reproductive performances [1,2]. In rabbits, heat stress can stimulate drastic changes in
behavior and biological functions, including depression in feed intake, disturbances in
several metabolic processes (water, protein, energy, and mineral balances), hormonal secre-
tions (e.g., metabolic and sexual hormones), and blood metabolites. In rabbits, exposure to
temperature humidity index (THI) 30 or more completely disrupts all thermoregulatory
mechanisms and evokes certain elevation in the hypothalamic physiologic set point [2].
Heat stress can also impair sexual behavior (libido) and semen quality traits in terms
of motility, viability, and morphology parameters and metabolic activity [3]. As a re-
sult, multiple thermoregulatory defense mechanisms are stimulated at physiological and
cellular levels to achieve thermostasis and counter the negative impacts of heat stress.
Studies to identify cellular defense mechanisms against environmental stresses implicate
the amino acid proline and its metabolites as components of cellular defense responses
under stress [4,5].

Proline is an amino acid with a unique chemical structure and multiple biological
functions; it acts as a proteinogenic amino acid, an osmolyte, and an antioxidant [4,6].
In addition, proline regulates several pathways that are active under various stress condi-
tions [7]. Among these pathways, proline dehydrogenase/proline oxidase (PRODH/POX)
signaling is upregulated under oxidative stress and other stress conditions [5]. Proline also
regulates the mammalian target of rapamycin activation pathway [8], which integrates
signals regarding nutrients (glucose and amino acids), cellular energy status, and growth
factors, thereby controlling cell proliferation and function [9,10]. Kang and coworkers [11]
found that dietary supplementation with 1% proline increased the expression of heat
shock protein 70 (HSP70) in weaned piglets that were challenged with lipopolysaccharide.
In adults, Ma et al. [12] observed a relationship between decreased blood plasma proline
concentrations and increased prevalence of semen abnormalities and male infertility. Ac-
cordingly, proline can be considered a functional amino acid for mammalian species [13].
In most mammals, proline is classified as a nonessential amino acid, although under con-
ditions such as heat stress and cold stress, several amino acids that are synthesized by
animals can be considered as conditionally essential because their rates of catabolism are
not compensated by rates of anabolism [14,15].

Based on evidence of the roles of proline in the maintenance of cell competence under
environmental stress conditions, we investigated effects of dietary proline supplementation
on haemato-biochemical attributes and semen quality indicators in rabbit bucks exposed
to natural heat stress.

2. Experimental Section
2.1. Ethics Statement

The present study was conducted in the Rabbit Research Unit, Department of Animal
Production, Faculty of Agriculture, Zagazig University, Egypt. The procedures imposed on
the animals were carried out meeting the International Guiding Principles for Biomedical
Research Involving Animals [16] and according to the Directive 2010/63/EU of the Euro-
pean Parliament and of the Council of 22 September 2010 on the Protection of Animals Used
for Scientific Purposes. In agreement with the Directive 2010/63/EU, the experimental
procedures were previously assessed and approved by the INIA Committee of Ethics in
Animal Research (report CEEA2014/087).

2.2. Animal Management and Experimental Groups

Twenty-four New Zealand White 28-week-old adult rabbit bucks with an average
body weight (BW) of 3.28 ± 0.18 kg were used for experiments. Bucks were kept indi-
vidually in galvanized wire cage batteries of standard dimensions (40 × 50 × 35 cm) in
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a naturally ventilated rabbitry. Bucks were fed a basal pellet diet that covered all daily
nutritional requirements (Table 1; NRC [17]) and were offered free access to clean tap water.
Bucks were randomly categorized into four homogeneous experimental groups (n = 6)
according to degrees of supplementation with dietary proline (L-Proline, chemical for-
mula: C5H9NO2, CAS number: 147-85-3, molecular weight:115.13 g/mol, Sigma-Aldrich,
Chemie GmbH, Eschenstrasse, 5 D-82024 TAUFKIRCHEN, Darmstadt, Germany). Bucks in
the control group (P0) were fed the basal pellet diet with no supplements whereas, based on
previous studies [12–14], bucks in the other three groups were fed basal pellet diets sup-
plemented with proline at 50 (P50), 100 (P100), and 150 (P150) mg/kg dry matter (DM).
Feeding treatments were given for 12 consecutive weeks (from July to September), and the
first 4 weeks were considered as an adaptive period for the treatment (Figure 1).

Table 1. Proximate analysis of basal diet components expressed as percentages of dry matter (DM).

Items Basal Diet

Ingredients(g/kg DM)

Berseem clover hay 30
Soybean meal 20

Maize 20
Wheat bran 16
Barley grain 10

Molasses 2
Limestone 1

NaCl 0.5
Premix † 0.5

Analyzed composition (%, on DM basis) ‡

Crude protein 16.54
Ether extract 2.25
Crude fiber 12.33
Dry matter 88.06

Organic matter 90.57
Ash 9.43

Nitrogen-free extract 59.45

Calculated composition%

ME, MJ/kg § 7.95
Calcium 0.88

Available phosphorus 0.20
† Each 1 kg of premix (minerals and vitamins mixture) contains vit. A, 20,000 IU; vit. D3, 15,000 IU; vit. E, 8.33
g; vit. K, 0.33 g; vit. B1, 0.33; vit. B2, 1.0 g; vit. B6, 0.33 g; vit. B5, 8.33 g; vit. B12, 1.7 mg; pantothenic acid, 3.33
g; biotin, 33 mg; folic acid, 0.83 g; and choline chloride, 200 g. ‡ Chemical analysis according to AOAC [18]. §

Calculated according to NRC [17].

Figure 1. Diagram for the experimental design. RT= rectal temperature; RR= respiration rate; * Haematological variables
were carried out at week 12 only.
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2.3. Meteorological Variables

Ambient temperature and relative humidity were recorded daily during the entire
experimental period using a hygrothermograph (ST-50A, SEKONIC, Tokyo, Japan) located
in the animal facility. Records of ambient temperature and relative humidity of each day
were used to estimate daily means for each variable. The THI was calculated using the
following equation:

THI= db − [(0.31 − 0.31(RH)] × [(dbºC − 14.4)],

where db is the dry bulb temperature in Celsius and RH is the percentage relative humidity.
The calculated THI values were subsequently classified as follows: <27.8 = absence of heat
stress; 27.8 to 28.9 = moderate heat stress; 28.9 to 30.0 = severe heat stress, and >30.0 = ex-
tremely severe heat stress [19]. Records of daily photoperiods (daylight durations) were
obtained from a nearby meteorological station.

2.4. Analyses of BW, Feed Intake, Rectal Temperature, and Respiratory Rate

BW and feed intake were recorded weekly for each buck (8 observations × 6 bucks;
48 observations per treatment). Rectal temperature and respiration rate were monitored
and recorded every two weeks for each buck (weeks 2, 4, 6, 8, 10, and 12 of the experimental
period; 6 collections × 6 bucks; 36 observations per treatment).

2.5. Analyses of Haemobiochaemistry, Redox Status and Hormones

Blood samples were collected in heparinized tubes from the ear vein of each buck at
weeks 4, 8, and 12 of the experimental period (3 collections × 6 bucks; 18 observations per
treatment). A fraction of the blood samples collected at week 12 (6 observations/treatment)
was used at once for counting red and white blood cells and platelets [20]. Haemoglobin
contents were assessed colorimetrically using commercial kits (Biodiagnostic, Giza, Egypt).
Immediately, plasma samples were obtained by centrifugation at 700× g for 20 min and
were then stored at −20 ◦C until analyzed. Plasma samples were analyzed for total protein
and albumin concentrations. Globulin concentrations were calculated by subtracting albu-
min values from the total protein values. Concentrations of creatinine, urea, triglycerides,
total cholesterol, high-density lipoproteins (HDL), glucose, aspartate amino transferase
(AST), and alanine amino transferase (ALT) were also determined. Blood plasma redox sta-
tus indicators (in terms of total antioxidant capacity, TAC, and activity of malondialdehyde,
MDA, and superoxide dismutase, SOD) were determined. All blood plasma biochemical
variables and blood plasma redox status indicators were assayed using spectrophotometric
procedures (Hitachi spectrophotometer, Japan) and commercial kits obtained from Biodi-
agnostic (Giza, Egypt). Concentrations of cortisol and testosterone in blood plasma were
measured using enzyme immunoassay analysis. The lower limit of assay detection was
0.057 ng/mL for testosterone and 0.111 ng/mL for cortisol. The intra- and inter-assay CV
were 6.73 and 8.90% for testosterone (Monobind Inc., Lake Forest, CA, USA) and 6.96 and
13.63% for cortisol (R&D System, Minneapolis University, Minneapolis, MN, USA).

2.6. Evaluation of Libido, Semen Quality, and Seminal Plasma Redox Status

Semen samples were collected weekly over 8 weeks (from weeks 4 to 12), so 48
evaluations of libido and semen quality variables were performed per treatment (8 ejac-
ulates × 6 bucks). Reaction time (libido indicator) was determined by recording with
a stopwatch the time from introducing a doe into the cage of a buck to achievement
of complete ejaculation. Semen samples were collected using an artificial vagina and a
teaser doe. Ejaculate volumes were recorded using a graduated collection tube after the
removal of gel masses. Sperm concentration, progressive motility, viability, and morphol-
ogy were evaluated following the guidelines of the International Rabbit Reproduction
Group [21]. Sperm cell concentrations were determined after semen dilution (1:100) in
formaldehyde phosphate buffered saline solution using an improved Neubauer chamber
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slide (GmbH + Co., Brandstwiete 4, 2000 Hamburg 11, Germany) and a light microscope
(Olympus CH2CH-2; Olympus Optical Co. Ltd., Tokyo, Japan) at 40× magnification.
Percentages of motile sperm (forward motility) were determined by visual examination in
several microscopic fields for each semen ejaculate sample using a light microscope with a
heated stage at 100×magnification with classification of subjective assessments ranging
from 0% to 100%. Assessments of sperm cell viability and morphological abnormality were
performed by counting 200 sperm cells stained with eosin–nigrosine blue staining mixture.
Sperm cells with complete or partial staining were considered dead, whereas unstained
sperm cells were considered viable.

The ejaculate volume, sperm concentration, and percentages of motile, viable and
normal morphology sperm cells were used to estimate total sperm output (TSO) = semen
ejaculate volume (mL) × semen concentration (×106/mL), total motile sperm (TMS) = per-
centage of motile sperm × total sperm output (×106/ejaculate) and total functional sperm
fraction (TFSF) = total sperm output (×106/ejaculate) × percentage of progressive motility
× percentage of normal sperm morphology. Percentages of sperm cells with intact acro-
somes were evaluated in dried semen smears containing a total of 200 sperm cells stained
with erythrosin B and naphthol yellow S using a light microscope (100×magnification).
The sperm cells were classified according to the presence or absence of acrosome cap
regions in their head regions (i.e., intact or non-intact acrosomes, respectively [22]).

Seminal plasma was obtained by centrifugation of semen samples at 700 ×g for
20 min. Samples were then stored at −20 ◦C until analysis. TAC and MDA concentrations
were colorimetrically determined as indicators of seminal plasma redox status using
commercially available kits (Biodiagnostic, Giza, Egypt).

2.7. Statistical Analysis

A MIXED procedure for repeated measurements (SAS, 2001, version 8, Cary, NC,
USA [23]) was used for assessing body weight, feed intake, rectal temperature, respiratory
rate, haemato-biochemical attributes, redox status indicators, hormones (cortisol and
testosterone) semen physical characteristics and seminal plasma redox status as dependent
variables. Levels of dietary proline (LDP) (0, 50, 100, and 150 mg/kg DM), time of sampling
and/or data collection (from week 4 to 12 for libido and semen quality variables and weeks
4, 8, and 12 for biochemical variables) and their interactions were introduced as fixed
independent variables, and individual buck identities were introduced as a random factor.
Meteorological variables and haematological variables were analyzed using a general
linear model procedure (one way analysis of variance; SAS, 2001). Differences among
treatment groups were identified using Duncan’s new multiple range post-hoc test and
were considered significant when p < 0.05. All results were expressed as least square means
± pooled standard error of mean (SEM). For determining a possible dose–response curve,
the response of each dependent variable for different LDP (0, 50, 100, 150 mg/kg DM diet)
were tested using orthogonal contrast statements for linear, quadratic, and cubic responses.
Dose–response curves for significant relationships were created using a suitable regression
equation to identify the optimum doses of dietary proline. Confidence intervals were
estimated for each dose–response curve and the lowest doses of proline that resulted in the
greatest responses (improvements or reductions) within the confidence intervals [23] and
physiological range [24,25] of the dependent variable were considered the optimal doses.

3. Results
3.1. Meteorological Variables

Mean values of ambient temperature, relative humidity, THI, and daylight lengths
(photoperiod) during the experimental period were 33.47 ± 0.40 ◦C, 75.17 ± 2.25%,
31.99 ± 0.37, and 12.80 ± 0.73 h, respectively (Table 2).
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Table 2. Experimental ambient temperature, relative humidity, temperature–humidity index (THI),
and photoperiod; data are presented as means ± standard errors of the mean (SEM).

Parameter July August September Overall SEM p-Value

Ambient temperature
(◦C) 34.63 a 33.43 ab 32.35 b 33.47 0.40 0.007

Relative humidity (%) 74.50 72.50 78.50 75.17 2.25 0.125
THI 33.03 a 31.80 b 31.16 b 31.99 0.37 0.014

Photoperiod (h) 13.24 a 12.76 b 12.41 b 12.80 0.73 0.016
Mean values followed by different superscript letters in the same row are significantly different (p < 0.05).

3.2. Analysis of BW, Feed Intake, Rectal Temperature, Respiration Rate, and Haematological
Variables

Treatment with LDP did not affect BW and feed intake (Table 3). On the other hand,
increases in LDP affected quadratically the rectal temperature (p = 0.009), respiratory rate
(p < 0.001), and red blood cell count (p = 0.017) and linearly the haemoglobin concentra-
tion (p = 0.002) (Table 3). Dose–response curves showed that the optimal LDP for rectal
temperatures and respiratory rates were established at 70 (Figure 2 A) and 80 (Figure 2 B)
mg/kg DM, respectively, and for haemoglobin concentrations (Figure 2 C) and red blood
cell counts (Figure 2 D) were found at 100 mg/kg DM. Conversely, increasing LDP did not
affect mean corpuscular haemoglobin concentrations, white blood cell counts or platelet
counts (p > 0.05; Table 3).

Table 3. Concentration-dependent effects of proline supplements on body weight, feed intake, rectal temperature, respiration
rate, and haematological attributes of rabbit bucks during the experimental period; data are expressed as least square means
± standard errors of the mean (SEM).

Variable † Proline Concentration ‡
SEM

p-Value §

T
Contrast

P0 P50 P100 P150 L Q C

Initial body
weight (kg) 3.39 3.44 3.41 3.40 0.012 0.951 - - -

Body weight (kg) 3.61 3.66 3.60 3.61 0.080 0.950 0.618 0.763 0.892
Feed intake

(g/day) 178.54 185.50 176.67 181.25 2.26 0.200 0.618 0.763 0.892

RT (◦C) 38.91 a 38.43 b 38.38 b 38.70 ab 0.034 <0.001 0.527 0.009 0.102
RR

(breaths/minute) 135.67 a 105.94 b 98.39 c 101.28 bc 2.38 <0.001 0.081 <0.001 0.277

Haematological attributes

RBC (106/mL) 3.89 b 4.44 ab 4.73 a 4.88 a 0.173 0.047 0.102 0.017 0.917
Hb (g/dL) 10.69 b 13.75 a 12.98 a 12.55 a 0.445 0.007 0.002 0.259 0.191
MCH (pg) 27.51 31.14 27.44 25.98 0.112 0.178 0.201 0.122 0.271

WBC (103/mL) 6.77 3.76 4.60 4.73 0.636 0.178 0.094 0.518 0.413
Platelets 711.01 889.33 925.04 878.33 23.16 0.132 0.217 0.130 0.271

Mean values followed by different superscript letters in the same row are significantly different (p < 0.05). † RT, rectal temperature; RR,
respiration rate; RBC, red blood cells; Hb, haemoglobin; MCH, mean corpuscular haemoglobin (Hb× 10/RBC); and WBC, white blood cells.
‡ P0, P50, P100, and P150 indicate 0-, 50-, 100-, and 150-mg proline/kg DM; respectively. § T, treatment; L, linear response; Q, quadratic
response; C, cubic response.

3.3. Analysis of Blood Plasma Biochaemicals, Redox Status, and Hormones

The effects of various LDP on blood plasma biochemical variables, redox status
indicators, and hormones in rabbit bucks are shown in Table 4 and Figure 3. Increasing LDP
cubically affected concentrations of blood plasma total protein (p = 0.006) and albumin
(p = 0.008), and the optimal proline dose was 70 mg/kg DM (Figure 3A,B, respectively).
Concentrations of blood plasma creatinine (p = 0.018; Table 4) and ALT (p = 0.005; Table 4)
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were quadratically related to increasing LDP, with optimal effects at 70 (Figure 3C) and
110 (Figure 3F) mg/kg DM, respectively (Figure 3). A quadratic relationship (p < 0.001)
between dietary proline and blood plasma HDL concentrations was observed, with an
optimal response at 80 mg/kg DM (Figure 3D), whereas the relationship between dietary
proline and blood plasma glucose concentrations (p = 0.005) was linear and was optimal at
100 mg/kg DM (Figure 3E). Increasing LDP did not affect blood plasma concentrations of
globulin, urea, triglycerides, total cholesterol, and AST. However, increasing LDP cubically
affected blood plasma TAC (p = 0.041, Figure 3G) and SOD activity (p = 0.012, Figure 3H),
with optimal responses to dietary proline at 30 mg/kg DM.

Figure 2. Dose–response curve of rectal temperature (A), respiratory rate (B), haemoglobin concentration
(C), and red blood cell counts (D) for different levels of dietary supplemental proline. DM = dry matter,
OL = optimum level of dietary supplemental proline and CI = confidence interval. R2 = regression value,
and x and y are the dependent variable (proline level) and the independent variable of the regression
equation, respectively. The figure only shows significant (p < 0.05) relationships.

3.4. Evaluation of Libido, Semen Quality, and Seminal Plasma Redox Status

Increasing LDP also caused linear decreases in reaction times (p < 0.001) and linear
increases in ejaculate volume, sperm concentration, and total sperm output (p < 0.001 for
all; Table 5). Corresponding dose–response curves showed that the optimal LDP was at
100 mg/kg DM (Figure 4A–C). Percentages of motile, viable, abnormal, and non-intact
acrosome sperm cells were quadratically affected by LDP. Optimal percentages of motile,
viable and abnormal sperm cells were achieved with 50 mg/kg DM of proline (Figure 4D–
F), whereas non-intact acrosome sperm cells were optimally improved at 60 mg/kg DM
(Figure 4G). TSO was linearly affected by the LDP (p < 0.001; Table 5), with optimal response
found at 100 mg/kg DM (Figure 4H). TMS and TFSF were quadratically affected by the
LDP (p < 0.001; Table 5), with optimal proline concentrations of 120 and 70 mg/kg DM,
respectively (Figure 4I,J).

The LDP supplementation quadratically affected blood plasma testosterone and corti-
sol concentrations (p < 0.001 for both, Table 4, with optimal responses at 50 and 60 mg/kg
DM, respectively, Figure 3I,J, respectively) and cubically affected seminal plasma TAC
(p = 0.006; Table 5), with an optimal response at 80 mg/kg DM (Figure 4K).
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Table 4. Concentration-dependent effects of proline on biochemical variables, redox status indicators, and hormones in
rabbit bucks; data are expressed as least square means ± standard errors of the mean (SEM).

Variable † Proline Concentration ‡
SEM

p-Value §

T
Contrast

P0 P50 P100 P150 L Q C

Biochemical variables
TP (g/dl) 5.83 c 6.537 bc 7.72 a 6.70 b 0.16 0.003 0.315 0.412 0.006

Albumin (g/dL) 2.96 c 3.47 bc 4.14 a 3.91 b 0.064 <0.001 0.464 0.241 0.008
Globulin (g/dL) 2.87 3.07 2.98 2.80 0.20 0.607 0.539 0.606 0.298

Creatinine
(mg/dL) 1.16 ab 0.90 c 0.74 c 0.83 bc 0.08 0.035 0.199 0.018 0.200

Urea(mg/dL) 27.00 23.38 22.14 21.92 2.43 0.237 0.224 0.132 0.734
TG (mg/dL) 94.00 87.21 88.67 99.88 1.79 0.296 0.678 0.463 0.094
TC (mg/dL) 74.11 73.84 78.43 80.88 5.66 0.621 0.935 0.228 0.706

HDL(mg/dL) 34.64 b 37.93 b 62.47 a 52.38 a 2.39 0.001 0.990 <0.001 0.261
Glucose (mg/dL) 143.56 c 212.31 ab 162.52 c 176.96 bc 5.34 0.027 0.005 0.536 0.665

AST (U/mL) 44.02 42.70 40.41 33.40 3.47 0.248 0.521 0.115 0.262
ALT (U/mL) 79.88 a 60.87 b 57.15 b 56.59 b 1.96 0.004 0.241 0.005 0.295

Redox status indicators
Redox status indicators

TAC (mM/L) 1.63 b 2.26 a 2.06 a 2.03 ab 0.095 0.002 0.267 0.195 0.041
MDA (nmol/mL) 13.30 12.12 11.71 11.83 0.277 0.051 0.168 0.132 0.373

SOD (U/mL) 0.152 b 0.237 a 0.222 a 0.176 a 0.012 0.015 0.160 0.281 0.012

Hormones

Testosterone
(ng/mL) 2.37 c 3.39 a 3.49 a 2.59 b 0.035 <0.001 0.247 <0.001 0.140

Cortisol (ng/mL) 11.58 a 8.01 b 6.92 b 8.15 ab 0.138 <0.001 0.312 <0.001 0.094

Mean values followed by different superscript letters in the same row are significantly different (p < 0.05). † TP, total protein; TG,
Triglycerides; TC, total cholesterol; AST, aspartate transaminase; ALT, alanine transaminase; TAC, total antioxidant capacity; MDA,
malondialdehyde; SOD, superoxide dismutase. ‡ P0, P50, P100, and P150 indicate 0-, 50-, 100-, and 150-mg proline/kg DM; respectively. §

T, treatment; L, linear response; Q, quadratic response; C, cubic response.
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Figure 3. Dose–response curve of blood plasma total protein (A), albumin (B), creatinine (C), high density lipoprotein
(HDL, (D)), glucose (E), alanine aminotransferase (ALT, (F)), total antioxidant capacity (TAC, (G)), superoxide dismutase
activity (SOD, (H)), testosterone (I), and cortisol (J) for different levels of dietary supplemental proline. DM = dry
matter, OL = optimum level of dietary supplemental proline and CI = confidence interval, R2 = regression value, and x and
y are the dependent variable (proline level) and the independent variable of the regression equation, respectively. The figure
only shows significant relationships (p < 0.05).
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Figure 4. Dose–response curve of reaction time (A), ejaculate volumen (B), sperm concentration (C) and percentages of
motile sperm cells (D), viable sperm cells (E), normal sperm cells (F), non-intact acrosome sperm cells (G), total sperm
output (TSO, (H)), total motile sperm count (TMSO, (I)), total functional sperm fraction (TFSF, (J)), and seminal plasma
antioxidant capacity (TAC, (K)) for different levels of dietary supplemental proline. DM = dry matter, OL = optimum level
of dietary supplemental proline, CI = confidence interval, R2 = regression value, and x and y are the dependent variable
(proline level) and the independent variable of the regression equation, respectively. The figure only shows significant
(p < 0.05) relationships.
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Table 5. Concentration-dependent effects of proline supplements on reaction times (libido), semen physical variables, and
seminal plasma redox status indicators in rabbit bucks; data are expressed as least square means ± standard errors of the
mean (SEM).

Variable † Proline Concentration ‡
SEM

p-Value §

T
Contrast

P0 P50 P100 P150 L Q C

Reaction time(s) 15.46 a 13.71 b 12.46 b 12.67 b 0.371 <0.001 <0.001 0.213 0.236

Physical variables

Volume (mL) 0.51 b 0.58 b 0.65 a 0.66 a 0.031 0.002 <0.001 0.314 0.607
SCon (106/mL) 278.96 b 323.33 a 326.67 a 336.83 a 8.121 <0.001 <0.001 0.239 0.193

Progressive
motility (%) 63.33 b 69.04 a 71.04 a 65.83 ab 1.297 <0.001 0.201 <0.001 0.668

Live sperm (%) 68.33 b 75.63 a 76.83 a 71.67 ab 1.552 0.003 0.147 <0.001 0.697
Abnormal sperm

(%) 15.54 a 12.33 b 11.46 b 13.67 ab 0.514 <0.001 0.200 <0.001 0.332

Non-intact
acrosome (%) 10.63 a 8.97 b 8.71 b 9.29 ab 0.380 0.002 0.230 0.002 0.394

TSO
(106/ejaculate) 141.27 ab 187.35 a 213.89 a 223.93 a 14.63 <0.001 <0.001 0.223 0.963

TMS
(106/ejaculate) 89.49 b 132.54 a 151.93 a 147.66 a 9.60 <0.001 0.273 0.017 0.999

TFSF
(106/ejaculate) 75.61 b 116.06 a 132.92 a 127.29 a 8.37 <0.001 0.097 0.008 0.977

Redox status indicators

TAC (mM/l) 0.987 c 1.127 b 1.40 a 1.38ab 0.023 <0.001 0.240 0.340 0.006
MDA(nmol/mL) 14.91 12.83 13.27 13.17 0.398 0.096 0.061 0.847 0.727

Mean values followed by different superscript letters in the same row are significantly different (p < 0.05). † SCon, sperm concentration;
TSO, total sperm output = semen ejaculate volume (mL) × semen concentration (106/mL); TMS, total motile sperm = percentage of motile
sperm × total sperm output (106/ejaculate); TFSF, total functional sperm fraction = total sperm output (106/ejaculate) × percentage of
forward motility × percentage of normal sperm morphology TAC, total antioxidant capacity; MDA, malondialdehyde. ‡ P0, P50, P100,
and P150 indicate 0-, 50-, 100-, and 150-mg proline/kg DM; respectively. § T, treatment; L, linear response; Q, quadratic response; C,
cubic response.

4. Discussion

There is increasing evidence of the role of proline as a biologically versatile functional
amino acid, particularly of its functions under environmental stress conditions. Thus,
in the present study, we assessed the potential of proline to enhance heat stress tolerance in
rabbit bucks exposed to an average THI of around 31.99 (i.e., extremely severe heat stress
conditions; [19,26]). We acknowledge the lack of a control group without exposition to
heat stress but the negative effects of heat stress on physiology and metabolism of rabbits
are already well-known and described and, in light of animal welfare, the inclusion of
such a control group would have increased the number of rabbits in the experimental
procedure. Dietary supplemental proline at a level range between 50 and 100 mg/kg DM
reduced heat stress-related indicators like rectal temperatures, respiratory rates, and blood
plasma cortisol concentrations [27], which suggests improvement in the heat tolerance of
animals. Rabbits are physiologically adapted to lose body overheat by increasing panting
rate (respiratory rate) as they have a low number of functional sweat glands [28]. In our
study, the reduction in rectal temperature, however, was not accompanied by an increase
in respiratory rate, indicating implications of other adaptive mechanisms.

The results also showed that increasing LDP up to 70 mg/kg DM improved blood
plasma total protein and albumin concentrations. This could be mediated by the pro-
teinogenic and chaperone properties of proline [4]. In addition, albumin and proline have
demonstrated osmoprotective properties in plasma and cells [1,3]. This property is crucial
under environmental heat stress conditions since it regulates water balance and facilitates
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the maintenance of protein and enzyme stability. It is worth noting that the relationship
between proline levels and either total blood plasma protein levels or blood plasma albu-
min levels was cubic. In fact, these relationships are difficult to interpret, however they
at least highlight the biological complexity between these variables and the importance
of adjusting proline level supplementation to achieve desired biological effects. On the
other hand, increasing LDP up to 110 mg/kg DM decreased blood plasma ALT activity.
High extracellular ALT activity is considered a negative indicator of liver function [1],
thus proline might have a hepatic-protective effect. Also, increasing LDP up to 100 mg/kg
DM improved red blood cell counts and haemoglobin concentrations. These enhancements
are also required adaptive mechanisms during heat stress to improve oxygen circulation
during panting process, improving the panting process efficiency and thus heat loss [27].

Heat stress impairs energy status and energy utilization in rabbits [29]. It was re-
ported that availability of blood plasma glucose during heat stress allows energy utilization
with lower metabolic heat production compared to other energy-yielding nutrients [1,27].
Glucose is the main source of electrons for ATP and NADPH production in most mam-
malian cells, and it is a glycerol precursor and intermediate for nonessential amino acid
synthesis [29]. Interestingly, increasing LDP up to 100 mg/kg DM increased blood plasma
glucose concentrations, which may be ascribed to the contribution of proline to gluco-
neogenesis [30], the regulation of proline-dependent cellular energy signaling pathways,
such as the rapamycin activation pathway [8], which integrates signals from nutrients
such as glucose and amino acids [9], and/or improved cellular glucose uptake due to
proline serving as a structural component [31,32] or inducer of genes encoding glucose
transporters (GLUT; [33]).

Proline supplementation improved the redox status of naturally heat-stressed rabbit
bucks by increasing TAC and SOD activity in blood plasma. However, these effects on
redox status were only observed with low proline concentrations (30 mg/kg DM), and the
relationship was cubic. Proline also has oxygen radical scavenging activities that may
contribute to these observations [7,13]. However, conversion of proline into pyrroline-
5-carboxylate (p5C) by the PRODH/POX catalyzing system in the inner mitochondrial
membrane generates superoxide anions, which participate in ROS-dependent apoptotic
pathways [6]. These diverse effects of proline suggest that a complex relationship between
proline supplementation and redox status and further specific studies are therefore neces-
sary. According to our results, low proline concentrations could improve the redox status
by improving TAC and SOD activity, whereas high proline concentrations may act as a
source of free radicals.

Finally, assessment of libido and spermatogenesis after dietary proline supplemen-
tation showed linear improvements in libido, semen ejaculate volume, and sperm con-
centration. These results highlight the positive effects of proline on reproductive traits.
In bucks, the major facilitative neurotransmitters that control sexual motivation and cop-
ulatory performance are dopamine, glutamate, and norepinephrine [34]. In addition,
a high-affinity L-proline transporter is expressed in mammalian brain tissues, where it
mediates high-affinity uptake of neurotransmitters, including norepinephrine, dopamine,
serotonin, glutamate, and glycine [35]. Proline is also a dietary precursor for the amino acid
arginine [36], which contributes to nitric oxide (NO) synthesis. NO has been previously
shown to improve libido and erectile function by increasing blood flow throughout the
genital tract [37]. Thus, the present effects of dietary proline supplementation may be re-
lated to sexual neurotransmitter signaling pathways and blood flow throughout the genital
tract, leading to improvements in the overall sexual performance of rabbit bucks. Besides,
proline contributes to multiple signaling pathways that are involved in the molecular regu-
lation of spermatogenesis process. For example, in Sertoli cells, the activation of proline
rich regions of androgen receptors (amino acids 352–359) associating with the SH3 domain
of Src has been found to be a critical pathway for maintaining spermatogenesis [38]. Also,
proline has been found to be a specific component of seminal plasma and germ cell proteins.
For example, proline is a major structural amino acid component of nucleoproteins and
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polyamines [13], which are required extensively during mitosis and meiosis in male germ
cells [37]. Among such proteins, FNDC3A is a proline-rich amino-terminal protein that,
as an integral membrane protein in male germ cells, may contribute to spermatogenesis by
mediating the mandatory adhesion between Sertoli cells and round spermatids [39].

The enhancements in libido and spermatogenesis found in proline-supplemented
rabbit bucks may be also attributed to improved blood plasma testosterone concentrations
(steroidogenesis). Testosterone is required for several critical processes during spermatoge-
nesis including maintenance of the blood-testis barrier, meiosis, Sertoli-spermatid adhesion
and sperm release as well as sexual activity [38,40]. Again, proline is a structural component
of a specific family of proline-directed serine-threonine kinases known as mitogen-activated
protein kinases (MAPKs) including three major subfamilies: p38, ERK, and JNK. These ki-
nases are important cellular signaling components that are involved in the regulation of
steroidogenesis in germ cells of mammals [41].

In this study, dietary proline supplementation improved sperm motility, viability,
morphology, and acrosome integrity. These enhancements were dose-dependent (quadratic
relationship), although high doses of more than 50–60 mg/kg DM caused adverse effects.
Collectively, these results highlight the concentration-dependent dual roles of proline.
In support of this notion, cycling between proline and its product P5C provides a redox
shuttle, and the electrons from proline can be used to generate ATP or free radicals. Thus,
the energy obtained from proline degradation may maintain survival or stimulate a pop-
tosis [6,42]. In this context, Yen et al. [43] reported that the continuous accumulation of
P5C, which is highly unstable and toxic, leads to redox imbalance and impairs sperm cell
function. Given the present heat stress conditions, which typically induce the activation of
oxidative stress pathways, the effects of the free radicals generated by proline catabolism
may be amplified, which makes sperm cells more sensitive to proline concentration. Gen-
erally, these results are inconsistent with those obtained in previous studies, in which
high proline intake inhibited enzymes such as acetyl cholin esterase, Na+-, K+-ATPase,
and aminotransferase [43,44] and promoted energy deficit [45] and oxidative stress [43].

5. Conclusions

The present study revealed the usefulness of dietary proline supplementation for en-
hancing heat-tolerance and semen quality of rabbit bucks affected by heat-stress. These effects
are dose-dependent and were achieved at doses ranging between 50 and 100 mg proline/kg
DM. Higher proline concentrations likely have undesirable effects on redox status and sperm
quality. These results pave the way for future studies on effects and mechanisms of proline
supplementation on animal performance under different stress circumstances.
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