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Background: Transcriptomic studies combined with a well annotated genome have laid the foundations for new
understanding of molecular processes. Tools which visualise gene expression patterns have further added to these
resources. The manual annotation of the Actinidia chinensis (kiwifruit) genome has resulted in a high quality set of
33,044 genes. Here we investigate gene expression patterns in diverse tissues, visualised in an Electronic Fluorescent
Pictograph (eFP) browser, to study the relationship of transcription factor (TF) expression using network analysis.

Results: Sixty-one samples covering diverse tissues at different developmental time points were selected for RNA-
seq analysis and an eFP browser was generated to visualise this dataset. 2839 TFs representing 57 different classes
were identified and named. Network analysis of the TF expression patterns separated TFs into 14 different modules.
Two modules consisting of 237 TFs were correlated with floral bud and flower development, a further two modules
containing 160 TFs were associated with fruit development and maturation. A single module of 480 TFs was
associated with ethylene-induced fruit ripening. Three “hub” genes correlated with flower and fruit development
consisted of a HAF-like gene central to gynoecium development, an ERF and a DOF gene. Maturing and ripening
hub genes included a KNOX gene that was associated with seed maturation, and a GRAS-like TF.

Conclusions: This study provides an insight into the complexity of the transcriptional control of flower and fruit
development, as well as providing a new resource to the plant community. The Actinidia eFP browser is provided
in an accessible format that allows researchers to download and work internally.

Background

Global transcriptomic approaches are a common tool
used to obtain a better understanding of gene function
and regulation. The composition of the transcriptome is
the result of a dynamic balance between chromatin state,
the activation of gene expression by transcription factors
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(TFs) and the speed of transcript degradation. The com-
bination of good genomic information and robust gene
models paves the way for systematic and consistent gene
and gene family naming. This combined with other gen-
omics tools, such as Electronic Fluorescent Pictograph
(eFP) browsers [1] to help visualise where a gene is
expressed, allows faster identification of gene function in
different species. To date, eFP browsers have been suc-
cessfully developed in plants such as Arabidopsis [1], to-
mato [2], strawberry [3], and pineapple [4].
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TFs are one of the largest groups of genes in a gen-
ome; in Arabidopsis there are over 1500 TFs described,
belonging to a number of different classes representing
5% of all genes [5]. In other species TFs represent 3—5%
of coding genes, with function often conserved across
species [6]. TFs have been grouped into 57 different
classes [5] with some classes having multiple types of
DNA binding domains. Each class of TF is represented
by a gene family. These gene families vary in size from
species to species depending on events such as individ-
ual gene and genome duplications, leading to expansions
of certain or most families [6]. In higher plants the
MYB, bHLH and Zinc finger classes of TF contain many
hundreds of members [6]. There are numerous examples
demonstrating the strong evolutionary maintenance of
TF primary protein structure across species, with the
homologous genes having a similar gene function. This
allows researchers to predict function by homology [7].

The MADS-box containing TFs form arguably one of
the best understood classes of TF. Members of the
MADS-box gene family, including the well-known floral
organ structure ABCE TFs, determine many aspects of
plant development [8, 9]. Even though the fruiting bod-
ies of Angiosperms are homoplasious, with fleshy fruit
evolving numerous times within many plant families the
function of these genes appear conserved [10]. Angio-
sperm flower structure and fruiting bodies are remark-
ably conserved, with whorls of sepals, petals, stamens
and carpels [8]. The MADS protein sequence is also
conserved with many examples within plants demon-
strating similar control mechanisms across many species
[7, 11].

Kiwifruit are part of the Actinidiaceae which is a basal
family within Ericales [12], and contains the genus Acti-
nidia comprising of a number of economically important
fruit species such as Actinidia chinensis var. deliciosa
(green kiwifruit), A. chinensis var. chinensis (gold and
red kiwifruit) and A. arguta (hardy kiwifruit or kiwiber-
ries). The green ‘Hayward’ kiwifruit is hexaploid, while a
commercially released yellow fleshed variety A. chinensis
var. chinensis, ‘Hort16A’, and the red fleshed A. chinensis
var. chinensis ‘Hongyang’ are large fruiting diploid geno-
types making them ideal for understanding molecular
processes in Actinidiaceae. More recently a new Pseudo-
monas syringae pv. actinidiae (Psa) tolerant tetraploid
gold variety, ‘Zesy002’, has replaced ‘Hortl6A’ in the
markets. The two diploid cultivars have been used to
understand the molecular control of many aspects of de-
velopment including flowering, fruit ripening, colour
and flavour development [13-16]. Genomics tools such
as CRISPR gene editing have been successfully used to
edit the floral repressors in ‘Hortl6A’ to create a small
fruiting plant that can be used to rapidly test gene func-
tion in fruit, further building on their utility [17].
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The first draft kiwifruit genome was of A. chinensis
‘Hongyang’, published in 2013 [18], paving the way for
genomics in Actinidiaceae. More recently a second A.
chinensis genome of a more inbred related genotype,
Red5, further improved the construction and import-
antly manual annotation of gene models [19]. The man-
ual annotation of the kiwifruit genome improved the
quality of the published computer predicted gene
models, and provided a quality resource for future gene
mining. Here we build on these data by identifying TF
genes, analysing their expression over a number of tis-
sues and providing an eFP Browser tool to analyse gene
expression.

Results

Mining of transcription factor gene families

Using the kiwifruit manually annotated gene models
[19], protein translations containing InterPro DNA bind-
ing domains (http://www.ebi.ac.uk/interpro) were identi-
fied. These were manually checked, resulting in 2839
gene models with at least one TF domain in 61 TF clas-
ses in 32 global classes (Fig. 1, Table 1, Additional
data 1). The most abundant global class of TFs in kiwi-
fruit was the Zinc finger class, represented by 571 genes
in 11 different gene classes, followed by 428 genes with
MYB domains within four different classes of genes, and
333 bHLH genes within two different classes of genes
(Table 1, Additional data 1). In total the 2839 TFs repre-
sented 8.6% of the annotated genes in the kiwifruit
genome.

Using the DNA binding domains, each TF class was
aligned in a phylogenetic tree and named using the fol-
lowing criteria. Firstly, if the gene had been previously
published in the literature, this name was given. For
genes not previously published, a sequential naming
down an initial phylogenetic tree was used. This naming
method allows genes within subclades to have numbers
which are close to each other. An exception was made
for the ARF genes where the whole family has been well
characterised in a number of species [20—22], so a nam-
ing convention related to the closest Arabidopsis and to-
mato homologues [22] was taken. An example cluster of
the MADS TF Type 1 and MICK cluster is shown in
Fig. 2 and full phylogenies can be found in additional
data 2. Within all the gene families, there were typically
two closely related genes observed at each branch con-
sistent with the reported genome duplication [19].

In kiwifruit, four classes of TFs have been previously
reported, two (the R2R3 class MYBs [23] and WRKYs
[24]) were based on a previous version of the kiwifruit
genome, the third (the MICK type MADS-box genes)
was published using EST sequence data [25] and the
fourth (AP2/ERF class of gene) was based on the manu-
ally annotated genome [26]. Two other gene families,
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Fig. 1 Composition of the different classes of the 2839 transcription factors. Size of circles represent the number of genes within each class

the R2R3 MYB class and NAC class of TFs are the sub-
ject of separate studies and are reported in more depth
(Rodrigues et al. submitted, Nieuwenhuizen et al
submitted).

The 96 published WRKY TFs were previously named
based on sequential chromosomal locations. Of these,
five did not have an Acc annotated gene model and two
models (WRKY95 and WRKY96) appear to be splice var-
iants. The five were annotated using the Web Apollo
software and Acc numbers assigned. This study identi-
fied an additional 21 WRKY genes and these new genes
were sequentially numbered, bringing the total to 116
WRKY genes.

A comprehensive analysis of EST sequences and full
length sequence of nine MADS-box genes was reported
by Varkonyi-Gasic et al. [25]. Since this study, four SVP
like genes [27] and eight SOCI like genes [28] have been
reported. Further mining identified 58 further predicted
gene models containing a MADS-box DNA binding do-
main. The MADS genes separated into two major clades;
the Type 1 and MICK type. Previously the MICK type

MADS-box genes have been shown to be key regulators
of plant development, especially in floral and fruit devel-
opment. Phylogenetic alignment identified sequences
with high similarity to the well-characterised MICK-
MADS genes and identified possible homeologous pairs
of: AGAMOUS (AG) like genes, Acc25178.1 (MADS28)
and Acc20728.1 (MADS29); PISTILLATA (PI) like genes,
Acc24088.1 (MADSI11) and Acc05042.1 (MADSI12); and
APETALAI1 (API) like genes, Acc04040.1 (MADS40) and
Acc02284.1 (MADS41) (Fig. 2).

Expression analysis

To establish where and when each of the TFs were
expressed, a transcriptomic approach was taken. Global
gene expression of different tissues and different plant
developmental stages of two cultivars of A. chinensis var.
chinensis, the gold fruited ‘Hort16A” and ‘Zesy002’ were
measured. Sixty-one sets of RNA-seq from root, stem,
shoot, leaves, flowers, and early fruit development were
combined with RNA-seq reads from fruit development
[15] and postharvest [15] were used and a bud
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Table 1 Summary of transcription factors
Major classes total class class class class
Zn finger domain 571 C2H2 177 Cco 16 DOF 53 C3H 130
SQBP 32 GATA 50 VOZ 4 DBB 32
LSD 9 NF 58 SRS 10
MYB domain 428 MYBR 126 MYB 219 ARR 19 GARP 64
BHLH domain 333 BHLH 293 TCP 40
AP2 domain 270 ERF 227 AP2 43
HB domain 176 HD-ZIP 79 WOX 18 HD-PHD 3 TALE 44
HB 16 ZFHD 16
B3 domain 11 ARF 42 RAV 12 LAV 57
MADS domain 79 TYPE 1 23 MICK 56
HMG type 50 HMGB 22 ARID 17 YABBY M
Other groups
NAC 147 WRKY 116 Trihelix 67 FAR 53 BZIP 100
GRAS 86 BCP 17 BES 12 LFY 2 EIL 8
CATMA 10 E2F 14 CPP 12 GFR 25 GeBP 7
HST 36 LBD 59 NZzZ 3 NIN 18 S1Fa 8
SAP 12 HRT 1 WHIRLY 4 PLATZ 17 STAT 0

development series (Voogd et al. in preparation) (Add-
itional data 3,4). A Principal component analysis (PCA)
showed mature fruit and ethylene treated fruit were sep-
arated from the other tissues (Fig. 3). Normalised ex-
pression patterns of the TFs were extracted. Based on
transcripts per million (TPM) values, the majority of
TFs were found to have at least one RNA-seq read in
one of the datasets, with only 47 (1.67%) having no reads
in a single tissue.

Development of an eFP browser for kiwifruit

To facilitate the visualisation of expression patterns of
each gene, an eFP browser, for all gene models, was de-
veloped covering different tissues and stages of develop-
ment. Within the MADS genes, root predominant
expression was seen in MADSI2 (Acc10230.1) and
MADS19 (Acc00495.1) (Fig. 4a.). Consistent with func-
tional analysis in model species, MADSI9 showed closest
homology to AtAGL21 (At4g37940.1) which regulates
lateral root development in Arabidopsis. A second
MADS gene, MADS45 (Acc27997.1) showed predomin-
antly stem and cane expression (Fig. 4b) and showed
highest homology to AGLS6, a floral promoter that nega-
tively regulates the FLC/MAF clade genes and positively
regulates FT in Arabidopsis [29]. MADS77 (Acc08919.1)
showed leaf specific expression (Fig. 4c). SVP1 (MADS6
- Accl0522.1) was well expressed in buds (Fig. 4d) and
had high homology to the SVP Arabidopsis gene
(At2¢22540). Flower predominant expression of AGA-
MOUS like gene MADS29 (Acc20728.1) (Fig. 4e) was

observed, while the RIN/SEP4 [15] gene MADSS52
(Acc26640.1) (Fig. 4f) showed postharvest expression.

Network analysis

Weighted gene co-expression network analysis (WGCN
A) [30] assigned the 2773 expressed TFs to 14 different
module colour groups (Fig. 5a). When these were com-
pared to the different tissue types, there were some clear
correlations between some modules and different tissue
(Fig. 5b). Given that some of the tissue may have been
harvested at different times of the day, two circadian
genes (a morning MYB related gene, LHY [31] -
MYBR92 Acc24169.1, and an afternoon gene, GIGA
NTEA [32] Accl2229.1) were also correlated with the
group. The expression pattern of these two genes varied
between TPM 2.7 and 28.1 (MYBR92) and TPM 2.8 and
46.7 (GIGANTEA) suggesting there was some variation
in the harvest time (Additional data 5). However this did
not seem to affect the network analysis as only weak
correlations between these genes and the blue and green
modules were observed (Fig. 5b). One of the strongest
correlations was root tissues and the yellow module con-
taining 323 TFs (Table 2, Additional data 6) showing
96% correlation (Fig. 5b,c). As expected the root pre-
dominant MADS TF (Acc00495.1 MADS19) was found
within this yellow module.

Some tissue types showed significant association with
more than one network group. Floral buds and open
flower showed correlation between the red and purple
modules with 159 and 78 genes respectively. A magenta
module containing 100 genes had linkages with early
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fruit development while later fruit development and
maturation were more associated with the tan module
containing 60 genes. In the turquoise module, 457 TFs
were associated with a postharvest ethylene treatment of
ripe fruit. A network graph with key known TFs gener-
ated for all the flower and fruiting genes (Fig. 6) demon-
strated a strong interrelatedness of this selection of

genes. Calculated hub genes for the red, purple, ma-
genta, tan and turquoise clusters were Accl7850.1 -
ERF65, Acc28494.1 - bHLH281, Accl8135.1 - DOF43,
Accl5461.1 - KNOX3, Acc20237.1 - GRASI3 respectively.
The most similar Arabidopsis gene to bHLH281 is
AT1G25330 - HALF FILLED (HAF) that specifies repro-
ductive tract development in Arabidopsis [33]. The tan
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hub gene KNOX3 is similar to AZKNAT7 which has been
proposed to work with AtPAP1 (the homologue of
which, Acc00493.1 - MYBI10/75, is also found in the tan
cluster) to develop the seed coat [34].

Discussion

By combining gene mining and expression analysis of
the TF families from kiwifruit we have constructed a
gene network for different tissues at different develop-
mental stages during the plant life cycle. Through a close
examination of the flower and fruit networks which were
associated with the red, purple, magenta, tan and tur-
quoise modules (Fig. 6a), a number of MADS-box TFs
with close homology to those characterised in other spe-
cies were found. In the red module there were 10 MICK
MADS-box genes including the previously published
AGAMOUS (AG) gene MADS29 (Acc20728.1) and its
homeologue MADS28 (Acc25178.1), a PISTILLATA-like
gene, MADSII (Acc24088.1), and two SEP-like genes,
while the purple module contained five MICK MADS
genes including a second PISTILLATA-like gene,
MADS12 (Acc05042.1). The ethylene treated fruit associ-
ated with the turquoise module contained three MICK
MADS-like genes including the previously published
RIN/SEP4-like gene (MADSS2 - Acc26640.1) [15].

Other classes of well characterised TFs were examined,
including the known floral determinacy genes described
in a recent review [35]. By examining the closest kiwi-
fruit homologues and module membership, it was pos-
sible to identify potential key genes such as the APETAL
LA2-like gene AP2L11 (Acc06022.1), CRABS CLAW
(CRC) YAB3 (Acc19364.1) and YAB4 (Acc06415.1), and
INNER NO OUTER (INO) genes YABI (Acc08170.1 and
YAB2 (Acc06179.1). The three kiwifruit NOZZLE classes

of SPOREOCYTLESS genes associated with ovule devel-
opment were all located in the red module: SPLI
(Acci13721.1), SPL2 (Acc19456.1) and SPL3 (Acc21678.1).
Also the B3 class LAV genes had a clade expansion with
B3D47 (Accl3067.1), B3D48 (Acc30137.1), B3D49
(Acc30138.1), B3D50 (Acc30139.1), B3D51 (Acc13066.1),
B3D52  (Acc06689.1), B3D53 (Acc21264.1), B3DS55
(Acc31957.1) and B3D56 (Acc11738.1) all found in the
red module. Additionally the SHINY SHN and SHNL
ERF genes (Acc12549.1 and Acc17850.1) associated with
cuticular wax formation were identified. While these key
genes were identified in the red module, it should be
noted that, not all the best homologues to the genes
identified in this review were present, indeed a large
number were found in other coloured modules.

As the AG genes in other organisms have been shown
to be the key carpel identity genes, the connectivity of
the AG homologues MADS28 and MADS29 was exam-
ined further. Fifty-nine genes with a high (> 0.50 weight)
association with the AG genes were identified and
mapped (Fig. 6b). A network map of this subset shows a
strong level of interdependency of these genes. Within
this sub-network, genes that have been shown to be a
direct target of AG in Arabidopsis were identified (Fig. 6b
Orange). These include the aforementioned SPL, CRC
and a HEC2 like bHLH (bHLH65) genes.

Within the fruit ripening ethylene associated turquoise
module there were a considerable number (29) of NAC
TFs identified, including the previously described NOR
like genes (NACI, NAC2, NAC3) [36], as well as seven
of the eight EIN3-like genes. This module also included
45 ERF genes [26], as well as DOF4 [37, 38]. A previous
studies of fruit ripening analysis [37] described 10 TFs
associated with ripening (Additional data 1), most of
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which were located in other coloured modules suggest-
ing that the wider study presented here gives a better
resolution of tissue specific genes.

Conclusion

In summary, we demonstrate that the eFP browser that
we constructed and customised to display gene expres-
sion data, in combination with genome wide identifica-
tion of the TFs and weighted gene co-expression
network analysis provides a powerful platform for in-
depth investigation of control and regulation of import-
ant processes in the plant life cycle and these tools can
be easily customised to other fruiting species.

Methods

Plant material

All new tissue presented in this study (Additional data 3)
were from the diploid Actinidia chinensis var. chinensis
cv. ‘Hortl6A’. These data were combined with previ-
ously published data from an A. chinensis var. chinensis
cv. ‘Hortl6A’ fruit maturation and ripening study [15],
and a new comprehensive study of a bud series from the
related tetraploid Actinidia chinensis var. chinensis cv.
“Zesy002’ (Voogd et al, in preparation). Fruit was har-
vested from the Plant & Food Research site based at
Kerikeri, New Zealand using standard pergola orchard
management techniques. Tissues were harvested com-
bining tissue from at least five different vines for each
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Table 2 Numbers of transcription factors (TF) in each colour

network module

Network Module TF numbers
black 155
blue 451
brown 422
green 203
green yellow 78
grey 40
magenta 100
pink 135
purple 78
red 159
salmon 42
tan 60
turquoise 480
yellow 370

replicate. Between two and three replicates were taken
for each tissue type, snap frozen in liquid nitrogen and
stored at — 80 °C until needed.

Gene mining, and comparisons

To identify a complete set of transcription factors a
number of approaches were taken, for each approach,
lists were generated and combined and filtered. In brief,
a family was chosen to mine based on the classes identi-
fied in Arabidopsis [5]. The plant transcription factor
database (http://planttfdb.cbi.pku.edu.cn/) which con-
tains 2296 kiwifruit models generated from the original
2013 genome [18] were also assessed. Using an in house
database (Bioview) platform, the manually annotated
gene models [19] were identified containing the appro-
priate PFam domain [39]. Lastly, gene models identified
from multiple BLASTP searches using appropriate di-
verse TFs matches were compared to the manually an-
notated gene sets. These were all aligned in geneious
[40] using MUSCLE alignment [41]. Using the PFam do-
main to identify the DNA binding domain in the aligned
regions, genes without a binding domain were removed,
thus creating a complete list of TFs. For the R2R3 MYBs
and WRKY family a few genes did not appear to have an
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Acc model. When this occurred, Web Apollo [42] was
used to manually annotate an additional gene model and
designated with either the Achn model number or a “no
Acc match” in Additional data 1. The DNA binding do-
mains were then aligned using PHYML [43], and named
sequentially. Circle plots for Fig. 1 were generated in R
using the “packcircles” library [44].

RNA sequencing and transcriptomics

Total kiwifruit RNA was isolated using the Spectrum™
Plant Total RNA Kit (Sigma-Aldrich, St. Louis, MO,
USA) and its integrity was assessed using the RNA 6000
Nano kit and the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Three RNA sam-
ples per sampling time were used for subsequent library
construction and sequencing. The sequencing libraries
were constructed according to the TruSeq RNA sample
preparation guide (Illumina, San Diego, CA, USA) and
subsequently sequenced by a HiSeq 2500 Sequencing
System (Illumina), obtaining paired-reads of 125bp. Li-
brary construction and sequencing were performed at
Macrogen (www.macrogen.com). A minimum of 16 M
reads were obtained from the Hortl6A tissues and per-
centage read mapping ranging from 69 to 92% Add-
itional data 3. The Zys002 bud series had a minimum of
11.9 M reads and percentage read mapping was 51-79%.

All raw sequence data can be found in the NCBI RNA-
seq depositories detailed in Additional data 3. The raw
reads were aligned using Spliced Transcripts Alignment
to a Reference (STAR) (version 2.5.2a) on default set-
tings [45] to the A. chinensis Red 5 v1.69 gene models
[19]. PCA analysis was undertaken with the plotPCA in
the DeSeq2 package in R [46] using the 5000 most dif-
ferentially expressed genes (ntop=5000). Raw reads
were normalised to transcripts per million (TPM) (Add-
itional data 4).

Development of eFP browser

The eFP browser [1] was generated using deposited code
from SourceForge (https://sourceforge.net/projects/
efpbrowser/). Template images were generated by the
graphic design team at Plant & Food Research. The tem-
plate images were colourised and reformatted for the
eFP browser using the GIMP (https://www.gimp.org/)
version 2.8.22 software program. Several additional fea-
tures were added to the eFP source code. The modified
source code is available via GitHub (https://github.com/
pfrnz/eFP-Browser). Experiment images are constructed
from component images described by the XML file for
each section. Multiple sections can be included in each
experiment view. This allows the reuse of component
images for different sections and experiment views,
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greatly reducing the effort required to add new experi-
ment views. Auto-completion of gene ID input on the
interface was implemented with JavaScript and PHP,
referencing the existing ID look-up SQL table. The eFP
browser was containerised using Docker. The Dockerfile
builds a Docker container which incorporates the soft-
ware requirements, and eFP Browser source code and
experiment images. A second Docker container was used
for the SQL database of read numbers expression data.
A Docker-Compose file is included to run the eFP
Browser and SQL containers. The Actinidia eFP browser
was set up on the Bio-Analytic Resource for Plant Biol-
ogy server at bar.utoronto.ca and is available at http://
bar.utoronto.ca/efp_actinidia/cgi-bin/efpWeb.cgi

WGCNA network analysis

RNA-seq data for gene models associated with transcrip-
tion factors were extracted and transcription factors that
were not expressed (based on no read alignments) in
any of the samples were removed from the analysis.
Weighted gene co-expression network analysis (WGCN
A) [30] v 1.68 was undertaken in the R environment
v3.5.1. In the WGCNA environment the soft power was
calculated and set to six. The minimum module size was
set to 30 and the merge cut height set to 0.25. Hub
genes for each colour environment were calculated using
“chooseTopHubInEachModule”. Network data were
exported into Cytoscape v3.7.1 for visualisation.

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512870-021-02894-x.
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