van der Weijden et al. BMC Genomics (2021) 22:139

https://doi.org/10.1186/512864-021-07430-7 B M C Gen om iCS

RESEARCH ARTICLE Open Access

Transcriptome dynamics in early in vivo ®
developing and in vitro produced porcine
embryos

Vera A. van der Weijden', Meret Schmidhauser', Mayuko Kurome?, Johannes Knubben?, Veronika L. Floter'?,
Eckhard Wolf* and Susanne E. Ulbrich"”

Check for
updates

Abstract

Background: The transcriptional changes around the time of embryonic genome activation in pre-implantation
embryos indicate that this process is highly dynamic. In vitro produced porcine blastocysts are known to be less
competent than in vivo developed blastocysts. To understand the conditions that compromise developmental
competence of in vitro embryos, it is crucial to evaluate the transcriptional profile of porcine embryos during pre-
implantation stages. In this study, we investigated the transcriptome dynamics in in vivo developed and in vitro
produced 4-cell embryos, morulae and hatched blastocysts.

Results: In vivo developed and in vitro produced embryos displayed largely similar transcriptome profiles during
development. Enriched canonical pathways from the 4-cell to the morula transition that were shared between in vivo
developed and in vitro produced embryos included oxidative phosphorylation and EIF2 signaling. The shared canonical
pathways from the morula to the hatched blastocyst transition were 14-3-3-mediated signaling, xenobiotic metabolism
general signaling pathway, and NRF2-mediated oxidative stress response. The in vivo developed and in vitro produced
hatched blastocysts further were compared to identify molecular signaling pathways indicative of lower developmental
competence of in vitro produced hatched blastocysts. A higher metabolic rate and expression of the arginine
transporter SLC7AT were found in in vitro produced hatched blastocysts.

Conclusions: Our findings suggest that embryos with compromised developmental potential are arrested at an early
stage of development, while embryos developing to the hatched blastocyst stage display largely similar transcriptome
profiles, irrespective of the embryo source. The hatched blastocysts derived from the in vitro fertilization-pipeline
showed an enrichment in molecular signaling pathways associated with lower developmental competence, compared
to the in vivo developed embryos.

Keywords: Transcriptomics, Porcine, Embryo development, In vivo embryo development, in vitro fertilization

* Correspondence: seu@ethz.ch

'ETH Zurich, Animal Physiology, Institute of Agricultural Sciences,
Universitdtstrasse 2, CH-8092 Zurich, Switzerland

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07430-7&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:seu@ethz.ch

van der Weijden et al. BMC Genomics (2021) 22:139

Background

In pigs and humans, embryo development is under ma-
ternal control until the 4-cell stage [1, 2]. Until this
stage, proteins and RNA, stored in the oocyte, control
embryo development. The embryonic cells contain
inactive nucleolus precursor bodies [3]. After embryonic
genome activation (EGA), embryonic control com-
mences at around day 3 post fertilization [1]. The
inactive nucleolus precursor bodies transform into func-
tional nucleoli [3]. These nucleoli exhibit functional
components including fibrillar centers containing rRNA
genes and enzymes facilitating transcription, dense fibril-
lary components containing nascent rRNA and enzymes
required for its processing, and granular components
containing large ribosomal subunits and enzymes re-
quired for packaging [3]. Compaction is initiated in the
oviduct by the 8- to 16-cell stage, and by day 4, the mor-
ula is formed [1, 3]. Blastulation takes place in the uterus
and during this process, the outer embryonic cells con-
nect by tight junctions and desmosomes, thereby sealing
the expanding blastocoel [3]. The blastocyst is formed
by day 5 after fertilization and consists of lipid contain-
ing inner cell mass and trophectoderm cells [1, 3]. At
day 7 of development, the embryo hatches from the zona
pellucida and increases in size until day 10 of develop-
ment [4]. Up to the blastocyst stage, embryos can be
produced and cultured in vitro. Despite ongoing efforts
to improve the quality of in vitro produced blastocysts,
these embryos are less competent than in vivo developed
blastocysts [5]. Therefore, it is important to understand
which molecular pathways are affected by the in vitro
embryo production pipelines. In vivo, the embryo starts
to rapidly elongate by day 11 of development and secretes
estradiol-17p (E2) as primary recognition of pregnancy
signal [6]. The secretion of embryonic E2 coincides with
the endometrial expression of E2-regulated genes [7]. The
transition of the hatched blastocyst to an elongated em-
bryo takes place rapidly [8].

A dynamic and embryonic developmental stage-
specific mRNA expression has been shown in various
species [9, 10]. Single-cell RNA sequencing of murine
and bovine embryos revealed a transcriptional variation
of single blastomeres [10, 11]. Single murine blastomeres
showed an increasing transcriptional variation with
developmental progression [10]. Similar findings have
been reported for stem cell differentiation. Stem cells
had a more uniform transcriptome profile compared to
differentiated cells [12]. The single cell reconstruction of
murine preimplantation development showed distinct
developmental stage-dependent clusters, ie., 2-cell, 4-
cell, 8-cell and 16-cell stage embryos, while single cells
from the early, mid and late blastocyst clustered together
[10]. In pigs, the transcriptional changes of embryos
around the time of EGA (2- and 4-cell stage embryos)
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have been investigated in both in vivo developed and
in vitro produced whole embryos, aiming at gaining
insights into the mechanisms that lead to reduced devel-
opmental potential of in vitro produced embryos [13]. In
vitro produced embryos displayed altered transcript
levels for apoptotic factors, cell cycle regulation factors
and spindle components, as well as transcription factors,
collectively contributing to reduced developmental com-
petence of in vitro produced embryos [13]. To under-
stand the species-specific regulatory networks involved
in EGA, the first lineage commitment and the primitive
endoderm differentiation, Cao et al. (2014) evaluated the
expression of putative inner cell mass (ICM) and troph-
ectoderm (TE) markers in oocytes, 1-cell, 2-cell, 4-cell,
8-cell embryos, morulae, early blastocysts, and expanded
blastocysts [14]. By comparing the transcriptome
changes with those of mouse and human pre-
implantation embryos, a unique pattern was found in
pig embryos [14]. In addition, the global gene expression
pattern was different in somatic cell nuclear transfer
(SCNT) embryos compared to in vivo developed em-
bryos [14]. The pig EGA was confirmed to take place at
the 4-cell stage, while this only appeared at the 8-cell
stage in SCNT embryos [14]. The differentially
expressed genes from the hatched blastocyst to tubular
and filamentous embryos included glycolytic enzymes
that are potentially regulated by estrogen [15, 16].

To date, the developmental competence, as well as
pregnancy rates after transferring in vitro produced
porcine embryos remain low [17]. This can, in part, be
attributed to aberrant chromatin dynamics [18]. Com-
pared to in vivo produced embryos, in vitro produced
embryos showed developmental stage-dependent altered
chromatin dynamics. Already at the two-cell stage, they
displayed aberrant chromatin-nuclear envelope interac-
tions [18]. In vitro produced embryos showed global
chromatin remodeling imperfections and failed to estab-
lish a proper first lineage segregation at the blastocyst
stage [18]. To improve the developmental competence
of in vitro embryos, it is crucial to elucidate their tran-
scriptional profile during pre-implantation development.
In this study, we aimed at furthering the understanding
of early embryo development, and to identify molecular
pathways that could explain lower developmental com-
petence of in vitro produced hatched blastocysts.

Results

Samples and RNA sequencing

RNA sequencing was performed using 50 single embryos
(Fig. 1).

A total of 1405 million raw reads was obtained after
RNA sequencing, with a duplication rate of 63+7%
(mean + SD) and a GC content of 45 + 1% (mean + SD).
The mapping rate after quality filtering was 84 + 6%
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Fig. 1 Experimental set-up for single embryo RNA-sequencing. The arrows indicate the between-group analyses

(mean £ SD). The number of detected transcripts, de-
fined as any transcript with at CPM > 0.1, increased with
developmental progression for the in vivo produced em-
bryos, while it decreased for the in vitro produced em-
bryos (Additional file 1). The low number of detected
transcripts for the 4-cell in vivo embryos might be the
consequence of analyzing 4-cell embryos with a reduced
RNA quality, relatively low input and cDNA yield during
library preparation (Additional file 2). Given the differ-
ences in RNA quality as assessed by the cDNA profile,
library smear analyses, and read alignment at the 4-cell,
as well as at the morula stage (Additional file 2 and 3),
the in vivo developed and in vitro produced embryos
were analyzed separately and were not compared to each
other. To identify in vitro fertilization pipeline-induced
transcriptome differences, the hatched blastocysts were
used for an in vivo developed versus in vitro produced
comparison.

Developmental transcriptome dynamics

To provide a developmental stage-specific overview, glo-
bal developmental transcriptome dynamics were investi-
gated. Principal component analyses (PCA) were
performed separately for the in vivo developed and
in vitro produced embryos and showed a clear develop-
mental stage-specific clustering of the embryos (Fig. 2a
and b). For the in vivo developed embryos, PC1 and PC2
explained 77.8 and 11.4% of the variance in transcript
levels. For the in vitro produced embryos, PC1 and PC2
explained 71.8 and 17.3% of the variance. The in vivo 4-
cell embryos displayed a larger degree of transcriptional
heterogeneity than the in vitro 4-cell embryos. The mor-
ulae and hatched blastocysts were sexed based on the
expression of Y-chromosome specific transcripts. At the
morula stage, male and female embryos clustered to-
gether, yet the clusters were not fully overlapping. At the
blastocyst stages, the male and female clusters were fully
overlapping.

In vivo and in vitro embryonic developmental dynamics
The developmental transcriptome dynamics were further
analyzed by identifying differentially expressed genes
(DEGs) between the 4-cell and morula stage, and the
morula and hatched blastocyst stage for both the in vivo
developed and in vitro produced embryos. The number
of DEGs was higher between the 4-cell to morula stage,
than for the morula to hatched blastocyst stage (Fig. 3).
For the in vivo embryos, 10089 and 2347 DEGs were
identified between the 4-cell to the morula stage and the
morula stage to the hatched blastocyst stage, respectively
(Fig. 3a). For the in vitro embryos, 8152 and 4023 DEGs
were identified between the 4-cell to the morula stage
and the morula stage to the hatched blastocyst stage, re-
spectively (Fig. 3b).

The developmental dynamics were assessed with a
self-organizing tree algorithm (Fig. 4a and b). For both
the in vivo and in vitro produced embryos, the detected
transcript expression changed from the 4-cell to the
morula stage. The transcripts in cluster 1 decreased
from the 4-cell to the morula stage, and remained low at
the hatched blastocyst stage. The transcripts in cluster 2
displayed a gradual increase with developmental pro-
gression. The transcripts in cluster 3 were increased at
the morula stage, while remaining low at the 4-cell and
the hatched blastocyst stage.

Biological functions of embryonic developmental
dynamics

To gain insight into the biological functions of the
DEGs, a canonical pathway enrichment analysis was
conducted (Fig. 5). In both the in vivo and the in vitro
produced 4-cell to morula stage embryos, there was a
significant enrichment of oxidative phosphorylation and
EIF2 signaling. From the morula to the hatched blasto-
cyst stage, the DEGs in the pathways 14-3-3-mediated
signaling, xenobiotic metabolism general signaling path-
ways, and NRF2-mediated oxidative stress response were
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Fig. 2 Between-group analyses of the 4-cell stage embryos, morulae and hatched blastocysts of a. In vivo developed embryos, and b. In vitro

all higher expressed at the hatched blastocyst stage for
both the in vivo and in vitro produced embryos.

In vivo and in vitro differences at the hatched blastocyst
stage

The in vivo and in vitro hatched blastocysts were com-
pared, as the embryos displayed similar cDNA profiles,
library smears and alignment coverages for the most
abundant transcripts at this developmental stage

(Additional file 2 and 3). Embryos at this stage of devel-
opment are thought to be more alike than at earlier
stages, as time differences related to fertilization at earl-
ier stages contribute more substantially to the actual de-
velopmental stage.

At the hatched blastocyst stage, the selection of de-
velopmentally competent embryos has already taken
place. Yet, we unraveled in vitro fertilization pipeline-
induced sex-specific differences. The in vivo
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developed female and male hatched blastocysts clus-
tered largely together (Fig. 6a). They were separated
from the in vitro hatched blastocyst in a sex-specific
manner by principal component 1. While 33 DEGs

were identified between the female in vivo and

in vitro produced embryos, 241 DEGs were identified
between the male in vivo and in vitro produced em-
bryos. Figure 6b displays the difference between
in vivo developed and in vitro produced embryos in a
sex-independent manner. There were no DEGs when
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comparing male and female embryos for either
in vivo developed or in vitro produced embryos. By
comparing the female in vivo developed versus
in vitro produced embryos, the DEGs inositol poly-
phosphate multikinase (IPMK) and Rac family small
GTPase 1 (RACI) were specific to this comparison.
The other 31 DEGs were also discovered by compar-
ing the in vivo and in vitro male hatched blastocysts.
These genes were involved in amino acids transport,
synthesis and metabolism, and similarly expressed in
both female and male embryos (Fig. 6¢). Both male
and female in vivo derived embryos had a lower ex-
pression of genes involved in amino acid transport,
synthesis and metabolism compared to the male and
female in vitro produced embryos.

When disregarding the sex of the embryos and em-
phasizing on the embryo source, a total of 398 DEGs
were identified. The persistent difference between
in vivo developed and in vitro produced embryos at
the hatched blastocyst stage were illustrated by an en-
richment of four canonical pathways (Fig. 6d). Except
for a higher expression in in vivo versus in vitro
hatched blastocysts of DEGs involved in cyclins and
cell cycle regulation and LXR/RXR activation, the
DEGs involved in tRNA charging and xenobiotic me-
tabolism AHR signaling pathways were higher
expressed in in vitro than in in vivo hatched
blastocysts.

Discussion

Transcriptome dynamics during early embryo
development

Early developing porcine embryos displayed a great
adaptive capacity towards their environment, evidenced
by largely similar transcriptome dynamics observed in
both in vivo developed and in vitro produced embryos.
in vitro produced embryos offer the opportunity to study
molecular pathways of interest in a developmental-stage
specific manner, as there is a higher degree of certainty re-
garding the time of fertilization compared to in vivo devel-
oped embryos. However, developmental rates and embryo
competence of in vitro produced embryos are still lower
compared to their in vivo developed counterparts [5]. A
number of factors are known to contribute to embryo de-
velopment. The presence of cumulus cells during matur-
ation facilitates full oocyte maturation [19]. In pigs, the
presence of cumulus cells during oocyte maturation is es-
sential for oocyte maturation, fertilization and subsequent
embryo development [20]. The discrepancy in embryo de-
velopment between in vivo developed and in vitro pro-
duced embryos at early post-fertilization developmental
stages might be explained by the use of a pool of non-
selected oocytes of overall lower competence for in vitro
maturation, compared to those selected for ovulation, and
the effects of in vitro maturation on oocyte quality. A
higher blastocyst rate has previously been shown after oo-
cyte maturation under a 20% oxygen atmosphere [21].
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However, blastocyst quality assessed by the expression of
genes related to metabolism (GLUTI and LDHA), antioxi-
dant response (SOD2 and GPXI), growth factors and
apoptosis (IGF2R, BCL2 and BAX), methylation
(DNMTS3B), and blastocyst quality (AKR1B1, POU5F1 and
CDX2) were not affected [21]. In addition, the blastocyst
rates of in vivo and in vitro matured rabbit oocytes did
not significantly differ, while at earlier developmental
stages, the in vivo embryo development rates were signifi-
cantly higher than observed for embryos produced with
in vitro matured oocytes [22]. Thus, while oocyte quality
and competence, and subsequent embryo development
are affected by the maturation conditions, only minor
transcriptional differences have been reported at the
hatched blastocyst stage [23]. In line with previous find-
ings, we found more similar transcriptome profiles at later
developmental stages. At the hatched blastocyst stage,

only limited transcriptional differences persisted. Add-
itionally, the developmental-stage specific differences were
more pronounced than the sex-specific differences, as pre-
viously described by Zeng et al. (2019), studying the tran-
scriptome dynamics in in vivo developed day 8, 10, and 12
porcine embryos [16].

Early porcine embryo development

The early embryo development was studied at the 4-cell,
morula and hatched blastocyst stage for both in vivo de-
veloped and in vitro produced embryos. Previously, por-
cine embryos after EGA have been shown to display an
increased abundance of transcripts involved in, among
others, transcription [13]. Both the in vivo developed
and in vitro produced 4-cell to morula transition was
characterized by an enrichment of oxidative phosphoryl-
ation and EIF2 signaling. An increase in oxidative
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phosphorylation with developmental progression has
previously been reported for mouse embryos [24].
Oxidative phosphorylation accounted for 60-70% of
consumed oxygen in blastocysts, compared to 30% of
consumed oxygen in cleavage stage embryos [24]. In
addition, oxygen consumption of in vivo bovine blas-
tocysts increased with increasing morphological qual-
ity and developmental stage [25]. Yet, in vitro
produced embryos displayed a higher oxygen con-
sumption, which was related to lower pregnancy rates
[25]. Thus, in vitro morulae seem developmentally
competent, as they display increased transcription of
genes related to oxidative phosphorylation, as ob-
served for the in vivo embryos. EIF2 signaling has
previously been shown to be downregulated in par-
thenogenetically activated expanded porcine blasto-
cysts compared to in vivo developed embryos,
evidencing a correlation between aberrant EIF2 signal-
ing and reduced developmental competence [26]. EIF2
signaling was upregulated in morulae compared to 4-

cell embryos, irrespective of embryo source, eviden-
cing cell growth and proliferation [27].

During the morula to the hatched blastocyst transition,
both in vivo developed and in vitro produced embryos
displayed an enrichment of the pathways 14—3-3-medi-
ated signaling, xenobiotic metabolism general signaling
pathways, and NRF2-mediated oxidative stress response.
The 14-3-3 signaling plays a role in normal growth and
development [28], cell polarity [29], and cell fate [30]. In
bovine, the NRF-2 mediated oxidative stress response is
enriched in competent blastocysts [31], and the func-
tions and processes related to the NRF-2 mediated oxi-
dative stress response and oxidative phosphorylation
pathways have been suggested to be related to develop-
mental competence [32]. The enrichment of the shared
signaling pathways in both in vivo developed and
in vitro produced embryos during development from the
morula to hatched blastocyst stage appeared to be indi-
cative of largely similar developmental transcriptional
profiles, potentially related to embryo competence.
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In vivo developed versus in vitro produced hatched
blastocysts

The differences between in vivo developed and in vitro
produced hatched blastocysts were investigated to
understand persisting transcriptional differences and
their relationship to embryo competence. Whitworth
et al. (2005) previously reported DEGs in porcine blasto-
cyst stage embryos by comparing in vivo developed and
in vitro produced embryos [23]. Unlike the difference in
expression of HMGBI they reported, we did not find a
difference in its expression between in vivo developed
and in vitro produced hatched blastocysts. The expres-
sion of HMGBI has been associated with the number of
nuclei per embryo [23], suggesting that the stage of our
hatched blastocysts is likely similar, thereby allowing the
comparison between in vivo developed and in vitro pro-
duced embryos at this developmental stage. Likewise,
there was no significant difference in the expression of
ATPSAI between in vivo developed and in vitro pro-
duced hatched blastocysts. The expression of ATP5AI
has previously been used to indicate differences in meta-
bolic rates in in vivo developed and in vitro produced
blastocysts [23]. In addition, 71% of genes related to cel-
lular metabolism were reported to be upregulated in
in vivo developed compared to in vitro produced porcine
blastocysts [33]. The in vitro hatched blastocysts in this
study displayed a significant increase in amino acid me-
tabolism. Among the genes related to amino acid metab-
olism, the arginine transporter SLC7AI has previously
been reported to be significantly upregulated in in vitro
produced embryos compared to in vivo developed em-
bryos [34]. Porcine embryos deplete arginine from the
culture medium at a higher rate at the expanded blasto-
cyst stage compared to early blastocysts [35]. The argin-
ine concentration in the embryo culture medium used in
this study was at 0.1 mM [36]. It has previously been
shown that adding arginine to a final concentration of
0.36 mM to the embryo culture medium decreased the
SLC7A1 transcript level in in vitro produced embryos to
a level comparable to the in vivo developed embryos
[34]. In our study, the in vitro produced hatched blasto-
cyst displayed a higher transcript expression of genes re-
lated to tRNA charging and xenobiotic metabolism AHR
signaling pathways. The in vivo developed embryos dis-
played a higher transcript expression of genes related to
cyclins and cell cycle regulation, and LXR/RXR activa-
tion. in vitro produced porcine blastocyst have previ-
ously been reported to display a higher transcript
expression of genes involved in, among others, mRNA
transcription, nucleotide metabolism, DNA metabolism,
amino acid metabolism, and lipid metabolism [34]. The
higher metabolic rate of in vitro produced embryos is
evidenced in our in vitro hatched blastocysts by an en-
richment in tRNA charging and amino acid metabolism.
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This transcriptional profile is in line with the proposed
quiet embryo hypothesis, where viability is highest
for embryos with a low rate of metabolism [37]. In
addition, embryos with high DNA damage display an
increased amino acid turnover [38, 39]. Thus, we
propose that the transcriptome of in vitro produced
hatched blastocysts is indicative of an increased level
of DNA damage, as evidenced by the higher degree
of amino acid metabolism. The effect of adding
higher concentrations of arginine, ie., 0.36 mM in-
stead of 0.1 mM, to the embryo culture medium on
the embryos’ amino acid metabolism and DNA dam-
age should be evaluated. Thereby, an improvement
of the currently employed in vitro fertilization pipe-
lines can be assessed.

Conclusions

Taken together, we show that early developing in vivo
and in vitro produced embryos display largely similar
transcriptome profiles. Embryos with compromised de-
velopmental competence are likely arrested at an early
stage of development. At the blastocyst stage, only few
differences persisted between in vivo and in vitro, and
there was no transcriptional difference between male
and female embryos. The in vitro produced hatched
blastocysts displayed the expression of transcripts indi-
cative of a higher metabolic rate and the arginine trans-
porter, suggesting a lower developmental competence
compared to the in vivo developed embryos.

Methods

Embryo production

Porcine embryos were allowed to develop in vivo and
were produced in vitro (Fig. 1). The development-
specific transcriptome dynamics were investigated by
analyzing 4-cell stage embryos, morulae and hatched
blastocysts. At the hatched blastocyst stage, male and fe-
male in vivo embryos were compared to the respective
in vitro produced embryos.

In vivo

The in vivo embryos were produced as described previ-
ously [16]. In brief, 12 German Landrace x Pietrian
crossbred gilts were kept at the Research station
Thalhausen of the Technical University of Munich,
Germany. The gilts were synchronized using Altrenogest
ReguMate® for 12 days. Intergonan® (PMSG) was applied
once on the following evening at 750 iU. Ovogest® (hu-
man chorion gonadotropin) was applied 3.5 days later at
750 iU. The next day (day 0), all animals were insemi-
nated with sperm of the same Duroc boar, named
SWIROC. On day 2, 4 and 6 post insemination, four
gilts were randomly selected, stunned by electro-
anesthesia and slaughtered by bleeding in a commercial
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slaughterhouse to retrieve the embryos. The reproduct-
ive tracts were collected immediately after slaughter and
the embryos were recovered from the reproductive tracts
by flushing. The day 2 embryos were flushed from the
oviduct with 2 ml phosphate buffered saline (PBS), while
on day 4 and 6, embryos were flushed from the uterus
with 10 ml PBS per horn. The collected embryos were
washed twice with fresh PBS and single embryos were
transferred to a cryotube and snap frozen in liquid nitro-
gen. All samples were stored at - 80°C until library
preparation. At 2, 4 and 6 days after insemination, 4-cell
embryos, morulae and hatched blastocysts were col-
lected. Per group, n =5-10 embryos were randomly se-
lected, stemming from three to four gilts.

In vitro

The in vitro embryos were produced as previously de-
scribed [40, 41]. In brief, antral follicles on the surface of
ovaries obtained from a local abattoir with a size of 3-6
mm in diameter were aspirated for the collection of
cumulus-oocyte complexes (COCs) [41]. The maturation
of COCs displaying more than three layers of compact
cumulus cells took place by culturing them in FLI
medium contained FGF2, LIF and IGF1 for 44-46h
[36]. During the first 22 h, the COCs were cultured in
maturation medium supplemented with human chori-
onic gonadotropin and pregnant mare serum gonado-
tropin, followed by 22-24'h of culture in hormone free
maturation medium in a humidified atmosphere of 5%
CO,, 5% Oy and 90% N, at 38.5°C [41]. The in vitro
fertilization was performed using frozen sperm derived
from the same Duroc boar as used for the in vivo devel-
oped embryos to reduce an influence on genetic
variation [40]. A group of 20 matured oocytes was co-
incubated for 7h with 1.0 x 10° cells/mL in a porcine
fertilization medium (Functional PeptideCo., Yamagata,
Japan) in a humidified atmosphere of 5% CO,, 5% O,
and 90% N, at 38.5 °C [40]. After fertilization, the cumu-
lus cells and excess sperm were removed from the pre-
sumed zygotes and were cultured in Porcine Zygote
medium-5 (Functional Peptide Co., Yamagata, Japan) in
a humidified atmosphere of 5% CO,, 5% O,, and 90% N,
at 38.5°C [40]. The embryos were produced in four in-
dependent experiments. Morphologically normal em-
bryos of 4-cell stage, compacted morulae and hatched
blastocysts were collected at the following time points
after fertilization, respectively: 48 h, 100 h and 174 h. 4-
cell stage embryos and compacted morulae were espe-
cially collected from a population of preselected 2-cell
embryos at 30 h after fertilization to avoid sampling of
abnormal embryos. Prior to freezing, the embryos were
washed trice with PBS containing 0.1% PVA. The em-
bryos were transferred to a 0.5 ml Eppendorf tube and
snap frozen in liquid nitrogen. Samples were stored at
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- 80°C until library preparation. Per group, n=5-10
embryos were randomly selected, stemming from three to
four experiments.

RNA sequencing

Single 4-cell stage embryos (n=5/production method),
morulae (n = 10/production method) and hatched blasto-
cysts (n=10/production method) were obtained from
in vivo flushing or were in vitro produced (Fig. 1). The li-
brary preparation for RNA-sequencing was conducted as
previously described [42]. A total of 18 PCR cycles was
used for the library preparation. Single embryos were lysed
in 1 pl lysis buffer containing dNTPs and tailed oligo-dT
oligonucleotides (30 nt poly-dT stretch and 25 nt universal
5’anchor sequence) plus 3.1 pl PBS [42]. The lysed em-
bryos were subjected to cDNA synthesis and library prep-
aration with the Smart-seq2 protocol as described
previously [42]. The libraries were pooled and sequenced
on the NovaSeq6000 with a sequencing depth of 14 +4
million reads per sample (mean + SD).

Data analyses and bioinformatics

Raw sequence reads (Fastq files) were analyzed on a lo-
cally installed Galaxy system [43]. Basic read statistics
and read quality was evaluated based on FastQC reports
[44], and a MultiQC overview report of all samples was
generated [45]. Adaptors were clipped, sequences
shorter than 20 bp were removed, and a low-quality end
score of 20 was applied with the Trim Galore! tool [46].
The trimmed reads were aligned against the porcine
genome (Sus scrofa 11.1) with HISAT2 [47]. The map-
ping rate was 84+ 6% (mean +SD). An additional se-
quencing quality control was included. The reads of
three representative and most abundant transcripts were
aligned and visualized with the Integrative Genomics
Viewer (IGV, version 2.8.2). The sex of both morulae
and hatched blastocysts was assigned based on the ex-
pression of DDX3Y, EIFIAY and EIF2S3Y [16, 48]. Even
though the morulae still had sperm attached to their
zona, females were identified based on the absence of
expression of the Y-chromosome specific genes. The 4-
cell embryos were not sexed, as they were sampled
around the time of EGA and as sperm were still attached
to the zona. A between group analysis was conducted in
R (version 3.6.1) [49]. A self-organizing tree algorithm
was ran for both embryo production methods to
visualize the developmental dynamics [50]. Differential
gene expression analyses was conducted with EdgeR
[51]. A false discovery rate (FDR) of < 0.1% and an abso-
lute logo,FC >1 was applied to identify the differentially
expressed genes (DEGs), which had a CPM >0.5 in at
least one of the replicates per experimental condition. The
identified DEGs were used for pathway enrichment ana-
lyses [52]. The functional analysis was conducted with the
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Qiagen Ingenuity Pathway Analysis (IPA) software. Hu-
man orthologues of DEGs were identified with the Mam-
malian Annotation Database for improved annotation and
functional classification of Omics datasets from less well-
annotated organisms [53]. A total of 21,211 21211 porcine
genes were expressed and 17,219 17219 human ortholo-
gues were identified. To conduct canonical pathway ana-
lyses, different log, FC cut-offs were set to prevent an
enrichment of redundant and overly general pathways
[52]. To prevent overly general pathway enrichments, a
maximum of 3000 DEGs should be used, while allowing
the inclusion of as many DEGs as possible (Qiagen IPA
user manual). In addition, to prevent functional enrich-
ment analysis biases, the background “universe” (Add-
itional file 4) was defined by all genes detected in the
RNA-seq experiment [54]. An absolute log, FC cut-off of
6 was applied to obtain 3063 DEGs for canonical pathway
analysis for the in vivo 4-cell to morula stage, while a log,
FC cut-off of 1.7 was applied to obtain 1559 DEGs for ca-
nonical pathway analysis for the in vivo morula to hatched
blastocyst stage. An absolute log, FC cut-off of 4 was ap-
plied to obtain 2616 DEGs for canonical pathway analysis
for the in vitro 4-cell to morula stage, while a log, FC cut-
off of 1.7 was applied to obtain 2656 DEGs for canonical
pathway analysis for the in vitro morula to hatched blasto-
cyst stage. An absolute log, FC cut-off of 0.8 was applied
to obtain 377 DEGs for canonical pathway analysis for the
in vivo versus in vitro hatched blastocysts. Canonical path-
ways were considered statistically significant with a p <
0.05 and an absolute z-score > 2.
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