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Abstract

Enrichment of ligands versus property-matched decoys is widely used to test and optimize 

docking library screens. However, the unconstrained optimization of enrichment alone can 

mislead, leading to false confidence in prospective performance. This can arise by over-optimizing 

for enrichment against property-matched decoys, without considering the full spectrum of 

molecules to be found in a true large library screen. Adding decoys representing charge extrema 

helps mitigate over-optimizing for electrostatic interactions. Adding decoys that represent the 

overall characteristics of the library to be docked allows one to sample molecules not represented 

by ligands and property-matched decoys but that one will encounter in a prospective screen. An 

optimized version of the DUD-E set (DUDE-Z), as well as Extrema and sets representing broad 

features of the library (Goldilocks), is developed here. We also explore the variability that one can 

encounter in enrichment calculations and how that can temper one’s confidence in small 

enrichment differences. The new tools and new decoy sets are freely available at http://

tldr.docking.org and http://dudez.docking.org.

Graphical Abstract

INTRODUCTION

Large library docking screens seek to discover new chemotypes that are active on a target, 

based on molecular fit. Calculation speed has been crucial since the field’s inception,1–9 and 

to ensure it, several biophysical terms are either approximated or ignored entirely. While this 

led to programs that can screen libraries now approaching10 or exceeding11 a billion 

molecules and discovering novel ligands for multiple targets,10,12–24 the emphasis on 

throughput has forced compromises that make predicting absolute binding energies by 

docking or even compound rank ordering implausible.25 While molecular docking screens 

are thus pragmatic and while docking remains among the methods most subject to 
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experimental testing in computational biophysics, it is also among the biophysical methods 

that have most surrendered “ground truth”.

Accordingly, to evaluate new docking methods or to evaluate how well docking might 

perform prospectively on a new target, benchmarking studies are often performed. For a new 

docking method, these benchmarks evaluate the key outcomes expected of a library screen: 

can the method reproduce the binding orientations of known ligands for a range of targets, 

and can it enrich known ligands from among a set of decoys over a range of disparate 

targets? For a particular target campaign with an established method, such benchmarks 

optimize for ligand pose fidelity and enrichment. This occurs by varying sampling and 

weighting energy terms—ideally constrained by physical reasonableness. It has been argued 

that careful construction of retrospective benchmarks, indeed by addressing some of the 

same problems that we investigate here, can lead to retrospective performance that predicts 

prospective success.26–28 Our own view is more conservative: given the very thin slice of 

top-ranking candidates from which docking predictions are drawn, it is difficult for small 

retrospective benchmarks to predict prospective, experimental success in docking much 

larger libraries. Still, without such benchmarks, the likelihood of success is reduced, as is 

our ability to understand failure. In docking, running detailed benchmarks for a new method 

or on a new target fulfills the same role as controls in experimental biology, which often also 

lack “ground truth”, and so must rigorously control all new experiments. However, just as in 

experimental biology, well-run controls simply protect against obvious failure and allow one 

to disentangle prospective failure when it frequently occurs; they do not predict prospective 

success when one is trying to discover something genuinely new.

Among the most widely used benchmarks in library docking is the enrichment of annotated 

ligands versus property-matched “decoy” molecules.29–31 A decoy molecule is one that is 

expected not to bind to a protein of interest; enrichment measures docking’s ability to highly 

rank (enrich) the annotated ligands vs such decoys. The idea of using decoys in benchmarks 

follows from analogous use in protein structure prediction32–34 and initially drew on random 

molecules.35–37 As is true for folding decoys, it was found that it was important that decoy 

molecules physically resemble the known ligands; otherwise, the docking program might be 

optimized to simply recognize gross physical differences, such a molecular weight, 

hydrophobicity, or charge.38 Property-matched decoys match ligands by physical properties 

but are otherwise topologically unrelated and so presumed not to bind. Enrichment of 

ligands against property-matched decoys, in sensible geometries, thus offers some assurance 

that the docking program recognizes ligands by their detailed interactions and not just gross 

physical differences. Several benchmarking sets of ligands and property-matched decoys 

have been introduced,39–46 including the DUD and DUD-E sets.29,30 The DUD-E 

benchmark, which covers 102 proteins, 22,886 ligands, and 1.1 million property-matched 

decoys, is widely used to test new methods, while its method of matching ligands to decoys 

is often employed to construct bespoke benchmarks as controls for individual target 

campaigns.

Notwithstanding its wide use, several studies have shown that DUD-E retains important 

liabilities. These include small differences in ligand vs decoy property matching, which can 

be exploited by virtual screening to falsely increase enrichment,47–49 as can self-similarity 
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among the benchmark molecules.49 Finally, property-matched decoys do not represent the 

full spectrum of molecules that will be encountered in docking a diverse library, something 

that has become increasingly true as these have increased to 109 molecules. For instance, 

they will not expose one to extreme physical differences nor will they necessarily represent 

even the typical molecular properties of a large library;26,50,51 this argues for adding, to 

property-matched benchmarks, those that challenge not with property-matched decoys but 

decoys that represent the molecules that one might expect to encounter during the 

prospective screen.

Here, we investigate optimized and new benchmarks that contribute to addressing some of 

these pathologies. An optimized version of the DUD-E set (DUDE-Z) addresses unintended 

biases in the older set that others have described,47,48 allowing for false enrichment. We also 

investigate an extrema benchmarking set (Extrema), which seeks to address charge 

imbalances in docking scoring functions and by nature uses decoys that are opposite of 

property-matched. Finally, we investigate a benchmark that represents ligands that have 

average physical features of the larger library to be docked, following up on weaknesses 

pointed out by earlier studies,26,50,51 rather than being property-matched. Akin to the Grimm 

fairy tale, we call this library “Goldilocks” because its molecules are drawn at random from 

the middle of ZINC lead-like physical property space and are not too big, not too small, not 

too greasy, and not too polar. In our experience, retrospective calculations against each set 

help control for different pathologies in prospective docking campaigns that are chief 

interest in early ligand discovery research.

METHODS

DUD-E.

Three-dimensional dockable ligand and decoy files for the 41 DUD-E targets were 

downloaded from http://autodude.docking.org. For D4 dopamine and melatonin MT1 

receptors, DUD-E decoys were generated from http://dude.docking.org/generate and built 

using an in-house ligand building pipeline.

Binders & Nonbinders.

Three-dimensional dockable files for binders and nonbinders for D4 dopamine and MT1 

melatonin receptors were downloaded from ZINC15. This included 84 binders and 468 

nonbinders and 105 binders and 65 nonbinders for D4 and MT1, respectively. Enrichment 

calculations were performed for all 16 scoring function coefficient combinations (see 

Docking Calculations).

DUDE-Z.

An initial motivation for this study was an imbalance among the charge states between 

ligands and decoys in DUD-E, arising from the generation of multiple protonation states for 

the molecules. In the DUD-E set, this had arisen because the DUD-E set was reported in 2D 

SMILES format with specific protonation states specified. Because our pipeline builds all 

molecules at all protonation states at physiological pH, the generation of new protonation 

states of ligands and decoys disturbs the charge balance originally controlled in the DUD-E 

Stein et al. Page 4

J Chem Inf Model. Author manuscript; available in PMC 2022 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://autodude.docking.org/
http://dude.docking.org/generate


set. To correct this in the DUDE-Z set, only prebuilt 3D decoys with specified protonation 

and charge states are matched to prebuilt ligands, ensuring that charge is matched exactly, 

and this balance is not disrupted. The DUDE-Z set is provided in both 2D and 3D formats.

As part of the current ligand building pipeline,52 ChemAxon’s CXCALC command is used 

on the 2D SMILES of each molecule to generate protonation and tautomer states at 

physiologically relevant pH.53 Each protomer is converted to 3D format using CORINA,54 

and conformational ensembles of each protomer are generated using OpenEye’s Omega.55 

Atomic charges and desolvation penalties are calculated using AMSOL7.1.56 Files are 

formatted into flexibases for docking with DOCK3.7.

Because several DUD-E systems had large numbers of ligands and decoys, we reduced the 

number of ligands for more rapid docking calculations. Targets with over 100 ligands had 

their ligands sorted by molecular weight and were clustered by an ECFP4 Tanimoto 

coefficient (Tc) of 0.7. The smallest ligand in each cluster served as the cluster 

representative for property-matched decoys, which had the added advantage of better 

matching the properties of the general docking library. As several of the docking targets have 

high molecular weight ligands and because 3D molecules in ZINC15 are biased toward lead-

like properties (as of July 2020, 448 million of the 698 million 3D molecules in ZINC15 are 

defined by 300 ≤ MW ≤ 350 and −1 ≤ cLogP ≤ 3.5), we found that using the smallest ligand 

as the cluster representative had the greatest success in retrieving sufficient numbers of 3D 

property-matched decoys. For targets with less than 100 ligands, all ligands were retained 

for generating property-matched decoys.

As in DUD-E, decoys were matched to ligands based on the molecular weight, water–

octanol partition coefficient (cLogP), number of rotatable bonds, number of hydrogen bond 

donors and acceptors, and net charge. We generated all protonation states for each ligand 

using ChemAxon’s Jchem53 at physiological pH and computed molecular properties using 

RDKit. Each of these protomers shares the same molecule ID; an underscore is added along 

with the number for each protomer; for instance, a molecule with two protomers would be 

designated with ZINCXXXX_0 and ZINCXXXX_1. Each protomer would be assigned up 

to 50 property-matched decoys, resulting in 100 property-matched decoys for this single 

molecule. For each protomer, the optimal goal was to find 50 property-matched decoys, but 

we also accepted as few as 20 if the number of decoys in ZINC15 was limited in this 

property space. To identify matching decoys, the ZINC15 website was queried for up to 

10,000 3D molecules matching the ligand protomer for the molecular properties listed 

above. Once thousands of decoys for a target were retrieved, ECFP4 Tanimoto calculations 

were performed using in-house programs (https://github.com/docking-org/ChemInfTools) 

between all ligands and all potential decoys for that target. Any decoy that had greater than 

0.35 ECFP4 Tc—i.e., was too similar topologically—to any ligand was discarded. The 

decoys were then sorted by molecular weight and clustered by an ECFP4 Tc of 0.8, with the 

smallest decoy being retained from each cluster. This ensured that property-matched decoys 

would not contain duplicates and ensured some scaffold exploration among the decoys. The 

remaining decoys were sorted by ECFP4 Tanimoto coefficients to all ligands and were 

placed such that the ligand with the least number of decoys assigned would get the decoy in 

an iterative procedure. If fewer than 50 decoys could be assigned to all ligands, then the 
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highest number of decoys that could be assigned to the ligand protomers was computed. If it 

was difficult to find 3D decoys for a target, then an alternative approach that queries ZINC15 

for molecular SMILES was used. The procedure was largely the same, except that up to 750 

potential decoys were retrieved for each ligand protomer based on molecular weight and 

cLogP of the decoy SMILES. Then, an additional step was performed in which 

ChemAxon’s JChem was used to generate protonation states for these decoys’ SMILES 

followed by calculation of the remaining molecular properties by RDKit to determine 

whether they matched the ligands in property space.

Extrema.

To generate extrema sets for all 43 targets, the molecular weight and cLogP values of the 

DUD-E ligand set were calculated using RDKit, and the corresponding interquartile ranges 

were calculated. For each charge, we retrieved a minimum of 1000 “in-stock” or “make-on-

demand” molecules from ZINC15, built at physiological pH of 7.4, in readily dockable 

format in this molecular weight and cLogP property space. Most of these molecules fall 

within charge ranges from −2 to +2, but there exist molecules with outlier charges as well. 

These dockable molecules were docked to their protein targets, and enrichment calculations 

were performed (see Docking Calculations).

Goldilocks.

For generating the Goldilocks decoy set, which is used for all targets, the same procedure as 

with Extrema was used. However, instead of matching the decoys to an input ligand set, “in-

stock” 3D-built molecules for each charge ranging from −2 to +2 within the property space 

(300 Da ≤ MW ≤ 350 Da, 2 ≤ cLogP ≤ 3) were retrieved from ZINC15.52 For each charge, 

3D-built molecules were retained until they reached half of the total number of 3D 

molecules with that charge and within that molecular weight and cLogP property space (on 

December 10, 2019). These dockable molecules were docked to their protein targets, and 

enrichment calculations were performed (see Docking Calculations). Of the 69,909 decoys 

in DUDE-Z, 5357 also appear within the 1.1 million Goldilocks set.

Docking Calculations.

DOCK3.7.257 was used for ligand docking. The orientations of candidate ligands are 

calculated in the site by matching ligand atoms to precalculated hot spots on the protein 

surface, using internal distance correspondence to ensure fidelity and to calculate a rotation-

translation matrix that moves the library molecule from its initial frame-of-reference to that 

of the binding site.57–59 Once fit in the site, potential ligands are scored for fit based on 

electrostatics and van der Waals complementarity, corrected for ligand desolvation. The 

protein is protonated by REDUCE60 and assigned AMBER61 united atom charges. 

QNIFFT62 is used to calculate Poisson—Boltzmann-based electrostatic potentials, CHEM-

GRID1 is used for AMBER van der Waals potentials, and SOLVMAP63 is used for 

calculating ligand desolvation energies. With these grids calculated, docking scores may be 

rapidly calculated by looking up the potentials for each ligand atom and multiplying them by 

the appropriate ligand property (e.g., electrostatic interactions are the partial atomic charge 

times the electrostatic potential at that position in space, as stored on the grid). The value of 

the electrostatic potential depends on where the dielectric boundary is drawn between a low-
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dielectric protein (ε = 2) and a high-dielectric solvent (ε = 80). This can be extended out by 

the addition of low-dielectric spheres in the site. To represent ligand flexibility, DOCK3.7 

orients flexibases64—precomputed 3D conformer ensembles—into the binding site. After 

molecules are scored for complementarity with the protein, simplex minimization is 

performed on the top scoring pose of each molecule.

Targets chosen for docking were based on completeness of structure, no missing active site 

loops, diversity of protein types (enzymes, proteases, GPCRs, and kinases, among others), 

and diversity of ligand charge. Of the 43 targets, 41 targets were taken directly from the 

DUD-E set, while MT1 and DRD4 were taken from recent docking campaigns. Ligands for 

each of the targets were taken from the DUD-E set. As described previously,30 ligands 

annotated to targets with activities (EC50, IC50, Ki, Kd, and log variants thereof) of 1 μM or 

better were extracted from ChEMBL09.65 These are labeled as “active-

s_nM_combined.ism” and can be found on the DUD-E webpage (www.dude.docking.org/

targets/). Ligands that have affinities worse than 1 μM are labeled as 

“actives_marginal_combined.ism” on the DUD-E webpage. Except for AmpC, where we 

have specialist knowledge, we did not remove molecules that may be acting as colloidal 

aggregators nor those with PAINS functionality, hoping that the 1 μM filter will eliminate 

most of these. Aggregators and molecules with PAINS alerts were also not removed from 

the DUD-E set; other investigators may wish to filter more stringently by these criteria and 

may do so by building on the scripts in http://tldr.docking.org.

The PDB structures assigned to 40 DUD-E targets were retrieved and prepared in an 

automated fashion by in-house scripts based on the DOCK Blaster pipeline66 for generating 

docking grids (blastermaster.py in the DOCK3.7 distribution). The docking preparations for 

AmpC,10,67,68 DRD410,14 (PDB: 5WIU), and MT169 (PDB: 6ME3) adopted the parameters 

that had been used in published prospective docking screens against these targets, which led 

to experimental testing of tens to many hundreds of molecules. This allows investigators to 

use not only calculated decoys but also experimentally measured false positives from these 

prospective docking screens. Thin sphere layers were used for AmpC, DRD4, and MT1 to 

extend the dielectric boundary from the solute surface for Poisson–Boltzmann calculation63 

radii of 2.0, 1.0, and 1.9 Å, respectively. For all other systems, the default DOCK Blaster 

preparation was used in which the full binding site was filled with low-dielectric spheres of 

radius 1.9 Å for Poisson–Boltzmann calculations, thereby modeling the full binding site as a 

low-dielectric solute. The magnitudes of the partial charges of five AmpC residues and two 

MT1 residues were increased without changing the net residue charges.68 For all DUD-E 

targets, their DUD-E assigned PDB ligand was used for generating up to 45 matching 

spheres, to which molecules are matched during docking. For DRD4 and MT1, matching 

spheres were generated based on the atomic coordinates of nemonapride and 2-

phenylmelatonin, respectively. Ligand conformations were generated by OpenEye’s Omega.
55 Ligands were only scored if the number of ligand heavy atoms contained within the 

ligand ranged from 4 to 100. For each ligand hierarchy (each rigid fragment contained 

within the ligand), the maximum number of matches generated was set to 5000. For AmpC 

and DRD4, the large-scale docking setup was used, in which the target number of ligand 

hierarchy matches was set to 1000, and up to 500 simplex minimization70 steps were 

performed for each top scoring pose of each docked molecule, starting with initial 
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translations of 0.2 Å and initial rotations of 5°. For MT1, the target number of ligand 

hierarchy matches was set to 5000, and up to 500 simplex minimization steps were 

performed for each top scoring pose of each docked molecule. All other DUD-E systems did 

not use simplex minimization. To judge performance, the adjusted log AUC was used. The 

adjusted log AUC subtracts the log AUC of the random curve (14.462%) to ensure that 

random enrichment is 0% at any percentage of the database. For the DUD-E benchmarking 

calculations, the DUD-E ligands for each target are used as the ligand set for these 

calculations. For all plots for DUDE-Z, Extrema, and Goldilocks, the reduced ligand set 

after clustering by an ECFP4 Tanimoto coefficient of 0.7 is used for these calculations.

To prepare different scoring function coefficient combinations, the “electrostatic_scale” and 

“ligand_desolv_scale” parameters of the INDOCK files for each target were modified to be 

0.3, 0.5, 0.7, or 1.0, generating 16 different combinations of DOCK scoring weights. The 

van der Waals scoring function coefficient was maintained at 1.0 for all docking 

calculations. All other parameters in the INDOCK file, docking grids, and matching spheres 

were kept identical.

Bootstrapping.

To add error bars to our LogAUC calculations and to compare different setups statistically, 

we use bootstrapping. For each bootstrap replicate (50 total for each system), ligands and 

decoys were chosen at random with replacement (i.e., a ligand or decoy could be chosen 

multiple times) until the same sample size as the original set was reached. Each new hit list 

was then sorted by the original docking energy, and a new adjusted log AUC is calculated. 

Z-tests were performed to test the significance of the difference between the means of two 

bootstrapped distributions. With the p-value smaller than 0.05, the null hypothesis of equal 

mean and distribution is rejected. The Z-test is chosen since the number of bootstrap 

replicates is larger than 30, and the bootstrapped distribution rapidly converges to the normal 

distribution with mild finite-variance assumptions.71

RESULTS

DOCK Scoring Function Optimization Using Property-Matched Decoys.

We were confronted with the liabilities of relying on property-matched decoys in an 

investigation of different weighting terms in the DOCK3.7 scoring function.57,63 We initially 

tried to use adjusted LogAUC performance (see below) to guide the optimization of the 

scoring function by varying the coefficients of the electrostatics and ligand desolvation 

contributions to the total docking score. We scanned across electrostatics and ligand 

desolvation weighting for 41 DUD-E targets and for the MT1 melatonin receptor (MT1) and 

D4 dopamine receptor (DRD4), which have the advantage of hundreds of experimentally 

tested docking predictions10,69 (Figure 1). To measure performance, we used a log-weighted 

area under the curve approach, subtracting from this enrichment expected at random 

(adjusted Log AUC,63 Figure 1 and Table 1). This approach equally weights enrichment in 

the top 0.1 to 1% of the library with that within the top 1 to 10% and the top 10% to 100% 

of the library, thus up-weighting early performance. Sampling sixteen combinations of 

weights (four electrostatics, four ligand desolvation with constant van der Waals) revealed 
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that performance correlated with the electrostatics and ligand desolvation terms (Figure 1a, 

Table 1, but see Sensitivity Analysis below for the significance of these differences). In most 

of the DUD-E targets, increasing the electrostatic coefficient increased enrichment of ligands 

among high-ranking molecules. This included systems such as GAR transformylase (PUR2), 

which had its best performance with weights of 1.0 for electrostatics and 0.3 for ligand 

desolvation (Figure 1b). These same coefficients, however, negatively impacted other 

systems, such as C-X-C chemokine receptor type 4 (CXCR4), where the same weights that 

were optimal for AmpC led to worse performance. Instead, CXCR4 had its best enrichment 

of ligands among high-ranking molecules with weights of 0.5 on the electrostatics and of 1.0 

on the ligand desolvation terms (Figure 1c).

Closer inspection revealed that the enrichment differences and the sensitivity to scoring 

coefficients were often explained by different formal charge distributions between ligands 

and decoys. For instance, for AmpC, larger weighting of electrostatic interactions improved 

enrichment of high-ranking ligands because AmpC’s ligands are all anionic, whereas 35% of 

AmpC’s DUD-E decoys are neutral (Figure 2a). Thus, as the weight on the ligand 

desolvation term, which scales with net charge, decreases, AmpC’s anionic ligands are 

penalized less (Figure 2c). When unconstrained, as with an electrostatics weighting of 1.0 

and ligand desolvation weighting of 0.5, the “optimized” scoring function, i.e., the 

coefficients that maximize enrichment, prioritizes charge over other molecular properties 

versus the unweighted, standard scoring function. Similarly, most of the PUR2 ligands are 

dianions, while their decoys are mainly monoanionic or neutral (Figure 2b), and docking 

with reduced ligand desolvation coefficients favors the ligands over the decoys (Figure 2d). 

Even if all our molecular properties, besides charge, are well-matched in the DUD-E 

benchmarking sets, altering the scoring function weights of electrostatics and ligand 

desolvation allows DOCK to simply recognize gross physical differences between ligands 

and decoys, rather than detailed molecular interactions, reflecting an imbalance in the DUD-

E ligand and decoy properties.

New Property-Matched Decoy Method.

The original DUD-E benchmarking set30 was built to correct the charge imbalance in the 

original DUD set29 by including net charge during property matching. However, during 

molecular building of 3D dockable molecules, the charge populations change based on 

which protomers are predicted to exist at physiological pH, producing charge imbalances 

that were not present in the SMILES representation. For example, calculating the formal 

charges of the AmpC ligand and decoy SMILES contained within the DUD-E benchmarking 

set suggests that 60 and 38% of ligands are neutral and monoanionic, respectively, while 43 

and 56% of decoys are di- and monoanionic, respectively, compared with the actual charge 

representation in the dockable set (Figure 2a).

To address this, we created a new decoy pipeline that better charge-matched ligands to 

decoys (freely available at http://tldr.docking.org), such that ligand and decoy protomers are 

only considered in their dockable, 3D representation. In summary, up to 50 decoys are 

generated for each ligand accounting for the charge, molecular weight, calculated LogP, 

number of rotatable bonds, and number of hydrogen bond acceptors and donors while 
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ensuring that these decoys are structurally dissimilar to each other and to the ligands to 

which they are matched (Table 2 and Table S3). By default and always for proteins with 

more than 100 ligands, the ligands are first clustered by an ECFP4 Tc of 0.7 to reduce the 

dominance of narrow congeneric series. The ligand with the smallest molecular weight from 

each cluster is chosen for property matching. These changes improve the DUD-E design, 

without changing its underlying logic.

Improved Property-Matched Decoys Reduce False Enrichment.

With these changes in hand, we compared the “optimized” scoring function with a 0.5 

weight on ligand desolvation to the standard, unweighted scoring function to determine 

whether the improved enrichments stood up to better charge matching between ligands and 

decoys. Competition with the better charge-matched decoys reduced the enrichment 

differences between the standard and the “optimized” 0.5 ligand desolvation scoring 

functions from 1.11 with the original DUD-E set to −0.34, supporting the hypothesis that 

more closely property-matched decoys would be less susceptible to imbalances in 

electrostatics and ligand desolvation energies (Figure 3 and see Sensitivity Analysis below 

for the significance of such differences). For instance, AmpC, whose enrichment was better 

with the optimized scoring function by 6.34 log adjusted AUC, with the new property-

matched decoy background now much favors the standard scoring function, attaining an 

enrichment of 20.92, 12 adjusted log AUC over the “optimized” scoring function’s 8.93. 

Similarly, the DUD-E enrichment difference for PUR2 was 9.15 log adjusted AUC, but the 

difference becomes 0.35 in the new decoy set. Similar behavior where complete charge 

matching reduces preference for the optimized scoring function is seen in multiple systems 

including fatty acid binding protein 4 (FABP4), protein-tyrosine phosphatase 1 (PTN1), 

tryptase beta-1 (TRYB1), and trypsin I (TRY1). The opposite also occurs, where preference 

for the standard scoring function is diminished in the presence of better charge-matched 

decoys such as in rho-associated protein kinase 1 (ROCK1), C-X-C chemokine receptor type 

4 (CXCR4), and epidermal growth factor receptor (EGFR). Overall, the average adjusted log 

AUC values for the 43 targets dropped from 19.05 and 20.2 for the standard and “optimized” 

scoring functions, respectively, with the original DUD-E benchmarking sets, to 14.82 and 

15.17 with the new, better-matched decoy sets (Table 3). This enrichment drop reflects the 

better choice of decoy molecules in the new benchmarks, making the challenge harder, 

appropriately, for the docking program.

To ensure that these differences were not due to the reduced ligand set used in DUDE-Z vs 

the larger ligand sets in DUD-E, we generated charge-matched decoys for the 43 targets 

using the full ligand set from DUD-E (Table S6). Preparing the original DUD-E set using the 

protocols on the DUD-E site, the “optimized” scoring function performs better than the 

standard one by 3.4 units of adjusted logAUC. When this full DUD-E set is now optimized 

for charge matching, using the DUDE-Z procedures, the difference between the adjusted 

logAUC drops to 0.82 units between the two scoring functions. With both the reduced ligand 

set and the charge matching, the difference between the two scoring functions falls to 0.33 

adjusted LogAUC. This supports the idea that the difference between the two scoring 

functions with DUD-E largely reflects a charge mismatch between ligands and decoys 

within that set. We note that for AmpC β-lactamase, the dopamine D4 and the s melatonin 
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receptors, hand-optimized docking parameters, used in past prospective campaigns against 

these targets,10,69 were employed. We therefore compared performance with the DUD-E and 

DUDE-Z benchmarks with and without optimized parameters in these three systems. The 

DUDE-Z benchmark was typically more stringent, though the opposite was true for the 

melatonin receptor, on whose neutral-dominated ligands and decoys the optimization in 

DUDE-Z will have less impact (Table S7). It is also interesting that retrospective enrichment 

did not always improve with the hand-optimized parameters used in the actual prospective 

campaigns. For instance, those optimized parameters reduced enrichment for the DUDE-Z 

and Goldilocks sets for the dopamine D4 receptor versus unoptimized parameters. However, 

enrichment vs the extrema set was improved, reflecting better charge matching with the 

optimized parameters, as did geometric fidelity to competent ligand poses. These 

observations emphasize that multiple criteria may be considered in optimizing docking 

parameters, not simply enrichment against a decoy set (we do not discount the possibility of 

improving benchmarks to make this more s automatic; we would note that the prospective 

campaigns against the D4 dopamine and MT1 receptors and against AmpC revealed novel, 

potent ligands with high hit rates10,6).

Beyond Property-Matched Decoys: Charge Extrema.

Given the sensitivity to even small differences in charge matching between ligands and 

decoys, we thought it worthwhile to investigate how sensitive the docking was not only to 

property matching but to extremes intentionally outside the property range of the ligands. 

We reasoned that docking parameters might be unintentionally optimized to weight 

particular energetic terms at the expense of others. Such blind spots might only be 

illuminated when comparing the performance of physically extreme molecules.

Based on our experience with the impact of electrostatic and desolvation weighting above, 

we focused on ligands representing charge extremes, probing for overweighted electrostatic 

interactions or underweighted desolvation penalties in our scoring function. These charge-

extrema sets were populated with decoys that have similar physical properties (molecular 

weight, cLogP) to the ligands queried but include all charges from −2 to +2, taken from “in-

stock” and “make-on-demand” libraries in ZINC15.52 If many molecules bearing a net 

charge of −2 score better than AmpC’s monoanions, for instance, then this would indicate a 

bias in the scoring that would have been concealed by the charge-matched decoys. We 

generated sets of property-matched charge-extreme decoys for 43 targets (Table S4). These 

charge outlier decoys (≤ −2 and ≥ +2) comprised on average 37% (272K of 732K molecules) 

of benchmarks, ranging from 15% (tryptase beta-1, TRYB1) to 57% (neuraminidase, 

NRAM). For a well-balanced scoring function, which properly captures molecular 

interactions, including charge extrema should improve ligand enrichment since decoys 

bearing unreasonable charges should be readily recognized, which is indeed what we see, 

though performance improves only slightly (Figure 4, Table 3, and see Sensitivity Analysis 

below for the significance of such differences), with systems with charged ligands being 

affected significantly. For example, GAR transformylase (PUR2, Figure 4b) recognizes tri- 

and dianionic ligands. When screened against a large extrema set with down-weighted 

desolvation, cations begin to dominate, behavior that the standard scoring function is at least 

partially able to combat (Figure 4b). Similar behavior is seen with protein-tyrosine 
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phosphatase 1b (PTN1), which predominantly binds mono- and dianions in the standard 

scoring function but begins to prioritize tri- and tetra-anions when the optimized scoring 

function is utilized. As with GAR transformylase, the increased desolvation cost in the 

standard scoring function actually diminishes performance relative to the “optimized” 

scoring function as it penalizes both extreme-charged ligands and decoys. On the other hand, 

epidermal growth factor receptor (EGFR) and macrophage colony stimulating factor 

(CSF1R, Figure 4c), which perform better with the standard scoring function over the 

optimized scoring function with extrema, both recognize neutral ligands. When these two 

targets are screened with charge extrema, the standard scoring function is more equipped to 

penalize inappropriate charges over the optimized scoring function, which in the presence of 

charge extrema is flooded with anions and cations. Each of these cases can be explained by 

the underweighting of the ligand desolvation penalty in a scoring function optimized against 

the DUD-E set that both had a discrepancy between ligand and decoy charges and were not 

challenged with charged extrema, as we show here.

If charge extrema can reveal cryptic pathologies in docking scoring, then so too can testing 

against molecules that are intentionally unmatched from the physical properties of the 

ligands but instead reflect the molecules of the overall library itself. Since each receptor will 

have its own ligand preferences, certainly with the biases from the medicinal chemistry 

literature, for any given receptor, the average library molecule may well-represent a physical 

property outside those of the receptor’s ligands, exposing the docking screen to new, 

previously unsampled physical properties. Thus, we investigated control calculations with a 

set of 1.1 million ZINC molecules. These comprised over 300,000 Bemis–Murcko 

scaffolds72 representing the middle of the range of physical parameters of the library: not 

too big, not too small, not too polar, and not too greasy (Goldilocks, Table S5). Whereas this 

benchmark was meant to represent the middle range of properties of a much larger library to 

be docked prospectively, we also compared it to the physical properties of a large high-

throughput screening deck, the 400,000 molecule Molecular Libraries Small Molecule 

Repository (MLSMR), and to hits from screening and other techniques that have been 

advanced to candidacy.73 Gratifyingly, the molecules in Goldilocks overlapped both of these 

sets in key physical properties including MWT, cLogP, the number of rotatable bonds, and 

the number of hydrogen bond acceptors and donors (Figure S6). Docking the Goldilocks 

benchmark against the 43 targets resulted in log adjusted AUC values of 28.13 and 28.68 for 

the s standard and “optimized” scoring functions, respectively (Table 3). These are higher 

than the enrichments with the property-matched sets, as expected owing to its non-property-

matched nature; the differences between the two scoring functions against the Goldilocks set 

are small (see Sensitivity Analysis below).

As an aside, the Goldilocks set also allowed us to return to one of the earliest motivations for 

property-matched benchmarks,38 the idea that they would prevent docking scoring functions 

from cheating by optimizing against a particular physical property, such as molecular 

weight. Thus, property-matched sets are meant to be and widely thought to be harder for 

docking than random sets of molecules. The 1.1 million molecule size of the Goldilocks set 

allows us to return to this point quantifiably, comparing performance against this benchmark 

vs DUDE-Z across 43 receptor systems. A random set of Goldilocks decoys was chosen for 

a fixed set of ligands (common to both benchmarks), with a ratio of 50:1 decoys to ligands; 
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this was repeated 100 times with different random Goldilocks decoys, and a distribution of 

LogAUC values was calculated (Figure S5). In 39 of 43 systems, the LogAUC of the 

Goldilocks scores was compelling and certainly statistically larger than the DUDE-Z 

LogAUC values, with z-scores for the average difference in LogAUC typically exceeding 

100. This supports the longstanding idea that property-matched decoys provide harder tests 

for docking than random collections of ligands.

Even against a background of high enrichment, there are targets for which performance 

varies between the two scoring functions. Here, we focus on illustrative targets where the 

differences are substantial and significant (see Sensitivity Analysis below). In AmpC β-

lactamase, tests against the DUDE-Z set suggest that the standard, unweighted scoring 

function led to better enrichments than the putatively optimized one where ligand 

desolvation was down-weighted by 0.5 (Figure 3), in contrast to the DUD-E benchmark test 

that had led to this new weighting. Against the Goldilocks benchmark, however, the situation 

reverts, with the optimized scoring function performing better than the standard scoring 

function, with an enrichment difference over 11 in adjusted log AUC (Figure 5). This 

difference is only partly captured by the extrema set, where the difference is only slightly 

larger than 2 adjusted log AUC. Similarly, GAR transformylase (PUR2) sees the relative 

enrichment of the optimized scoring function rise by almost 10 units of adjusted log AUC 

versus the standard scoring function with the Goldilocks set vs DUDE-Z, while with trypsin 

I (TRY1), ligands favor the optimized scoring function using the Goldilocks benchmark by 

almost 4 adjusted log AUC units versus the less than 1 unit difference using the DUDE-Z 

set. A few targets, such as FK506-binding protein 1A (FKB1A) and polo-like kinase 1 

(PLK1), see the opposite effect—the optimized scoring function performs noticeably worse 

with the Goldilocks benchmark versus DUDE-Z. These differences are explained by 

differences in the properties of the decoys in the different benchmarks. In DUDE-Z, the 

decoy physical properties are tightly calibrated to those of the ligands. Conversely, 

Goldilocks represents the physical properties of the library to be docked. For targets 

recognizing ligands with physical properties much different from “lead-like”74 molecules, 

which dominate the Goldilocks benchmark and the library it represents, such as AmpC, 

GAR transformylase (PUR2), and trypsin I (TRY1), the DUDE-Z set will be a more 

stringent test (Figure 5b). However, scoring term weights that optimize performance against 

it will not always translate to a lead-like benchmark like Goldilocks. For these systems, the 

key differences are in the distribution of charge states of the ligands and the decoys: in 

DUDE-Z, these are well-matched, while in Goldilocks and the ultra-large library that it 

represents, mono-, di-, and trianions, as well as dications, are far less common than among 

the known inhibitors of these targets (Figure 5c–e), providing opportunities for these ligands 

to exploit the optimized scoring function with its down-weighted ligand desolvation term 

and score well. For systems that bind molecules within lead-like space, such as peroxisome 

proliferator-activated receptor alpha (PPARA), urokinase-type plasminogen activator 

(UROK), and epidermal growth factor receptor (EGFR), the enrichment differences between 

the standard and optimized scoring functions diminish and even begin to favor the standard 

scoring function (Figure 5b,f–h), as outlier charges are unable to exploit liabilities within the 

optimized scoring function.
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Up until now, we have seen results shift as we change the benchmark from DUD-E to the 

optimized DUDE-Z to Extrema to Goldilocks. A natural reaction might be to despair 

benchmarking entirely. Our own view is that each of these benchmarks is useful (we suggest 

the optimizations in DUDE-Z over DUD-E), and together can inure developers and users 

from false conclusions around the scoring function and docking parameter optimization. The 

different lessons that each benchmark teaches reflect weaknesses of enrichment as a metric; 

it nevertheless remains a crucial criterion for docking performance. These are points to 

which we will return.

Sensitivity Analysis & Statistical Significance.

The area under the curve (AUC) and its variants are widely used as a single value measure of 

docking performance.57,63,75–80 In comparing an innovation with the current best practice, it 

is common to see improvements in enrichment across a benchmarking set. It is important to 

understand when such improvements are significant beyond the variation one might see with 

small changes to docking parameters. To assess confidence intervals on enrichment plots, we 

turned to an empirical bootstrapping approach. In this method, we calculate enrichments 

multiple times for any given benchmark, each time picking a random subset of the ligands 

and decoys in the set, retaining the same sample size as the original set. For many of the 

DUDE-Z targets, this is readily done, as only a subset of the possible ligands is typically 

represented, and many more property-matched decoys are typically available from ZINC. 

With the new benchmark, whose ligands closely resemble the canonical ones and whose 

decoys reflect the same property matching, a new enrichment is calculated.

Repeated for 50 random subsets of ligands and decoys for each target, this approach allows 

one to calculate confidence intervals of enrichment (adjusted log AUC). We did so for the 

same 43 targets, recording the variance of the enrichments. Based on these bootstrapping 

calculations, we find that the average 95 and 75% confidence interval over the 43 systems is 

about 9.4 and 5.8 adjusted log AUC units, respectively. Naturally, individual systems varied 

in their confidence levels: from a relatively tight distribution for androgen receptor (ANDR, 

95% CI of 3.0) to a much wider distribution for fatty acid binding protein-4 (FABP4, 95% 

CI of 15.6) (Figure S1). Bootstrapping can also be used to compare the performance of two 

docking methods or two scoring functions. The Z-test and corresponding p-values are used 

here since the number of bootstrap replicates is over 30, and the bootstrapped distribution 

follows the normal distribution.

Figure 6 shows the bootstrapped distribution comparison between the standard (STD) and 

“optimized” (0.5LD) scoring functions with DUD-E, DUDE-Z, Extrema, and Goldilocks as 

decoy sets on 41 DUD-E targets, as well as the melatonin MT1 receptor and the dopamine 

D4 receptor where we have not only experimentally measured docking true but also docking 

false positives (Figure S2). Here, for the combined sets, the change in the mean adjusted log 

AUC between the standard and optimized scoring functions is 0.49, 0.36, −0.05, and 0.23 for 

the DUD-E, DUDE-Z, Extrema, and Goldilocks backgrounds, respectively (Figure 6a). For 

the aggregate, only the DUD-E background difference is significant with a p-value less than 

0.05, likely reflecting its flawed charge matching between ligands and decoys, while all 

other decoy backgrounds are not. Innovations that we might have otherwise considered 
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successful are often found to be statistically indistinguishable or to be significant against one 

background but not on another. Screening poly-ADP-ribose polymerase 1 (PARP1) with 

DUD-E, DUDE-Z, and Goldilocks decoy sets shows significant improvement with the 

optimized scoring function over the standard scoring function, whereas performance is 

significantly worse with Extrema (Figure 6b). In the adenosine 2A receptor (AA2AR, Figure 

6c), ligands in the presence of DUD-E and DUDE-Z decoy sets significantly favor the 

optimized scoring function but flip to favoring the standard scoring function in the presence 

of Extrema and Goldilocks sets, versus in coagulation factor VII (FA7, Figure 6d); ligands 

always significantly favor the optimized scoring function regardless of the decoy 

background (see Figure S3 for difference distributions and Figure S4 for bootstrapping plots 

of all 43 systems). However, we note that only when screened with the DUD-E decoys are 

the enrichment differences in these scoring functions significantly different (Figure 6a), 

showing for all other decoy sets insignificant differences. When all decoy sets are combined, 

the bootstrapping enrichment differences remain insignificant.

DISCUSSION

Four themes emerge from this work. First, for all their strengths, property-matched decoys 

alone can mislead in evaluating docking performance. Scoring functions can exploit physical 

property differences between ligands and decoys even in relatively well-balanced sets, as we 

see by comparing the original DUD-E and the refined DUDE-Z sets. Decoys that are 

intentionally non-property-matched, such as the Extrema set that explores ligands with high 

molecular charges and the Goldilocks set, whose decoys can be far different from the known 

ligands but which represent the properties of the ultra-large database to be docked, reveal 

liabilities that are hidden by the property-matched sets. Second, enrichment, which is 

perhaps the key criterion for library docking assessment, remains a weak metric, ungrounded 

in physical theory or observables. Third, our understanding of this metric can be 

strengthened with confidence intervals, which can be readily estimated. These confidence 

margins are often surprisingly large, and apparently different enrichments are often 

statistically indistinguishable. Finally, we make the new tools developed here, including 

generation of better property-matched decoys (DUDE-Z), charge Extrema, Goldilocks, and 

bootstrapping adjusted log AUC ranges, available and free to use for the community.

Property-matched decoys remain crucial for docking evaluation,29,30,38 reducing the ability 

of scoring functions to exploit gross physical property differences between ligands and the 

random molecules that had initially been used in the field.35 However, property matching 

has its own liabilities, revealed by other backgrounds. For instance, property matching 

decoys to the GAR transformylase, AmpC β-lactamase, or trypsin I receptor ligands will 

result in decoys that have charge ranges tightly distributed around −2, −1, and +1 to +2 

formal charges, respectively. A scoring function that overweights electrostatic interaction 

energies or underweights desolvation energies may not be revealed by such property-

matched decoys. This is what we observed with what appeared to be an “optimized” 

function that down-weighted ligand desolvation, improving average enrichment over 43 

systems. This apparent improvement was eliminated not only by better charge matching in 

the optimized DUDE-Z set, but its basis in overweighted electrostatic interactions was 

illuminated by a charge Extrema set (Figure 4). Similarly, benchmarks that are well-matched 

Stein et al. Page 15

J Chem Inf Model. Author manuscript; available in PMC 2022 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



around ligands with unusual physical properties—in this study, highly charged ligands—will 

not reveal liabilities that a background representing the properties of the overall library can 

illuminate. This is what we observe for the Goldilocks benchmark (Figure 5).

Enrichment of ligands over property-matched decoys30,75,76,81–85 is widely used for 

parameter optimization and scoring function development.47,50,51,63,86–93 Because 

enrichment is ungrounded in physical theory, it is sensitive both to changes in the decoy 

background,49 which are usually only reasonable guesses, and to the ligands, which 

represent experimental observables, flawed though these too can be. In principle, 

development of decoy sets and new sampling and scoring functions would be matched with 

carefully controlled wet experiments to test them. While there are several model87,94–97and 

biological systems10,26 that support doing so and that allow for comparisons among docking 

programs, purely computational controls will continue to play a key role in benchmarking 

docking performance (as an aside, the advent of ultra-large docking libraries and the 

experimental testing of large numbers of docking hits that flow from them10,69 will reveal 

experimental decoys that will complement what have been, until now, only presumed decoy 

sets). As such, we do not wish to undercut enrichment as a metric of docking—weak as it is, 

it remains crucial to progress in the field. What this study teaches is that our confidence in 

enrichment can be much strengthened by using multiple decoy backgrounds. 

Correspondingly, the significance of enrichment differences with different docking 

parameterization and with different scoring functions should be controlled for. One way to 

do so is via the bootstrapping method that we outline here (Figure 6), which can insulate one 

from false conclusions about differences that fall within the variation expected from small 

changes in the ligands and decoys used (scripts to implement this are available at http://

tldr.docking.org).

Confronted with ever more decoy benchmarks and the time it takes to run a full set of 

controls, it is natural to wonder if there is no end to the cottage industry of new benchmarks. 

One can imagine spending too much time on these sanity checks and too little on the actual 

prediction of new chemical matter with prospective docking. Nevertheless, the time and 

expense of sourcing and physically testing new chemical matter and of eliminating 

experimental artifacts52,98,99 still far exceed the cost of running these computational 

controls. Property-matched benchmarks are rarely composed of more than a few thousand 

molecules for a given target, and even the Goldilocks set comprises less than 2 million 

molecules, less than 1% the size of the ultra-large libraries now being prosecuted.10,11,69 To 

make these controls accessible to the community, we provide the optimized DUDE-Z 

benchmarks at http://dudez.docking.org. We also provide a web service that allows 

investigators to create bespoke Extrema and Goldilocks sets and enables bootstrapping tests 

for statistical significance—freely available at http://tldr.docking.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AA2AR adenosine A2a receptor

ABL1 tyrosine-protein kinase ABL

ACES acetylcholinesterase

ADA adenosine deaminase

ADRB2 beta-2 adrenergic receptor

AMPC beta-lactamase

ANDR androgen receptor

CSF1R macrophage colony stimulating factor receptor

CXCR4 C-X-C chemokine receptor type 4

DEF peptide deformylase

DRD4 D4 dopamine receptor

EGFR epidermal growth factor receptor erbB1

FA10 coagulation factor X

FA7 coagulation factor VII

FABP4 fatty acid binding protein adipocyte

FGFR1 fibroblast growth factor receptor 1

FKB1A FK506-binding protein 1A

GLCM beta-glucocerebrosidase

HDAC8 histone deacetylase 8

HIVPR human immunodeficiency virus type 1 protease

HMDH HMG-CoA reductase

HS90A heat shock protein HSP 90-alpha

ITAL leukocyte adhesion glycoprotein LFA-1 alpha
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KIT stem cell growth factor receptor

KITH thymidine kinase

LCK tyrosine-protein kinase LCK

MAPK2 MAP kinase-activated protein kinase 2

MK01 MAP kinase ERK2

MT1 melatonin MT1 receptor

NRAM neuraminidase

PARP1 poly-ADP-ribose polymerase 1

PLK1 serine/threonine-protein kinase PLK1

PPARA peroxisome proliferator-activated receptor alpha

PTN1 protein-tyrosine phosphatase 1B

PUR2 GAR transformylase

RENI renin

ROCK1 rho-associated protein kinase 1

SRC tyrosine-protein kinase SRC

THRB thrombin

TRY1 trypsin I

TRYB1 tryptase beta-1

UROK urokinase-type plasminogen activator

XIAP inhibitor of apoptosis protein 3
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Figure 1. 
(a) For each electrostatic coefficient (0.3, 0.5, 0.7, and 1.0), the average adjusted log AUC 

value and standard error, which are calculated over the four ligand desolvation coefficients 

(0.3, 0.5, 0.7, and 1.0), are plotted. Individual adjusted LogAUC plots for each electrostatic 

and ligand desolvation coefficient combination for PUR2 (b) and CXCR4 (c) are shown. 

Performance for PUR2 diminishes as the ligand desolvation coefficient increases, while 

performance for CXCR4 improves as the ligand desolvation coefficient increases.
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Figure 2. 
Proportion of charged ligands and decoys in the DUD-E benchmarking sets coupled with 

altered electrostatic and ligand desolvation weights affects the DOCK energies and thus 

LogAUC values. Percentage of ligands or decoys in the DUD-E set with a given charge for 

AmpC β-lactamase (AmpC, a) and GAR transformylase (PUR2, b). Comparison of DOCK 

energy and molecule charge for AmpC β-lactamase (AmpC, c) and GAR transformylase 

(PUR2, d) for the electrostatic coefficient of 1.0 and the four ligand desolvation weights 

(0.3, 0.5, 0.7, and 1.0). Central dotted lines of DOCK energies represent the medians, upper 

Stein et al. Page 25

J Chem Inf Model. Author manuscript; available in PMC 2022 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dotted lines represent the third quartiles, and lower dotted lines represent the first quartiles 

for both scoring functions. The lowest points represent the minimum DOCK energies, and 

the highest values represent the maximum DOCK energies. The AmpC ligands in DUD-E 

are predominantly anionic (a), and while this is also true for the decoys, the latter harbors a 

higher ratio of neutral molecules. Increasing the ligand desolvation coefficient ranks neutral 

molecules higher (as sorted by total DOCK energy), favoring decoys, and enrichment 

decreases (c). Conversely, increasing the electrostatic coefficient favors the anionic ligands, 

increasing the enrichment. The large majority of PUR2 ligands is di-anionic, while the 

decoys are monoanionic (b), providing an advantage to the ligands at lower ligand 

desolvation coefficients (as sorted by total DOCK energy) (d), as they can form more 

favorable electrostatic interactions with the protein without a large ligand desolvation cost.
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Figure 3. 
Adjusted LogAUC differences between the standard, unweighted scoring function, and the 

optimized scoring function (1.0ES+1.0vdW+0.5LD), comparing the original DUD-E decoys 

(blue bars) and decoys prepared with the new DUDE-Z pipeline (orange bars), in which 

decoys are better charge-matched. Apparent advantages for the weighted scoring function 

dissipate on better charge matching. Average adjusted log AUC differences of −1.11 (DUD-

E) and −0.34 (DUDE-Z).
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Figure 4. 
(a) Adjusted LogAUC differences between the standard scoring function and the weighted 

scoring function using the new DUDE-Z decoy pipeline and the charge extrema decoys. 

(b,c) through (e). Comparing DOCK energy and molecule charge of the standard and 

optimized scoring functions using DUDE-Z ligands and using charge extrema decoys for (b) 

protein-tyrosine phosphatase 1 (PTN1) and (c) macrophage colony stimulating factor 

receptor (CSF1R). Central dotted lines of DOCK energies represent the medians, upper 

dotted lines represent the third quartiles, and lower dotted lines represent the first quartiles. 

The lowest points represent the minimum DOCK energies, and the highest values represent 

the maximum DOCK energies for both scoring functions. As ligand desolvation is down-

weighted in the optimized scoring function, more extreme charges score better, which is 

advantageous for targets that have extreme charged ligands like PUR2 and PTN1. However, 

this becomes problematic and decreases enrichment for systems whose ligands are less 

extreme like EGFR and CSF1R.

Stein et al. Page 28

J Chem Inf Model. Author manuscript; available in PMC 2022 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
(a) Enrichment differences between the standard scoring function and optimized scoring 

function comparing the new DUDE-Z benchmarks, charge extrema decoys, and the 

Goldilocks benchmarks, with a focus on the enrichment changes in specific targets (b). 

Comparison of net charge of ligands and benchmark decoys for AmpC β-lactamase (AmpC, 

c), GAR transformylase (PUR2, d), trypsin I (TRY1, e), peroxisome proliferator-activated 

receptor alpha (PPARA, f), urokinase-type plasminogen activator (UROK, g), and epidermal 

growth factor receptor (EGFR, h). For systems whose ligands have more extreme charges, 

Stein et al. Page 29

J Chem Inf Model. Author manuscript; available in PMC 2022 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



there is a typically small overlap in ligand charges and decoy charges, providing an 

advantage to the extreme charged ligands with the optimized scoring function. However, in 

systems where the ligand charges overlap more significantly with the decoy charges, the 

standard scoring function begins to perform better as there are no extreme charged ligands to 

exploit the lower desolvation cost and rank more favorably.
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Figure 6. 
Applying bootstrapping to the different decoy backgrounds demonstrates that while there 

may be statistically significant differences in terms of performance between the scoring 

functions for particular systems, if all bootstrapping enrichments are combined for all decoy 

sets over all 43 systems, then there is no statistically significant difference between the 

standard and optimized scoring functions, demonstrating that one can be deceived by 

significant differences between the two scoring functions when only considering one decoy 

background. Average bootstrapping statistics on the enrichments for DUD-E, DUDE-Z, 

Extrema, Goldilocks, and all decoy sets (Combined) for all 43 systems (a). Individual 

bootstrapping statistics (50 for each) on the enrichments (adjusted log AUC values) for 

DUD-E, DUDE-Z, Extrema, and Goldilocks decoy backgrounds for poly-ADP-ribose 

polymerase I (PARP1, b), adenosine 2A receptor (AA2AR, c), and coagulation factor VII 

(FA7, d). From the 50 bootstrapped adjusted log AUC values generated, central dotted lines 

represent the medians, upper dotted lines represent the third quartiles, and lower dotted lines 

represent the first quartiles. The lowest points represent the minimum adjusted log AUC 

values, and the highest points represent the maximum adjusted log AUC values generated 

from bootstrapping. See Figure S3 for difference distributions and Figure S4 for 

bootstrapping plots for all 43 systems.
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Table 2.

Ligand and Decoy Properties for 43 Protein Targets

DUD-E DUDE-Z Extrema Goldilocks

# unique ligands 8267 2312

# unique decoys 477,924 69,904 732,309 1,145,472

# unique decoy scaffolds 162,286 33,292 143,423 317,316
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Table 3.

Average Adusted logAUC Values for Different Decoy Sets

Extrema Goldilocks

DUD-E DUDE-Z DUD-E ligands DUDE-Z ligands DUD-E ligands DUDE-Z ligands

optimized (1.0ES+1.0vdW+0.5LD) 20.31 15.26 26.05 16.24 42.18 28.68

standard (1.0ES+1.0vdW+1.0LD) 19.2 14.92 26.16 16.02 41.71 28.13

difference −1.11 −0.34 0.11 −0.22 −0.47 −0.55
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