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This study aimed to provide effective methods for the identification of surgeries with high cancellation risk based on machine
learning models and analyze the key factors that affect the identification performance. The data covered the period from January 1,
2013, to December 31, 2014, at West China Hospital in China, which focus on elective urologic surgeries. All surgeries were
scheduled one day in advance, and all cancellations were of institutional resource- and capacity-related types. Feature selection
strategies, machine learning models, and sampling methods are the most discussed topic in general machine learning researches
and have a direct impact on the performance of machine learning models. Hence, they were considered to systematically generate
complete schemes in machine learning-based identification of surgery cancellations. The results proved the feasibility and
robustness of identifying surgeries with high cancellation risk, with the considerable maximum of area under the curve (AUC)
(0.7199) for random forest model with original sampling using backward selection strategy. In addition, one-side Delong test and
sum of square error analysis were conducted to measure the effects of feature selection strategy, machine learning model, and
sampling method on the identification of surgeries with high cancellation risk, and the selection of machine learning model was
identified as the key factors that affect the identification of surgeries with high cancellation risk. This study offers methodology and
insights for identifying the key experimental factors for identifying surgery cancellations, and it is helpful to further research on
machine learning-based identification of surgeries with high cancellation risk.

1. Introduction

Surgery cancellation is a well-recognized health care quality
problem that harms patients and wastes resources, leading to
considerable losses for medical institutes and the entire
health care system [1-3]. It forces scarce operative resources
to remain idle and hinders patients’ access to operative
services [4]. Estimates of this revenue loss range between
USD 1,430 and USD 1,700 for each cancelled case in US
hospitals not on a fixed annual budget [5, 6]. In a review of
surgery cancellations worldwide [4], the global cancellation
rate (CR) generally ranges from 4.65% to 30.3%, which is a
high proportion that urgently needs to be reduced.

Identification of surgeries with high cancellation risk could
provide information for health care service management and
enable the adoption of preventive actions for achieving a
lower CR [4]. Hence, it is of great value to identify surgeries
with high cancellation risk.

For reflecting relevant information on patients and
medical operation institutions, the hospital information
system (HIS) plays an important role in health care service
management, including surgery scheduling. Nowadays,
health care service management-related studies on HISs
have been conducted in many important fields [7-16], such
as research on hospital admission rates [7, 8], clinical
medication rules [9, 10], and referral management in
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hospitals [11, 12]. Particularly, the study of HIS in the field of
identification of surgeries with high cancellation risk has
proved that applying HIS data to identify surgeries with high
and low risks of cancellation is feasible [4].

To date, most surgery cancellation studies have mainly
focused on the predictors or risk factors of surgery cancel-
lation. In the risk-factor-based category of cancellation,
surgery cancellations generally include institutional resource-,
capacity-, and patient-related cancellations. A significant
percentage of surgery cancellations could be avoided,
according to risk-factor-based analysis [17-19]. The risk
factors of surgery cancellation include patient, admission,
workup, and surgery schedule information, as well as ad-
ministrative issues and surgery process records [4, 17, 20-26].

In recent years, various studies have focused on reducing
surgery cancellation [21, 27-30]. For example, a team of
researchers [27] used discrete event simulation modeling to
represent perioperative processes and tested the effects of
three scenarios on the number of surgical cancellations.
Another team [28] simulated an anesthesiology preoperative
assessment clinic to quantify the impact of patient infor-
mation deficiency to mitigate the problem of surgery delay
or cancellation. These studies used industrial engineering
techniques to investigate means for reducing the number of
surgical cancellations across the system but did not focus on
identifying surgery with high cancellation risk. Among the
works focusing on identifying surgeries with high cancel-
lation risk, a retrospective cohort study [29] examined the
association between patient, surgeon, and system factors and
proved that several patient and system factors can be used to
identify surgeries with a high likelihood of cancellation. The
factors associated with surgery cancellation have been
evaluated using chi-squared tests and multivariate logistic
regression analyses [21]. Using multilevel logistic regression,
an observational cohort study [30] identified patient- and
hospital-level factors associated with cancellation owing to
inadequate bed capacity. However, the accuracy of the
above-mentioned studies only using traditional statistics
models is low [29].

Machine learning is a powerful and effective tool for
medical study. Machine learning has seen many applications
in the fields of health care management [31-33], health care
cost prediction [34, 35], and health care insurance [36-38].
Various machine learning models, which are of better
performance compared with traditional statistics models,
have been used in the field of identification of surgeries with
high cancellation risk as well [4]. Particularly, Luo et al. [4]
used sampling methods to handle the imbalance of the
distribution of cancellation. Considering the performance of
feature selection used in health care services [39, 40], Liu
et al. [41] developed predictive models of last-minute sur-
gery cancellation, in which forward selection was used as a
feature selection method. However, there is no research that
measured the effects of feature selection strategy, machine
learning model, and sampling methods on the identification
of surgery with high cancellation risk and identified the key
factors of it.

This study aimed to provide effective methods for the
identification of surgeries with high cancellation risk based
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on machine learning models and analyzed the key factors
that affect the identification performance. One-side Delong
test and sum of square error analysis were conducted to
measure the effects of feature selection strategy, machine
learning model, and sampling method on the identification
of surgeries with high cancellation risk. This study offers
methodology and insights for identifying the key experi-
mental factors for identifying surgery cancellations, and it is
useful to further research on machine learning-based
identification of surgeries with high cancellation risk, in
designing experimental process.

The rest of the paper is organized as follows. Section 2
provides detailed information about data collection and
preparation, the methods used in this study, and model
setup. The third part summarizes the experimental results.
Section 4 further discusses the experiment and presents the
findings. In Section 5, we draw conclusions from the findings
and point out the direction of future work.

2. Data and Methods

2.1. Data. The data of this study were based on HIS sourced
from West China Hospital, which is the largest hospital in
southwest China. There are 70 operation rooms in West
China Hospital nowadays, most of them usually open from 8
am. to 8 p.m., and daily average opening hours reach 12
hours. Overall, the data contained 5,125 cases from January
1, 2013, to December 31, 2014, of which 810 were cancelled
(positive) and 4,315 were not, providing a CR of 15.80%. The
hospital implemented the surgery day system. In this system,
the surgeon has main surgery days; that is, the surgeon has
the priority to use the operating room and its equipment on
these days. All surgeries were scheduled one day in advance,
and after confirmation, medical staff (surgeon, anesthesi-
ologist, and nurse), the operation room, and the patient are
bundled together. All cancellations were of institutional
resource- and capacity-related types. Apart from the features
originally obtained from HIS, we designed some features,
according to the experience and knowledge of senior health
care managers in West China Hospital, and they are whether
the surgeon had surgery before (WSHSB), whether the
surgery day was a legal holiday (WSDLH), whether it was the
main surgery day (WMSD), whether surgeries have been
cancelled (WC), and the number of days admitted (NDA).
All the collected features of surgeries are listed in Table 1.

In the following experiment process, we considered not
only the relationship between predictors and surgery can-
cellations but also the accessibility of predictors. As a result,
14 related predictors (features) were preliminarily refined, as
described in Table 2, which covered all five information
categories mentioned above. Among them, surgery schedule
information contained five predictors: operating room (OR),
surgeon, number of surgeries in the OR on a day (NSOD),
the order number of surgery (ONS), and WSHSB. Then,
patients’ information and administrative issues contained
three predictors each. For patients” information, they were
age, sex, and anesthesia type (AT). For administrative issues,
they were WSDLH, WMSD, and WC. Subsequently, workup
and admission information contained two predictors and
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TaBLE 1: Predictors collected in this study.

Category 1;1;1;1});2;;1’ Predictor(s)
Patients’ information 4 Name, age, sex, and AT
Admission information 4 NDA, visit number, identification number of patient, and register number
Workup information 7 Drug allergy, names of drugs administered, blood type, WHSB, SN, and ST
iSrlllfrO%‘;I;}’;tSi(C)}Illedule 7 ONS, OR, surgery date, surgery time, surgeon, NSOD, WSHSB, and purpose of surgery
Administrative issues 10 Operation staff, department, ward, BD, last updated time, staff who last updated the
information, WSDLH, WMSD, WC, and surgery expenditure
Actual date/time when surgery began/ended, actual date/time when patient left OR, actual
date when anesthesia was started, actual time when anesthesia was ended, actual date/time
S when predictive medicine was administered, body temperature, blood transfusion in
urgery process records 23

surgery, autologous blood, allogeneic blood, plasma, thrombocyte, pathological
examination, state of consciousness, general skin conditions, special skin conditions,
drainage situation, surgery item delivery, anesthesia degree, and surgical incision category

AT: anesthesia type. BD: bed number. NDA: number of days admitted. NSOD: number of surgeries in the OR on the day. ONS: order number of surgery. OR:
operating room. SN: surgery name. ST: surgery type. WC: whether surgery is cancelled. WHSB: whether there has been a surgery before. WMSD: whether it is
the main surgery day. WSDLH: whether the surgery day is a legal holiday. WSHSB: whether the surgeon has surgery before.

TaBLE 2: Predictors considered in this study.

Category Number of predictors Predictor(s)

Patients’ information 3 Age, sex and AT

Admission information 1 NDA

Workup information 2 WHSB and ST

Surgery schedule information 5 OR, surgeon, NSOD, ONS, and WSHSB
Administrative issues 3 WSDLH, WMSD, and WC

AT: anesthesia type. NDA: number of days admitted. NSOD: number of surgeries in the OR on the day. ONS: order number of surgery. OR: operating room.
ST: surgery type. WC: whether surgery is cancelled. WHSB: whether there has been a surgery before. WMSD: whether it is the main surgery day. WSDLH:
whether the surgery day is a legal holiday. WSHSB: whether the surgeon has surgery before. Predictor(s): predictors mentioned above were preliminarily

identified through expert interviews.

one predictor, respectively. Workup information contained
WHSB and surgery type (ST), whereas admission infor-
mation contained NDA.

2.2. Methods. The methods used in this study are introduced
in the following three aspects: feature selection strategies,
machine learning models, and sampling methods.

2.2.1. Machine Learning Models. Considering that the objective
of this study is to identify surgery cancellation based on his-
torical HIS data and different predictors, we modeled it as a
supervised classification problem and utilized a representative
set of machine learning models: random forest (RF), logistic
regression (LR), extreme gradient boosting-tree (XGBoost-tree),
support vector machine-linear (SVM-linear), and neural net-
works (NNET).

RF is a classifier composed of an ensemble of decision
trees for training and predicting, which is widely used in
medical management [42-44]. It is known for the high
predictive performance and ability to find complex inter-
actions among features [41, 45]. LR, a classification algo-
rithm derived from linear regression, is a common approach
employed in prediction and reasonable benchmark for
evaluating other models. Compared with SVM and NNET, it

has better interpretability that is important for model un-
derstanding and interpretation. XGBoost is an improved
algorithm based on the gradient boosting decision tree with
more detailed classification, XGB-Linear and XGB-tree. As
for XGB-tree, it can construct boosted trees efficiently and
when performing node splitting, the gain calculation of
different predictors can be performed in parallel. SVM-
linear is a kind of generalized linear classifier. Because of its
advantages of solving high-dimensional pattern recognition
problems and high accuracy, it is applied in this study.
NNET is a model like the human brain’s ability to predict
and categorize, which learns the relationship between in-
dependent variables and dependent variables. Nowadays, it
has been successfully applied in the classification and pre-
diction of biological and medical data [46-48].

2.2.2. Feature Selection Strategies. This study takes four
commonly used feature selection strategies into consider-
ation, and they were forward selection strategy, backward
selection strategy, LASSO-based strategy, and importance-
based strategy. Forward selection starts with an empty set
and iteratively adds the most important feature to the target
feature subset from the candidate feature set, while backward
selection iteratively removes the least important feature from
the candidate feature set [49]. LASSO-based strategy refers



to the cost function of the linear regression model added
with the constraint of the L1 norm. It uses the control
parameter for variable selection and complexity adjustment
and is widely used in the medical field [50]. As for the
importance-based strategy, RF, an excellent classifier model
that has good applicability for feature selection [51, 52], was
used to generate a dataset of the importance of each feature
after training, and features with positive importance were
considered as the most useful features to model training.
Hence, feature selection using RF was conducted to select the
useful predictors for the identification of the surgeries with
high cancellation risk.

2.2.3. Sampling Methods. This study involves three sampling
methods: oversampling, undersampling, and original sam-
pling. Oversampling was intended to extract negative
samples with replacement until the number of them was
consistent with the number of positive samples. Conversely,
undersampling extracted positive samples without re-
placement until their number was the same as the negative
samples. Both methods change the class distribution of
training data and have been used to address class imbalance
[53]. These methods have performed well in several fields,
such as in churning predictions related to bank credit cards
[54] and classifying poor households [55]. Meanwhile,
original sampling is the sampling of the original data set
without making changes.

2.3. Experiment Setup. Figure 1 shows the entire experi-
mental process mentioned below. For the preliminarily
determined 14 related predictors, they may not certainly lead
to the best performance of identification of surgery can-
cellation. Hence, the four feature selection strategies men-
tioned above (forward selection strategy, backward selection
strategy, LASSO-based strategy, and importance-based
strategy) were considered to achieve better performance.
Subsequently, for a certain strategy, N predictors were ob-
tained. To a large extent, the value of N is different for each
strategy. Hence, predictors selected by original strategy (i.e.,
no feature selection is conducted) and four different feature
selection strategies were applied to the following experi-
ments, respectively.

All samples were divided into two sets, the train and test
sets, at a ratio of 8 : 2. Based on this division, the train set was
divided into the actual train and the validation sets, at a ratio
of 6:2. Because of the imbalance in the positive-negative
ratio (2:11) of the actual train set, we employed not only the
original sampling but also over- and undersampling to
achieve better performance. The train set and the actual train
set were used to train the machine learning models; the
validation set was used to determine the hyperparameters of
models; and the test set was employed to validate the per-
formance of the machine learning models. For each model,
we performed a fivefold cross validation against the test set,
nested within which was a fourfold cross validation against
the validation set. Cross-validation methods are used to
generate folds randomly, which refer to the combination of
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training and test data subset splits for training and validating
machine learning models [56].

In this study, we designed 75 schemes (i.e., 5 x 5 x 3; five
feature selection strategies, five machine learning models,
and three sampling methods correspond to each other, as
mentioned above), and each scheme was run to obtain the
performance metrics of the test set. Fivefold cross validation
was performed for each scheme to find and validate the
optimal model with the best performance. Hence, 375 results
of experiments were obtained eventually, from which the
scheme with the best performance could be found and the
influence of the factors (ie., feature selection strategy,
machine learning model, and sampling method) in surgery
cancellation forecasting could be evaluated.

As the identification of surgeries with high cancellation
risk in this study belongs to the binary classification
problem, the performance of identification was measured
according to seven metrics: accuracy, sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), net reclassification index (NRI), and area under the
curve (AUC) of the receiver operating characteristic (ROC).
Sensitivity, specificity, PPV, and NPV are the metrics for
model evaluation, which are used to reflect performance in a
certain aspect. Sensitivity refers to the ratio of the correctly
predicted positive sample number to the total number of
true positive samples; conversely, specificity refers to the
ratio of correctly predicted negative samples to the total
number of true negative samples. Meanwhile, both PPV and
NPV are metrics that focus on predictive samples. PPV
refers to the ratio of the number of correctly predicted
positive samples to the number of predicted positive sam-
ples, whereas NPV refers to the ratio of the number of
correctly predicted negative samples to the number of
predicted negative samples. Accuracy, NRI, and AUC are all
used to reflect the overall performance of the model. Ac-
curacy is the ratio of the correctly predicted sample number
to the total predicted sample number. It does not distinguish
the predicted sample as positive or negative. NRI is a
measure of the change in risk prediction obtained when the
risk marker under evaluation is added to an existing risk
prediction model [57]. It was intended to serve as a summary
measure to highlight the difference between two models
[58]. AUC considers the imbalance of positive and negative
samples and is often used with the ROC curve to illustrate
performance assessments so that sensitivity and specificity
can be considered in a comprehensive manner. In addition,
feasibility is defined as the ability to make a considerable
identification, and robustness refers to the measured per-
formance close to the essential performance. In this study,
AUC was considered to be the key metric; feasibility and
robustness both focus on AUC.

The mentioned metrics were firstly analyzed for top
schemes, and then we analyzed statistics (mean, maximum,
minimum, etc.) of all schemes. Considering AUC being the
key metric, we summarized the average AUCs grouped by
different factors (feature selection strategy, machine learning
model, and sampling method). We also conducted a Delong
test [59] to evaluate the impact of different methods on
predicting results. The variables involved in the study
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include feature selection methods, machine learning
methods, sampling methods, and fivefold cross validation.
Hence, the difference in AUC between specific methods can
be evaluated by controlling other variables unchanged.
P <0.05 is considered statistically significant. In addition,
the between-groups sum of squares (BGSS), within-groups
sum of squares (WGSS), and total sum of squares (TSS) were
used to measure deviation of the AUCs grouped by machine
learning models, sampling methods, and feature selection
strategies, and their definitions are given as follows:

BGSS = ) n, (%, - %)%,

—

WGss= ¥ 3 (% - x,)' 1)
i=1 j=1
TSS = Z 3 (% - x;;)" = WGSS + BGSS,

I
—_
-

I
—

where r refers to the number of groups, n; refers to the
number of examples belonging to group i, X refers to the
mean of all samples, X; refers to the mean of i group, and
x;; refers to the j™ sample of the i group. Given certain TSS,
the larger the GBSS (the less the WGSS), the better the
grouping. The experiments implemented were based on R
software (version 3.61); the identification was conducted

with the “caret” packages.

3. Results

We analyzed the experimental results in both scheme and
factor level.

3.1. Analysis at Scheme Level. The schemes were mainly
measured by averaging mentioned metrics of the fivefold
cross validation, and the top 15 schemes in the test set are
shown in Table 3, in descending order of average AUC. A
model is considered as considerable predictive performance,
if it is of a higher than 0.7 AUC [60, 61]. All NRIs were

measured compared to the scheme of RF, backward selection
strategy, and original sampling. Table 3 indicates the fol-
lowing: (1) The RF model with original sampling using
backward selection strategy achieved the best performance
according to accuracy (0.8578) and AUC (0.7199). (2) All top
9 schemes were of RF models, and RF model accounted for
11 of the top 15. Meanwhile, the schemes with a higher than
0.7 AUC were all RF models. (3) For the sampling method,
original sampling and oversampling both accounted for 6 in
the top 15 schemes, and the top 4 were original sampling.
For the schemes with a higher than 0.7 AUC, both over-
sampling and original sampling accounted for half of all (4)
For the NRI, there were 12 schemes with negative results,
indicating that their performance was worse than the first
one. Only two schemes achieved the positive NRI results, but
differences were quite small (RF, original strategy, and
original sampling: 0.0020; RF, importance-based strategy,
and original sampling: 0.0057).

In addition, the statistics of each metric over the 75
schemes are shown in Table 4. According to Table 4, we can
find the following: (1) for all the schemes, the specificity and
NPV were quite high, with an average value of more than
0.75 (specificity: 0.8751, NPV: 0.7760), and the maximum
value of NPV was 0.9988. In comparison, the sensitivity and
PPV values were relatively small, whose mean values are less
than 0.4 (sensitivity: 0.3215, PPV: 0.3938). (2) For each
scheme, the standard deviations of AUC and specificity were
small (AUC: 0.0430; specificity: 0.0208), which means that
the values of them are stable.

3.2. Analysis at Factor Level. AUC is a useful metric that
comprehensively reflects the performance of the model. The
average AUCs grouped by each factor (feature selection
strategy, machine learning model, and sampling method) are
shown in Table 5. The average AUCs grouped by feature
selection strategy indicate the following: (1) schemes using
LASSO-based strategy had the largest AUC mean (mean:
0.6582), and these using forward selection strategy had the
smallest (mean: 0.6426). However, the difference is quite
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TaBLE 3: Top 15 schemes in the test set.

Model Strategy Sampling AUC Accuracy Sensitivity Specificity PPV~ NPV~ NRI
1 RF Backward selection strategy Original sampling 0.7199  0.8578 0.6712 0.8668  0.1963 0.9819 0.0000
2 RF Original strategy Original sampling 0.7136  0.8574 0.6740 0.8660  0.1901 0.9826 0.0020
3 RF Forward selection strategy ~Original sampling 0.7135  0.8560 0.6284 0.8692  0.2173 0.9759 -0.0404
4 RF Importance-based strategy Original sampling 0.7131  0.8574 0.6783 0.8654  0.1852 0.9835 0.0057
5 RF Backward selection strategy =~ Oversampling  0.7055  0.8343 0.4579 0.8722  0.2654 0.9411 -0.2079
6 RF Forward selection strategy ~ Oversampling  0.7034  0.8154 0.3904 0.8736  0.2963 0.9129 -0.2740
7 RF Importance-based strategy ~ Oversampling  0.7029  0.8398 0.4869 0.8720  0.2580 0.9490 -0.1791
8 RF Original strategy Oversampling  0.7018  0.8394 0.4874 0.8726  0.2630 0.9476 -0.1780
9 RF Forward selection strategy ~ Undersampling 0.6847  0.6176 0.2369 0.9003  0.6383 0.6137 -0.4008
10  NNET LASSO-based strategy ~ Original sampling 0.6814  0.8398 0.4167 0.8424  0.0123 0.9934 -0.2789
11 RF Backward selection strategy =~ Undersampling  0.6814  0.6328 0.2436 0.9009  0.6284 0.6336 -0.3935
12 RF Original strategy Undersampling  0.6808  0.6310 0.2384 0.8960  0.6074 0.6355 —0.4036
13 SVM-linear LASSO-based strategy Oversampling  0.6797  0.6597 0.2523 0.8970  0.5877 0.6732 —0.3887
14 LR LASSO-based strategy Oversampling ~ 0.6794  0.6457 0.2493 0.9012  0.6185 0.6508 -0.3875
15 LR LASSO-based strategy ~ Original sampling 0.6793  0.8429 0.5492 0.8459  0.0346 0.9947 -0.1429

LR: logistic regression model. NNET: neural networks. RF: random forest. SVM-linear: support vector machine-linear. XGBoost-tree: extreme gradient
boosting-tree. Accuracy: ratio of the correctly predicted sample number to the total predicted sample number. Sensitivity: ratio of correctly predicted positive
samples to the total number of true positive samples. Specificity: ratio of correctly predicted negative sample number to the total number of true negative
samples. PPV: positive predictive value. NPV: negative predictive value. AUC: area under the receiver operating characteristic curve. NRI: net reclassification
index; all NRIs were measured compared to the scheme of RF, backward selection strategy, and original sampling. The values in the table are averages of the
fivefold cross validation.

TABLE 4: Statistics on the performance metrics.

Max Min Mean St. Dev.
AUC 0.7199 0.5310 0.6537 0.0430
Accuracy 0.8578 0.5967 0.7166 0.1016
Sensitivity 0.6783 0.1736 0.3215 0.1360
Speciﬁcity 0.9012 0.8419 0.8751 0.0208
PPV 0.6383 0.0031 0.3938 0.2362
NPV 0.9988 0.5914 0.7760 0.1634

Accuracy: ratio of the correctly predicted sample number to the total predicted sample number. Sensitivity: ratio of correctly predicted positive samples to the
total number of true positive samples. Specificity: ratio of correctly predicted negative sample number to the total number of true negative samples. PPV:
positive predictive value. NPV: negative predictive value. AUC: area under the receiver operating characteristic curve.

TaBLE 5: Statistics on AUCs grouped by different factors.

Grouping factors Groups N  Mean St.Dev. Min  Pctl(25) Pctl(75) Max  Range
Original strategy 75 0.6547  0.0428 0.5125 0.6372 0.6819 0.7292  0.2167
LASSO-based strategy 75  0.6582 0.0441 0.4948  0.6449 0.6821 0.7239  0.2291

Feature selection strategy ~ Forward selection strategy 75  0.6426  0.0626 ~ 0.5085  0.6307 0.6846  0.7355  0.2270
Backward selection strategy 75  0.6580  0.0427  0.5152  0.6435 0.6788  0.7331  0.2179
Importance-based strategy 75 0.6550  0.0436  0.5125  0.6350 0.6823  0.7307  0.2182

RF 75 0.6889  0.0314  0.6100  0.6713 0.7129  0.7355  0.1255

LR 75  0.6666  0.0222  0.6297 0.6514 0.6792 0.7161  0.0864

Machine learning model XGBoost-tree 75 0.6574  0.0256  0.6110  0.6353 0.6748  0.7171  0.1061
NNET 75 0.6552  0.0259  0.6163  0.6362 0.6702  0.7239  0.1076

SVM-linear 75 0.6005 0.0668 0.4948  0.5360 0.6558 0.7184  0.2236

Oversampling 125 0.6604  0.0403  0.5085  0.6385 0.6908  0.7355  0.2270

Sampling method Undersampling 125 0.6548 0.0354  0.5085  0.6398 0.6756  0.7239  0.2154
Original sampling 125  0.6460  0.0626  0.4948  0.6365 0.6911 0.7340  0.2392

N: number of cases. Mean: mean value corresponding to AUC of each model. St. Dev.: standard deviation corresponding to AUC of each model. Pctl(25):
AUC corresponds to the first quartile of the variance numerical distribution of each model. Pctl(75): AUC corresponds to the third quartile of the variance
numerical distribution of each model. LR: logistic regression model. NNET: neural networks. RF: random forest. SVM-linear: support vector machine-linear.
XGBoost-tree: extreme gradient boosting-tree.
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TABLE 6: Superiority index of Delong test on AUCs grouped by feature selection strategies.

. Forward Backward Importance-based
Original strategy  LASSO-based strategy selection strategy  selection strategy b strategy
Original strategy NA 23/75 8/75 8/75 24/75
LASSO-based strategy 13/75 NA 10/75 11/75 14/75
Forward selection strategy 11/75 21/75 NA 13/75 11/75
Backward selection strategy 0/75 18/75 5175 NA 10/75
Importance-based strategy 11/75 21/75 2/75 10/75 NA

NA: not available.

small (0.0156). (2) In terms of standard deviations, except for
the forward selection strategy (standard deviation: 0.0626),
other strategies are of little difference between each other,
and all of them were less than 0.0450. (3) The range (gap
between maximum and minimum) of average AUC value of
each strategy was around 0.2220.

The average AUCs grouped by machine learning model
indicate the following: (1) RF model had the largest AUC
mean (mean: 0.6889). (2) The ascending standard deviations
were 0.0222 (LR), 0.0256 (XGBoost-tree), 0.0259 (NNET),
0.0314 (RF), and 0.0668 (SVM-linear models). (3) Compared
with the other models, the average AUC of the RF model had
the largest maximum (max: 0.7355).

The average AUCs grouped by sampling method indi-
cate the following: (1) for oversampling and original sam-
pling methods, AUC had the largest and the least mean
values, respectively (oversampling: 0.6604; original sam-
pling: 0.6460). (2) Among the three sampling methods,
undersampling achieved the least standard deviation
(standard deviation: 0.0354).

For comprehensively evaluating the performance of the
factors mentioned above, one-sided Delong tests were
conducted on the ROCs of each paired performance group;
and the superiority index, which refers to the percentage of
results of a certain group which precedes that of another
group, is used to indicate the superiority between each
factor. The superiority indexes are summarized in Tables 6-8
in the aspect of feature selection strategy, machine learning
models, and sampling method, respectively, and only the
factor-comparison groups with more than 1/2 superiority
index were analyzed accordingly.

According to Tables 6 and 8, feature selection methods
and sampling methods show no factor-comparison group
with a more than 1/2 superiority index, which indicates that
there is no factor (such as oversampling) superior to another
factor (such as undersampling) with a threshold of 1/2.
Table 7 presents the superiority index on machine learning
models, and it indicates the following: (1) Compared with
other machine learning methods, the superiority indexes of
RF compared with other machine learning methods are all
more than 1/2 (RF versus XGBoost-tree: 45/75, RF versus
SVM-linear-tree: 56/75, and RF versus NNET: 49/75), except
for the LR; however, the superiority index of RF compared to
LR is 35/75, which is very close to 1/2 and much higher than
that of LR compared to RF. The analysis above indicates the
superiority of RF. (2) All superiority indexes of other ma-
chine learning methods compared to SVM-linear are more
than 1/2, which indicates the inferiority of SVM-linear.

TABLE 7: Superiority index of Delong test on AUCs grouped by
machine learning model.

RF LR XGBoost-tree SVM-linear NNET

RF NA 7/75 4/75 3/75 5/75
LR 35/75 NA 2/75 0/75 1/75
XGBoost-tree 45/75 7/75 NA 1/75 2/75
SVM-linear  56/75 48/75 46/75 NA 46/75
NNET 49/75 12/75 5/75 7175 NA

LR: logistic regression model. NNET: neural networks. RF: random forest.
SVM-linear: support vector machine-linear. XGBoost-tree: extreme gra-
dient boosting-tree. NA: not available.

TaBLE 8: Superiority index of Delong test on AUCs grouped by
sampling method.

. . Original
Oversampling Undersampling sampling
Oversampling NA 8/125 18/125
Undersampling 18/125 NA 25/125
Original sampling 20/125 18/125 NA

NA: not available.

Table 9 summarized the BGSS, WGSS, and TSS of AUCs
grouped by three different factors mentioned above and
indicated the following: (1) The maximum of BGSS (0.3191)
and minimum of WGSS (0.5376) were obtained by machine
learning models’ grouping, which accounted for 37.25% and
62.75% of TSS, respectively. (2) The BGSS and WGSS
grouped by sampling method were similar to the counter-
parts grouped by feature selection strategy (BGSS and WGSS
grouped by sampling method: 0.0132 and 0.8435; BGSS and
WGSS grouped by feature selection strategy: 0.0123 and
0.8443).

4. Discussion

The present results indicate the feasibility and robustness of
identifying elective urologic surgeries with high cancellation
risk. The average AUCs in the test set exceeded 0.65, with the
maximum of AUC (0.7199, RF, original sampling, and
backward selection strategy).

It is worth noting that RF model accounted for 11 of the
top 15 among the 75 schemes, and the schemes with a higher
than 0.7 AUC were all RF models. In addition, RF model was
significantly different from the other models in the aspect of
AUC. Finally, machine learning model factor achieved the
maximum of BGSS and the minimum of WGSS. Hence, the
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TABLE 9: Analysis of sum of square error.
TSS BGSS BGSS/TSS (%) WGSS WGSS/TSS (%)
Grouped by feature selection strategy 0.8567 0.0123 1.44 0.8443 98.55
Grouped by ML model 0.8567 0.3191 37.25 0.5376 62.75
Grouped by sampling method 0.8567 0.0132 1.54 0.8435 98.46

TTS: total sum of square error. BGSS: between-groups sum of square error. WGSS: within-groups sum of square error.

selection of machine learning models is considered a key
factor in identification of surgeries with high cancellation
risk.

Among the top 8 schemes, the first four and the last four
were original sampling and oversampling, respectively.
However, sampling methods show no significant difference
with each other according to the Delong test. In addition,
there were large WGSS and small BGSS when grouped by
sampling methods. In summary, sampling method is the
factor that affects the identification of surgeries with high
cancellation risk, but not as important as the machine
learning methods, to some extent.

For different feature selection strategies, differences
between their means were little and insignificant. In addi-
tion, there were large WGSS and small BGSS when grouped
by sampling methods. Hence, feature selection strategy is not
an important factor that affects the identification of surgeries
with high cancellation risk.

This study has limitations. It only focused on the elective
urologic surgeries in one hospital, which means that the data
are single-centered. Although our predictors covered five
information categories that previous studies have covered
and on which good results have been obtained, there are also
potentially useful predictors that have not been collected.
Further research can consider conducting multicenter
studies, including multiple hospitals and departments.

5. Conclusion

This study provided effective methods for the identification
of surgeries with high cancellation risk based on machine
learning models and analyzed the key factors that affect the
identification of surgeries with high cancellation risk. It
proved the feasibility and robustness of identifying surgeries
with high cancellation risk, with the considerable maximum
of AUC (0.7199) for RF with original sampling using a
backward selection strategy. In addition, two-sided test and
sum of square error analysis were conducted to measure the
effects of feature selection strategy, machine learning model,
and sampling method on the identification of surgeries with
high cancellation risk; and the selection of machine learning
model was identified as the key factors that affect the
identification of surgeries with high cancellation risk. This
study offers methodology and insights for identifying the key
experimental factors for identifying surgery cancellations,
and the insights of it are useful to further research on
machine learning-based identification of surgeries with high
cancellation risk, in designing experimental process.
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