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Abstract

Introduction—Cancer-related fatigue (CRF) is one of the most distressing and persistent 

symptoms reported during pediatric acute lymphoblastic leukemia (ALL) therapy; however, 

information on the pathways underlying CRF severity is limited. Therefore, we conducted global 

metabolomics profiling of cerebrospinal fluid (CSF) samples to provide insight into the underlying 

mechanisms of CRF.

Methods—Fatigue in pediatric ALL patients (2012–2017) was assessed during post-induction 

therapy approximately 6-months post-diagnosis. Post-induction CSF was collected on 171 

participants, comprising discovery (n=86) and replication (n=85) cohorts. We also conducted 

secondary validation using diagnostic CSF from 48 replication cohort participants. CSF 

metabolomic profiling was performed using gas chromatography-mass spectrometry (MS) and 

liquid chromatography-MS/MS. Kendall’s rank correlation was used to evaluate associations 

between metabolite abundance and CRF. False discovery rate (FDR) was used to account for 

multiple comparisons.

Results—Participants were 56% male and 59% Hispanic with a mean age at diagnosis of 8.5 

years. A total of 274 CSF-derived metabolites were common to the discovery and replication 

cohorts. Eight metabolites were significantly associated with fatigue in the discovery cohort 

(p<0.05), of which three were significant in the replication cohort, including FDR-corrected 

associations with gamma-glutamylglutamine (pcombined = 6.2E-6) and asparagine (pcombined = 

3.5E-4). Notably, the abundance of gamma-glutamylglutamine in diagnostic CSF samples was 

also significantly associated with fatigue (p=0.0062).

Conclusion—The metabolites identified in our assessment have been implicated in 

neurotransmitter transportation and glutathione recycling, suggesting glutamatergic pathways or 
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oxidative stress may contribute to ALL-associated CRF. This information could inform targeted 

therapies for reducing CRF in at-risk individuals.
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INTRODUCTION

Children and adolescents with cancer report significantly more fatigue than their 

counterparts without cancer [1, 2]. In fact, cancer-related fatigue (CRF) is one of the most 

prevalent and distressing symptoms reported during childhood cancer therapy [3–7]. While 

acute symptoms of CRF typically improve over time [8, 9], symptoms may persist across the 

cancer care continuum for a subset of patients, with chronic fatigue present in 20–30% of 

long-term survivors [10, 11]. Given CRF is a pervasive symptom and source of significant 

morbidity in pediatric oncology populations, it is an important target for research and 

intervention.

CRF is frequently conceptualized as subjective physical or mental exhaustion which is not 

explained by recent activity and is not fully alleviated by rest [12, 13]. The etiology of CRF 

is likely multifaceted, with host-, disease-, and treatment-related components. Among 

pediatric patients with acute lymphoblastic leukemia (ALL), the most common malignancy 

diagnosed in individuals less than 15 years of age [14], there is considerable variability in 

the incidence and intensity of CRF. Of the clinical, demographic, and treatment intensity 

factors commonly evaluated [1, 15, 16], only exposure to corticosteroids during pediatric 

ALL treatment has been consistently associated with fatigue severity [16, 17]. Given that 

children receiving treatment for ALL are at risk of fatigue and its related complications, 

there is a growing need to better understand the mechanisms and pathophysiology of CRF in 

pediatric patients with ALL. Identifying the biological underpinnings of CRF may result in 

refined phenotyping and risk stratification of CRF to inform treatment and prevention 

efforts. To date, most studies exploring the biological mechanisms of CRF have targeted 

inflammatory pathways [18]. Because targeted studies are often informed by our limited 

understanding of disease etiology, they may not be robust to provide novel insight into the 

pathophysiology of CRF. Metabolomics technology, which systematically quantifies 

hundreds to thousands of metabolites, has been used to characterize the response to 

leukemia therapy and identify biomarkers of outcomes [19, 20], but has not been applied to 

study CRF. Specifically, metabolomics profiling of cerebrospinal fluid (CSF), a readily 

available and biologically relevant resource for CRF biomarker discovery, may yield insight 

into the physiological response to leukemia therapy in the central nervous system. Therefore, 

the objective of this study was to discover and replicate fatigue-associated metabolites using 

untargeted metabolomics profiling of CSF samples systematically collected on a prospective 

cohort of pediatric patients with ALL.
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METHODS

The current study analyzed a subset of participants enrolled in a multi-site prospective study 

of symptoms. The design and methods of the parent study have been published [9]. Briefly, 

eligible participants for the current study included pediatric patients with newly-diagnosed 

ALL or lymphoblastic lymphoma, aged 2–18 years at diagnosis, and treated on or according 

to a Children’s Oncology Group ALL protocol (AALL0434, AALL0932, AALL1122, 

AALL1131, AALL1231). Treatment details for each protocol are available at 

www.clinicaltrials.gov. Treatment generally included one month of remission induction 

therapy consisting of corticosteroids, intrathecal methotrexate, and pegaspargase. Patients 

with high and very-high risk disease also typically received vincristine and daunorubicin. 

Post-induction therapy lasting six to eight months consisted of courses of, asparagine, 

corticosteroids, cytarabine, doxorubicin, mercaptopurine, intrathecal and intravenous 

methotrexate, and vincristine. Finally, two to three years of maintenance therapy typically 

included oral corticosteroids, mercaptopurine, and methotrexate in combinations with 

intravenous vincristine and intrathecal methotrexate. Symptom assessments were designed 

to evaluate symptoms (e.g., fatigue, sleep disturbance, nausea, pain) reported at the 

following phases of therapy: end of induction and approximately six months post-diagnosis, 

nine months post-diagnosis, and 12 months post-diagnosis. This analysis was restricted to 

fatigue reported by participants treated at Texas Children’s Hospital (Houston, Texas, USA) 

during post-induction chemotherapy (~6-months post-diagnosis), aligning with the start of 

delayed intensification therapy for patients treated on standard, high-, or very high-risk post-

induction protocols or on day 113 of consolidation therapy of patients treated on low-risk 

protocols. This time point was selected to capture fatigue during one of the most intensive 

phases of pediatric ALL therapy when the level of symptom distress is typically high [4]. 

Eligible participants included patients free of developmental or neurologic disorders. Given 

the potential influence of less common treatment exposures on fatigue, patients with a 

history of relapse, bone marrow transplant, or radiation therapy prior to the delayed 

intensification fatigue assessment were excluded. The research procedures were reviewed 

and approved by a Baylor College of Medicine institutional review board. As appropriate, 

informed consent was obtained from the legal guardian and assent or consent obtained from 

research participants.

Sample Collection and Metabolomic Profiling

The study population was divided into two batches, comprising a discovery (diagnosed 

2012–2015) and a replication (diagnosed 2015–2017) cohort, based on time of study 

enrollment. Aliquots (150 microliter) of CSF were obtained during scheduled therapeutic 

lumbar punctures at the time of the fatigue assessment (i.e., start of delayed intensification 

therapy) to facilitate cross-sectional associations. Additional scheduled diagnostic CSF 

samples were available on a subset of the participants enrolled in the replication population 

(n=48), providing the ability to explore potential temporal associations between fatigue 

during therapy and biomarkers present in treatment naïve samples. CSF samples were 

centrifuged and stored at −80°C. Metabolomic profiling were completed for the discovery 

cohort in 2016 and the replication cohort in 2019 by Metabolon (Metabolon, Inc., 

Morrisville, NC, USA). Untargeted metabolomic profiling was performed following 
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previously described methods [21]. Briefly, methanol was added to each sample and 

vigorously shaken for two minutes to remove protein and dissociate protein-bound 

metabolites. Following centrifugation, the extract was divided into fractions, including 

fractions for reverse phase ultrahigh performance liquid chromatography tandem mass 

spectrometry (UPLC-MS/MS) with positive ion conditions for hydrophilic compounds, 

positive ion conditions for hydrophobic compounds, basic negative ion conditions, and a 

negative ionization after elution from a hydrophilic interaction chromatography column. 

Raw data files from the MS analysis were extracted and quality controlled. Compounds 

identities were determined based on the similarity of retention time/index, mass to charge 

ratio, and MS/MS spectral data to Metabolon’s library of known compounds. Each 

metabolite level was quantified based on the area-under-the-curve for each detected peak. 

The abundance of identified metabolites were scaled to a median of one, with missing values 

imputed to the minimum observed value for a given metabolite. Metabolites which were 

only identified in a single sample were excluded from statistical analyses.

Fatigue Assessment

To the extent possible, fatigue questionnaires were obtained at the time of the lumbar 

puncture procedure and CSF collection. If patients were not able to complete questionnaires 

at the time of the LP then questionnaires were typically obtained within one week of the 

lumbar puncture. Self- or parent proxy reported measures of fatigue were systematically 

collected using electronic data capture or paper questionnaires of validated instruments 

administered on computerized tablets [22–24]. Briefly, participants were asked to report 

symptoms over the previous two weeks, and surveys were available in both Spanish and 

English. Children and adolescents age ≥7 years self-reported symptoms using the 10-item 

Child Fatigue Scale (7–12 years) or 13-item Adolescent Fatigue Scale (≥13 years). 

Caregiver proxy reports of fatigue were collected on individuals <7 years of age using the 

17-item Parent Fatigue Scale. As described previously [9], responses were summed across 

each item on the questionnaires and standardized scores (mean = 50, standard deviation [SD] 

= 10) were calculated separately for each scale to facilitate comparisons across the three 

scales. Higher scores were indicative of higher levels of fatigue.

Clinical Information

Information including age at diagnosis, treatment protocol, cancer diagnosis (B-lineage 

ALL, T-lineage ALL, lymphoblastic lymphoma), leukemia central nervous system (CNS) 

involvement at diagnosis, and post-induction treatment risk group (low/standard, high/very 

high) was abstracted from electronic medical records. Because excess adiposity may 

exacerbate CRF [25], heights in meters and weights in kilograms were abstracted at 

diagnosis and the time of the fatigue assessment and compared to the Centers for Disease 

Control and Prevention age- and sex-specific growth charts to calculate age- and sex-

adjusted body mass index (BMI) z-scores [26]. Participants completed demographic 

questionnaires to collect information on race, ethnicity, and gender.

Statistical analysis

Descriptive statistics were calculated for clinical and demographic characteristics of the 

discovery and replication populations, including median and range of continuous measures 
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and counts and proportions for categorical variables. The association between each clinical 

and demographic factor and fatigue assessed at the beginning of delayed intensification 

therapy was evaluated in unadjusted and adjusted linear regression models, accounting for 

other potentially relevant clinical variables, including age at diagnosis, BMI z-score, gender, 

race/ethnicity, diagnosis (B-lineage ALL, T-lineage ALL, or lymphoblastic lymphoma), and 

post-induction treatment risk group.

Kendall’s tau, a non-parametric bivariate rank correlation coefficient, was calculated to 

measure the strength of the cross-sectional association between standardized fatigue and the 

scaled abundance of each detected metabolite. Non-parametric rank-order correlation was 

the primary statistical comparison due to concerns over the non-normal distribution of many 

metabolites and the potential for influential outliers. However, to account for potential 

confounding, we compared the distribution of clinical and demographic factors for the top 

candidate metabolites using the Kruskal-Wallis test. Additionally, we generated linear 

regression models for the association between top candidate metabolites and fatigue with 

and without adjusting for possible confounding factors, including gender, post-induction 

treatment risk group, age at diagnosis, BMI z-score, and metabolite batch (for combined 

analysis). Metabolites with a p-value<0.05 in the discovery population were evaluated in the 

replication cohort. Metabolites with a p-value<0.05 in the replication cohort, consistent 

directions of effect in both cohorts, and a false discovery rate (FDR) corrected p-value<0.05 

in the combined population were considered replicated. Using the discovery threshold 

significance level of p<0.05, the study was adequately powered (>80%) to identify 

correlation coefficients between metabolites and fatigue exceeding 0.30 in the discovery and 

replication populations. Finally, to investigate temporal relationships between fatigue and 

metabolites identified in the cross-sectional analyses, Kendall’s rank correlation was 

calculated for replicated metabolites using diagnostic CSF samples available on a subset of 

the replication cohort, with a p-value<0.05 used to define statistical significance. All 

analyses were conducted in R version 3.6.3 statistical software.

RESULTS

A description of the clinical and demographic characteristics of the discovery (n=86) and 

replication (n=85) cohorts is provided in Table 1. The distribution of most participant 

characteristics was similar for the discovery and replication populations (p>0.05), with the 

exception of a slightly higher proportion of Hispanics (p=0.02) and patients treated on 

AALL1231 (p=0.007) in the replication population. Overall, the study population had a 

mean age at diagnosis of 8.48 years (SD = 4.39) and a mean BMI z-score at diagnosis of 

0.44 (SD = 1.18). The population was 56.1% male, 85.4% B-lineage ALL, with 63.7% 

receiving high- or very high-risk treatment. Fatigue assessments were completed a median of 

184 days after diagnosis (range = 147–261), with little difference between discovery 

(median = 180; range: 147261) and replication (median = 184; range: 149 – 240) cohorts. 

Clinical and demographic factors were not significantly associated with fatigue (Table 2), 

with the exception of high- and very high-risk patients reporting about half a standard 

deviation less fatigue than low and average risk patients (p=0.004).
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A total of 313 metabolites were detected and evaluated in the CSF of the discovery cohort 

(Supplemental Table S1). We identified eight metabolites significantly associated (p<0.05) 

with post-induction fatigue in the discovery cohort, including positive correlations observed 

for dimethylglycine, allantoin, ribitol, and dimethylmalonic acid and inverse correlations for 

gamma-glutamylglutamine, 3-methoxytyrosine, asparagine, and myo-inositol (Table 3). 

Overall, 409 metabolites were detected in the CSF of the replication cohort (Supplemental 

Table S2), including 274 (87.0%) of the named metabolites also identified in the discovery 

cohort. We observed consistent directions of effect for each of the candidate metabolites in 

the discovery and replication cohorts, including statistically significant (p<0.05) correlations 

between fatigue in the replication cohort and the abundance of gamma-glutamylglutamine, 

dimethylglycine, and asparagine (Table 3). In the combined population, statistically 

significant associations were observed between fatigue and the post-induction CSF 

abundance of gamma-glutamylglutamine (tau = −0.23, p = 6.2×10−6) and asparagine (tau = 

−0.18, p = 3.5×10−4) after correcting for multiple comparisons (FDR <0.05). Additionally, 

the candidate metabolites were not strongly associated with most clinical and demographic 

variables (Supplemental Table S3) and we observed similar associations between the top 

candidate metabolites and fatigue in both the unadjusted and multivariable linear regression 

models (Supplemental Table S4), suggesting the observed associations for the top 

metabolites were not likely explained by confounding.

We attempted to further replicate the observed association between candidate biomarkers 

and post-induction fatigue using diagnostic CSF samples collected on 48 treatment-naïve 

individuals included in the replication cohort. The clinical and demographic characteristics 

of individuals with a diagnostic sample were similar to that of the underlying source 

population (Table 4). The abundance of asparagine in diagnostic CSF samples was not 

significantly correlated with post-induction fatigue (tau = −0.11, p = 0.27, results not 

shown). However, the abundance of gamma-glutamylglutamine at diagnosis was 

significantly associated with post-induction fatigue severity (tau = −0.27, p = 0.0062), 

demonstrating an inverse correlation similar to that observed cross-sectionally in the 

discovery and replication cohorts (Figure 1).

DISCUSSION

This prospective evaluation of fatigue during pediatric ALL chemotherapy is the first study 

to perform an untargeted screening of the metabolic state of the central nervous system to 

discover biochemical correlates of CRF. Utilizing CSF samples collected prior to and during 

pediatric ALL therapy, we identify and replicate novel metabolic profiles associated with 

CRF reported during one of the most intense phases of treatment. Specifically, we found that 

the abundance of asparagine and gamma-glutamylglutamine was cross-sectionally 

associated with fatigue at the start of delayed intensification therapy in children with ALL. 

Importantly, the association between CRF and gamma-glutamylglutamine was further 

validated using CSF samples obtained at diagnosis. Given that therapeutic improvement has 

led to long-term survival rates approaching 90% in children with ALL [27], there is a 

growing need to better characterize the factors which contribute to reduced quality of life in 

patients and survivors. This work partly addresses this need by advancing our limited 

understanding of the mechanisms of CRF in pediatric ALL.

Brown et al. Page 6

J Pain Symptom Manage. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Asparagine has previously been identified as a marker of fatigue in various population. For 

example, urinary levels of asparagine have been linked to fatigue, with higher levels reported 

among fatigued patients with breast cancer post-radiation therapy and lower levels identified 

in individuals with chronic fatigue [28, 29]. The association observed between fatigue and 

asparagine in the current study may reflect variable patient response to asparaginase 

chemotherapy. Asparaginase hydrolyzes asparagine, forming ammonia and aspartic acid. 

Leukemic cells are particularly vulnerable to asparagine depletion, because they lack 

sufficient asparagine synthetase activity to replenish intracellular asparagine [30]. 

Asparagine synthetase catalyzes the conversion of aspartate and glutamine to form glutamate 

and asparagine. Although asparagine is typically considered a nonessential amino acid, 

deficiency in the expression of asparagine synthetase results in a dependence on 

extracellular asparagine pools. Because the blood-brain barrier transport system regulates 

amino acid concentrations in the central nervous system, CSF concentrations of asparagine 

and other key amino acids are approximately one-tenth of the levels detected in plasma [31]. 

Importantly, genetic variants in the gene encoding asparagine synthetase lead to disruptions 

in neurological development and function in children without any observed abnormalities in 

other organ systems [32], supporting a central role for asparagine homeostasis in the 

maintenance of neurologic processes. Further work is needed to elucidate the potential 

mechanisms linking CSF asparagine to cancer-related fatigue in children with ALL.

gamma-Glutamylglutamine demonstrated the strongest statistical correlation with fatigue of 

all evaluable metabolites in cross-sectional analyses of both the discovery and replication 

cohorts (Supplemental Tables S1 & S2). Notably, the concentrations of the dipeptide at 

diagnosis were also correlated with the severity of fatigue during treatment, indicating 

baseline metabolomic profiles in chemotherapy-naïve patients might be predictive of fatigue 

later during treatment. gamma-Glutamylglutamine was first detected as a widely distributed 

acidic dipeptide in the human brain [33], and differential CSF concentrations of gamma-

glutamylglutamine have been implicated in unmedicated patients with schizophrenia 

disorders [34] and infants with urea cycle disorders [35]. gamma-Glutamyl amino acids are 

intermediates in the gamma-glutamyl cycle. Some evidence suggests the gamma-glutamyl 

cycle may be involved in regulating amino acid homeostasis across the blood-brain barrier 

[36]. The initial step of the cycle is catalyzed by gamma-glutamyl transferase (GGT), a 

plasma membrane bound enzyme involved in transporting gamma-glutamyl dipeptides and 

glutathione across the luminal membrane of endothelial cells lining the blood-brain barrier. 

GGT catalyzes the transfer of the glutamyl moiety of glutathione (GSH) to an amino acid 

acceptor, of which L-glutamine a good substrate in humans [37]. The gamma-glutamyl 

amino acid is imported across the luminal membrane by transport systems independent of 

free amino acids [36]. Intracellular gamma-glutamyl cyclotransferase catalyzes the 

conversion of the gamma-glutamyl amino acids to the free amino acid and 5-oxoproline, 

which is then hydrolyzed to form glutamate. Emerging evidence suggests that elevated 

concentrations of 5-oxoproline in endothelial cells activates Na+-dependent abluminal 

transport systems [38], which are oriented such that they aid in the active removal of amino 

acids from the extracellular fluid of the central nervous system. Thus, upregulation of this 

system may play an important role in protecting against excessive levels of amino acids in 

the central nervous system, including neurotransmitters and neurotransmitter precursors 
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[39]. In particular, GGT may be involved in glutamate and glutamine transport in the brain 

[40, 41]. GGT has been linked to glutamatergic structures in the specific regions of the brain 

[42], and GGT inhibitors have been shown to alter glutamate uptake in brain cell cultures 

[43].

The inverse relationship observed between gamma-glutamylglutamine and fatigue in the 

current study may reflect a deficiency in the gamma-glutamyl transferase system or available 

glutamine pools. Although not among top metabolites identified in the discovery cohort, 

glutamine levels were consistently lower (Supplemental Tables S1 & S2) in the CSF of 

fatigued patients (overall tau = −0.14, p = 0.005). These observations are consistent with a 

glutamatergic hypothesis of CRF. Alternatively, because GGT is involved in the breakdown, 

synthesis, and transport of glutathione [44], disruptions in the metabolite intermediates of 

the gamma-glutamyl cycle may compromise the cellular response to oxidative stress. In its 

reduced form (GSH), glutathione is a critical scavenger of reactive oxygen species and is 

involved in xenobiotic detoxification [45]. The ratio of reduced to oxidized glutathione 

(GSH/GSSG) is often considered a marker of oxidative stress. Notably, Rodgers et al. 

prospectively monitored GSH/GSSG ratio in the CSF of 38 children with ALL and found 

lower ratios significantly correlated with higher levels of fatigue during post-induction 

therapy [46].

Unlike other commonly reported symptoms during childhood ALL therapy, such as nausea 

and pain, well-established pharmacologic interventions to mitigate CRF are lacking. A 

recent meta-analysis suggests that pharmacologic interventions with erythropoietins or 

stimulants may result in statistically significant reductions in CRF [47]. However, the use of 

pharmacologic agents is limited by the absence of clinically relevant effects, possible 

adverse consequences, and a lack of studies in pediatric populations. Non-pharmacologic 

interventions may improve fatigue symptoms while minimizing the potential for adverse 

responses [48]. In particular, physical activity interventions have demonstrated efficacy for 

improving CRF in pediatric populations [49]; however, adherence to exercise programs 

among the most fatigued patients remains a concern. Given the paucity of feasible and 

effective treatment strategies, it is not surprising that CRF is untreated in the vast majority of 

pediatric cancer patients [50]. Efforts to manage and mitigate CRF are likely to benefit from 

an improved understanding of the factors contributing to fatigue severity during childhood 

cancer treatment. The results of this study suggest that oxidative stress and glutamatergic 

pathways are promising candidates for future intervention research.

Strengths of the current study include the prospective collection of standardized measures of 

fatigue using validated questionnaires. Questionnaires were available in both English and 

Spanish languages, ensuring representation from an ethnically diverse research population. 

Importantly, we conducted untargeted metabolomic profiling of CSF samples, which were 

systematically collected during scheduled diagnostic and clinical lumbar punctures. These 

samples are a biologically relevant biofluid for the detection of biomarkers of CRF and 

provide a window into the metabolic state of the central nervous system at the time of 

sample collection. Still, our findings should be considered in light of several limitations. 

First, given our sample size, the current study was likely underpowered to identify modest to 

weak biochemical profiles associated with CRF. However, our sample of more than 170 
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comprehensively-phenotyped patients is notable given how infrequent pediatric ALL is in 

the general population. Furthermore, restricting our analysis to individuals treated with 

contemporary ALL therapy reduces the potential for confounding due to heterogenous 

diagnoses or treatment exposures. We did not observe differences in the associations 

between CSF metabolites and fatigue across racial and ethnic groups; however, our study 

sample did include a high proportion of individuals of Hispanic ethnicity compared to the 

broader U.S. population of patients with pediatric ALL. As a consequence, our findings may 

not be generalizable to other cancers, therapeutic regimens, or populations.

CRF is a distressing and highly pervasive symptom during childhood cancer therapy [3–7] 

and remains an unremitting complaint in up to one-third of long-term survivors [10, 11]. 

Even modest declines in quality of life, if persistent, can result in a considerable loss of 

quality of life years, highlighting the need for novel approaches to address CRF in this 

vulnerable population. Corticosteroid treatment and sleep-wake disruptions during pediatric 

ALL therapy likely contribute to fatigue distress [2, 16, 17]. However, because pediatric 

patients with ALL do not typically receive corticosteroids during delayed intensification 

therapy, exposure to corticosteroids is unlikely to explain fatigue reported in the current 

study. Consistent with the existing literature [1, 15, 16], we did not observe strong 

associations between fatigue and most clinical and demographic factors in the current study. 

The lack of our understanding of the underpinnings of CRF in susceptible populations 

underscores the need for new approaches in understanding this important outcome. The 

current study adds to our limited understanding of fatigue in children with ALL by 

identifying differences in the abundance of asparagine and gamma-glutamylglutamine 

metabolites among fatigued individuals. Differences in the relative abundance of these 

metabolites appear to occur in the absence of significant alterations in the broader 

constellation of CSF biochemicals. Whether the CSF abundance of gamma-

glutamylglutamine and other candidate metabolites play a functional role in etiology of 

fatigue should be the subject of future research. Furthermore, additional work is needed to 

determine whether altered metabolomic profiles can aid in the identification of pediatric 

cancer survivors at increased risk of persistent fatigue. Ultimately, this line of investigation 

may aid in the development of new prevention and treatment approaches informed by an 

improved understanding of the etiology and risk factors for cancer related fatigue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Observed correlation between standardize fatigue scores assessed at start of delayed 

intensification therapy and the abundance of gamma-glutamylglutamine in the cerebrospinal 

fluid of participants included in the discovery cohort (A), replication cohort (B), and 

diagnostic samples collected on the replication cohort (C)
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Table 1.

Clinical and demographic characteristics of the discovery and replication populations

Discovery Population (N=86) Replication Population (N=85)

Median age at diagnosis, year (range) 8.39 (2.61 – 17.48) 8.57 (2.67 – 17.63)

Median age at survey, year (range) 8.90 (3.16 – 17.93) 9.09 (3.22 – 18.07)

Median BMI at survey, z-score (range) 0.30 (−3.64 – 2.39) 0.58 (−2.35 – 2.61)

Gender, n(%)

 Male 48 (55.8) 48 (56.5)

 Female 38 (44.2) 37 (43.5)

Race/Ethnicity, n(%)

 Non-Hispanic White 30 (34.9) 13 (15.3)

 Hispanic 43 (50.0) 59 (69.4)

 Non-Hispanic Black 8 (9.3) 6 (7.1)

 Non-Hispanic Other 5 (5.8) 7 (8.2)

Diagnosis, n(%)

 B-lineage ALL 76 (88.4) 70 (82.4)

 T-lineage ALL 9 (10.5) 11 (12.9)

 Lymphoblastic lymphoma 1 (1.1) 4 (4.7)

Post-induction protocol, n(%)

 AALL0434 7 (8.1) 1 (1.2)

 AALL0932 31 (36.1) 22 (25.9)

 AALL1122 2 (2.3) 2 (2.4)

 AALL1131 44 (51.2) 47 (55.3)

 AALL1231 2 (2.3) 13 (15.3)

CNS involvement at diagnosis, n(%)
1

 No CNS involvement 59 (71.1) 55 (68.8)

 CNS involvement 24 (28.9) 25 (31.2)

End induction risk group, n(%)

 Low/Standard 36 (41.9) 26 (30.6)

 High/Very High 50 (58.1) 59 (69.4)

Fatigue scale, n(%)

 Parent 41 (47.7) 36 (42.4)

 Child 28 (32.6) 29 (34.1)

 Adolescent 17 (19.8) 20 (23.5)

Median standardize fatigue score (range) 49.86 (31.28 – 81.17) 48.79 (30.32 – 73.89)

1
CNS involvement not available on lymphoblastic lymphoma patients

Body mass index, BMI; acute lymphoblastic leukemia, ALL; central nervous system, CNS
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Table 2.

Observed associations between clinical and demographic factors and post-induction fatigue during pediatric 

ALL therapy (n=171)

Unadjusted Model Adjusted
1
 Model

Beta (SE) P-val Beta (SE) P-val

Age at diagnosis, year −0.08 (0.17) 0.63 0.21 (0.20) 0.31

BMI z-score at survey −0.35 (0.65) 0.58 −0.57 (0.66) 0.39

Gender 0.12 0.17

 Male Ref. Ref.

 Female −2.35 (1.51) −2.18 (1.50)

Race/Ethnicity 0.90 0.96

 Non-Hispanic White Ref. Ref.

 Hispanic −1.13 (1.80) −0.60 (1.88)

 Non-Hispanic Black −1.28 (3.04) −1.54 (3.14)

 Non-Hispanic Other −2.01 (3.23) −0.13 (3.63)

Diagnosis 0.07 0.18

 B-lineage ALL Ref. Ref.

 T-lineage ALL −2.51 (2.32) −3.17 (2.36)

 Lymphoblastic lymphoma
2 −9.25 (4.42) --

CNS involvement at diagnosis, n(%) 0.15 0.61

 No CNS involvement Ref. Ref.

 CNS involvement −2.42 (0.92) −0.93 (1.80)

End induction risk group 0.005 0.010

 Low/Standard Ref. Ref.

 High/Very High −4.36 (1.53) −4.86 (1.87)

1
Model adjusted for variables listed in table

2
Lymphoblastic lymphoma not included in adjusted models which include CNS involvement at diagnosis as a covariate

Body mass index, BMI; acute lymphoblastic leukemia, ALL; central nervous system, CNS
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Table 4.

Clinical characteristics of discovery cohort with CSF samples evaluated at diagnosis

Pediatric ALL Patients (n=48)

Median age at diagnosis, year (range) 8.43 (3.0–17.4)

Median age at survey, year (range) 8.90 (3.46–17.95)

Median BMI at diagnosis, z-score (range) 0.42 (−3.09–2.43)

Gender, n(%)

 Male 27 (56.2)

 Female 21 (43.8)

Race/Ethnicity, n(%)

 Non-Hispanic White 9 (18.8)

 Hispanic 35 (72.9)

 Non-Hispanic Black 4 (8.3)

 Non-Hispanic Other 0 (0.0)

Diagnosis, n(%)

 B-lineage ALL 43 (89.6)

 T-lineage ALL 5 (10.4)

 Lymphoblastic lymphoma 0 (0.0)

CNS involvement at diagnosis, n(%)

 No CNS involvement 40 (83.3)

 CNS involvement 8 (16.7)

Treatment risk group, n(%)

 Low/Standard 17 (35.4)

 High/Very High 31 (64.6)

Fatigue scale, n(%)

 Parent 17 (35.4)

 Child 19 (39.6)

 Adolescent 12 (25.0)

Median standardize fatigue score (range) 48.56 (30.32–73.89)

Body mass index, BMI; acute lymphoblastic leukemia, ALL
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