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Abstract

Epigenetics is mainly comprised of features that regulate genomic interactions thereby playing a 

crucial role in a vast array of biological processes. Epigenetic mechanisms such as DNA 

methylation and histone modifications influence gene expression by modulating the packaging of 

DNA in the nucleus. A plethora of studies have emphasized the importance of analyzing 

epigenetics data through genome-wide studies and high-throughput approaches, thereby providing 

key insights towards epigenetics-based diseases such as cancer. Recent advancements have been 

made towards translating epigenetics research into a high throughput approach such as genome-

scale profiling. Amongst all, bioinformatics plays a pivotal role in achieving epigenetics-related 

computational studies. Despite significant advancements towards epigenomic profiling, it is 
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challenging to understand how various epigenetic modifications such as chromatin modifications 

and DNA methylation regulate gene expression. Next-generation sequencing (NGS) provides 

accurate and parallel sequencing thereby allowing researchers to comprehend epigenomic 

profiling. In this review, we summarize different computational methods such as machine learning 

and other bioinformatics tools, publicly available databases and resources to identify key 

modifications associated with epigenetic machinery. Additionally, the review also focuses on 

understanding recent methodologies related to epigenome profiling using NGS methods ranging 

from library preparation, different sequencing platforms and analytical techniques to evaluate 

various epigenetic modifications such as DNA methylation and histone modifications. We also 

provide detailed information on bioinformatics tools and computational strategies responsible for 

analyzing large scale data in epigenetics.
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1. Introduction

Amongst all the communicable and non-communicable diseases, cancer remains a primary 

contributing factor to high mortality rates. According to the American Cancer Society, in 

2019, approximately 1,762,450 cancer cases and 606,880 mortalities occurred within the 

United States (1). The investigation of the cancer genome has gained a tremendous amount 

of interest towards identifying and understanding novel mutations that are related to different 

types of cancer such as colorectal, breast and ovarian cancer (2). Despite the increased 

mortality rates, cancer survival rates have improved over the past years. According to the 

American Cancer Society, from 2007–2016, the cancer death rate declined by 1.4 – 1.8 % 

annually (1). Various advancements towards early diagnosis and treatment alternatives 

against cancer are the major contributors to improved cancer survival rates (3).

The global changes in epigenetic machinery are major hallmarks of cancers. Epigenetics is 

defined as a study of heritable gene expression changes that alter features of DNA without 

changing the DNA sequence. Besides a genetic anomaly, epigenetic dysregulation is 

primarily associated with cancer. Epigenetics exploits DNA and histones modifications 

which are known to be the building blocks of the nucleosomes (4). Nucleosomes are the key 

unit of chromatin which are comprised of four core histones; H3, H4, H2A and H2B which 

are closely associated with residual DNA (5). Each of these plays a pivotal role in various 

cellular processes such as DNA repair and gene expression (6). The accrual of epigenetics 

and genomic changes can potentially initiate important phenomena associated with various 

cellular processes that are related to multiple diseases such as cancer (7) and neurological 

disorders (8).

Despite numerous studies demonstrating the underlying mechanisms associated with DNA 

and histone modifications, complex epigenetic machinery and its reversible nature leading to 

disease progression is poorly understood (9). Epigenomics, which integrates multiple 

conventional genomics with computer science, mathematics, chemistry, biochemistry and 
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proteomics for a broad analysis of genetic alterations in physiology, gene function or gene 

expression that are not based on gene sequence, opens up new opportunities advancing our 

knowledge of transcriptional regulation, nuclear structure, growth and disease (10). Various 

sophisticated computational and bioinformatics technologies such as next generation 

sequencing (NGS) greatly facilitate handling the genomic data and further understanding of 

the complex nature of epigenetic modifications at the genomic level. NGS technologies are 

key players in high-resolution epigenomic profiles across genomes (11). Also, gene 

expression microarray profiling is another method which aims to identify novel gene targets 

that can potentially serve as a clinical target for therapeutic intervention (12). These 

technologies provide great advantages such as parallel computation power thereby 

minimizing data analysis time and further providing genome-wide epigenetic profiling. 

These approaches enhance addressing important questions by demonstrating the association 

of epigenetic change with different chromatin modifications that regulate empirical 

processes such as transcription.

Computational epigenetics has continued to evolve as an emerging field that focuses on 

addressing and understanding various bioinformatic challenges which arise during the 

analysis of epigenetic data. Recent advancements in technology and enhanced developments 

of high-throughput sequencing methods have provided cost-effective methods for analyzing 

a vast amount of epigenetics data. In this review, we will cover existing information on the 

epigenetic patterns and gene regulation mechanisms associated with healthy tissues and their 

specific relation to disease progression. We will discuss various methodologies responsible 

for epigenomic profiling in terms of NGS technologies by discussing library preparation 

techniques and different sequencing platforms. We will also extrapolate recent 

advancements in computational methods regarding preprocessing and quality control of 

epigenetics data. Subsequently, we will discuss various computational tools for DNA 

methylation and histone modifications and further discuss recent online epigenetics 

databases that are related to DNA methylation and histone modifications.

2. Epigenetics

One of the aims of the study of epigenetic alterations in carcinogenic cells is to identify 

novel therapeutic targets thereby creating new avenues towards cancer therapy and treatment 

by availing epigenetic cancer drugs (13). This has been made possible by the recent 

developments in the field of nanotechnology (14). Studies have provided strong evidence 

supporting the establishment of differential gene expression changes as one of the primary 

contributors in epigenetics (14). DNA methylation, histone modification, different chromatin 

structure states, affiliated protein compositions and gene expression changes associated with 

transcriptional activity are some of the recent advancements that have provided an in-depth 

information contributing to epigenetic machineries(15).

DNA methylation is a useful indicator for the evaluation of the specific epigenetic conditions 

and is often catalyzed by three different DNA methyltransferases (DNMTs); DNMT1, 

DNMT3a and DNMT3b. During the process of methylation, methyl groups are added to the 

5’ position of cytosine (5C) thereby generating 5-methylcytosine (5mC) (16). Cytosine 

methylation regulates gene transcription by interfering either directly or indirectly with the 
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transcriptional machinery (17). In a mammalian genome, DNA methylation primarily occurs 

at cytosine residues followed by guanine residues which is symbolized as CpG dinucleotides 

wherein “p” stands for a phosphate binding deoxycytidine and deoxyguanosine (18). Each of 

these methylation patterns is crucial for various biological processes with specific molecular 

activities. For instance, DNMT1 is essential for genomic imprinting, heterochromatin 

formation and gene silencing. During X chromosome inactivation, DNA methylation plays a 

crucial role in long-term silencing, thereby affecting cell memory (19). In addition, 

DNMT3a and DNMT3b are primarily essential for embryonic development and play a 

crucial role in de novo methylation in the genome (20). However, studies have connected 

DNA methylation and transcription factor binding variants with the formation of tumor cells 

that may grow into cancer, as well as changes in the amount of lipids flowing into the blood 

resulting in cardiovascular disorders, while diabetes has been documented in some cases 

(21). This was reported after several assays were performed using chromatin 

immunoprecipitation and microarray analysis (21). It is therefore critical to understand the 

mechanistic link between DNA methylation and gene silencing followed by their association 

with diseases.

Besides DNA methylation, covalent histone modifications are another pivotal epigenetic 

mechanism which consists of histone proteins with a nucleosome (core), N-terminus domain 

and C-terminus domain. The N-terminus tails undergo post-translational modifications such 

as acetylation, methylation, ubiquitylation, and phosphorylation on specific residues (22). 

These amendments enforce key cellular processes such as transcription, repair and 

replication (23). Histone variations work by modifying the functionality of chromatin, 

thereby resulting in either activation or repression depending on different residues that 

undergo modifications(22). For instance, lysine 4 trimethylation on histone H3 (H3K4me3) 

influences transcriptionally active gene promoters(24), while, trimethylation of H3K9 

(H3K9me3) and H3K27 (H3K27me3) occurs on transcriptionally suppressed gene 

promoters (23). A wide range of histone modifications has been identified, constituting a 

complex gene regulatory network critical for cell physiological activity (23, 25). The 

variations in histones are dynamically regulated by enzymes that add and remove covalent 

changes to the histone proteins. Histone acetyltransferases (HATs) and histone 

methyltransferases (HMTs) are associated with the addition of acetyl or methyl groups, 

respectively (26), while histone deacetylases (HDACs) and histone demethylases (HDMs) 

are associated with removal of either acetyl and methyl groups (27). Changes in histone 

patterns can result in transcriptional activation or silencing (28). For instance, H3K4me2, 

H3K4me3, H3R17me, H3K36me3 and H4R3me feature transcriptional activation while 

H3K9me3, H3K27me3, H4K20me1 and H4K20me3 are related to transcriptional silencing 

(29). Cancerous cells often show wide variations in patterns of histone methylation. For 

instance, changes in methylation patterns of H3K9 and H3K27 are related to anomalous 

gene silencing in different types of cancer (30). Numerous studies have also demonstrated 

that various HMTs are potentially responsible for abnormal silencing of tumor suppressor 

genes (TSGs). For instance, an investigation reported the overexpression of EZH2 (an 

H3K27 HMT) is related to breast cancer and prostate cancer (30). Additionally, elevated 

levels of G9a (an H3K9 HMT) were observed in hepatic cancer and are associated with a 

malignant phenotype by regulating chromatin structure (31). Cancer progression is also 
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associated with site-specific demethylases along with overall methylation patterns. For 

example, LSD1 (lysine demethylase) can potentially remove histone activating and 

suppressing markers such as H3K4 and H3K9 methylation thereby serving as a co-repressor 

or co-activator (32). It is therefore imperative to know the specific context-dependent 

activities of these epigenetic-modulating enzymes and their target to ultimately apply their 

clinical impact and appropriate strategy for cancer treatment.

2.1 Complex interactions between DNA methylation and histone modifications

Other than conducting their mutually exclusive purposes, histone modifications and DNA 

methylation interact at numerous levels to modulate gene expression changes and chromatin 

organization (33). Most research has reported this form of epigenetic interaction and its 

deleterious means of causing diseases.

For instance, Wen et al., (2016) (34) reported the effect of the interaction in causing 

neurodegenerative diseases, while Zawisza and Wisnik (2017) have reported the association 

of both gene hypermethylation and hypomethylation together with histone modifications as 

the main causes of transformation of cells leading to prostate cancer (35). Numerous HMTs 

and HDMs also impact DNA methylation levels by modulating the DNMT proteins stability 

directly or indirectly by engaging HDACs and methyl-binding proteins to silenced genes 

with chromatin condensation (36). HMTs and HDMs deregulation have been linked with the 

aberrant effect of Grave’s disease among patients (37). Studies have reported a close 

association of various HMTs such as G9a/GLP (mediating H3K9 methylation) (38), 

SUV39H1 (mediating H3K9 methylation) (39) and PRMT5 (mediating H4R3 methylation) 

(40) by specifically recruiting DNA methyltransferases (DNMTs) to stably silence genomes 

and further direct DNA methylation at specific genomic targets (such as pericentric 

heterochromatin). For instance, an investigation in embryonic stem (ES) cells during early 

embryogenesis reported that silencing of Oct-3/4 (a POU domain homeobox gene, also 

known as Pou5f1) occurs by recruitment of a repressor complex that is comprised of G9a 

and other histone deacetylase enzymes which results in recruitment of promotors for 

DNMT3A and DNMT3b activity (41). Although genetic studies in embryonic stem cells 

have also demonstrated that a point mutation in the G9a SET domain inhibits 

heterochromatinization and also assists in de novo methylation, biochemical and functional 

studies have reported that G9a can assist in de novo methylation by itself due to its ankyrin 

domain (42) and by recruiting Dnmt3a and Dnmt3b independent of histone 

methyltransferase activity (43). Another investigation also reported that despite mutations in 

G9a/GLP that inactivate it during methyltransferase activity, it can potentially interfere with 

histone H3 lysine 9 (H3K9) methylation without influencing DNA methylation (38, 44). 

Research performed by Zarchi et al., (2017) reported that DNA methylation discriminates 

promoters from enhancers through a H3K4me1-H3K4me3 seesaw mechanism, and suggest 

its possible function in the inheritance of chromatin marks after cell division, an aberrant 

effect correlated with cancer and aging (45).

Numerous studies have also suggested that DNA methylation can also guide H3K9 

methylation by regulating effector proteins such as Methyl-CpG-binding protein 2 (MeCP2), 

eventually creating a restrictive chromatin state (46). A study demonstrated a bidirectional 
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relationship between DNA methylation and transcription wherein an NGS approach on the 

oocyte transcriptome and methylome analyses displayed a consistent pattern for CGIs that 

are methylated in the oocyte which needs to be transcribed and reduced by the active 

promoter-associated histone H3 lysine 5 methylation (H3K4me3) (47). These results were 

coherent with studies in different species such as humans and mice, wherein a large fraction 

of unmethylated intragenic CGIs also exhibited similar binding properties of H3K4me3 and 

RNA polymerase II (RNA Pol II) (48, 49). Additionally, elongation of RNA Pol II transcript 

has also made significant contributions to the intragenic aggregation of Histone H3 lysine 36 

methylation (H3K36me3) which enhances DNMT3A activity (50). Therefore, complex 

histone modifications such as lysine methylation contribute to the alterable and dynamic 

regulation of gene expression in comparison to DNA methylation. These studies suggest that 

DNA methylation and histone modifications paradigms can strengthen epigenetic regulation 

by modulating gene expression activity which can further assist in determining and 

maintaining cellular identity and functionality.

These studies play a crucial role in bringing to the forefront various fundamental biological 

insights and have resulted in the generation of a tremendous amount of experimental data. 

Therefore, it is pivotal to design central databases (DB’s) repositories to better interpret and 

analyze the data using various computational approaches using machine learning approaches 

and other robust methods such as data mining, text mining and many others. Table 1 

summarizes a comprehensive list of epigenetics databases which aim to provide large scale 

experimental datasets with genome-wide maps of various histone modifications, chromatin 

accessibility, DNA methylation and mRNA expression in different cell types and tissues 

across different species. These DB’s are not only restricted to serve as a central repository 

with large data aggregation but also help with analyzing the data in different ways.

3. Computational techniques for DNA methylation analysis and histone 

modifications analysis

3.1. Computational techniques for DNA methylation analysis

Numerous studies have reported various machine learning (ML) methods such as predictive 

modeling methods for determining DNA methylation patterns. The recent development in 

technology has become crucial in the medical field using machine learning and the aim of 

medical practioners is to be able to treat individuals based on their genetic and epigenetic 

profiles (65). Machine learning has eased the epigenetic studies such as DNA methylation 

due to its massive database and less power input (65). In general, biological and molecular 

data are obtained as raw datasets. To make biological interpretations, the raw datasets need 

to be annotated with class labels. Various ML techniques such as Active learning (ACL), 

Deep learning (DL) and Imbalanced class learning (ICL) have been employed in various 

cancer-related studies for genomic mapping to methylation patterns. All of these methods 

have exhibited various applications in biological datasets (66). For instance, a deep ML 

framework was designed to extract motifs by visualizing the positive classes learned by the 

network. The study demonstrated effective use of the Deep Motif (DeMo) framework to 

classify transcription factor binding sites (TFBS) and for further extracting visual 

representations of positive binding sites (67). Another study implemented in silico methods 
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by using the Most Informative Positive (MIP) ACL approach to identify positive p53 

mutants using 33% fewer studies than traditional active non-MIP research. The study also 

performed in vivo assays which demonstrated that positive regions had more new strong 

cancer rescue mutants than control regions based on p-value<0.01 in comparison to negative 

and non-MIP active learning. Additionally, the MIP ACL approach also released un-rescued 

p53 cancer mutant P152L (68). Another investigation reported the use of the class Based AL 

(CBAL) method (an ACL-based approach) which uses a mathematical model for calculating 

the cost of building a training set with a certain size and class ratio to annotate digital 

histopathology data (69). As a result, the investigation developed a mathematical model to 

predict the number of annotations required to achieve balanced training classes (69).

ML techniques have also been used efficiently to identify potent imprinted genes that play a 

vital role in embryonic development (70). For example, a study identified KCK9 (an 

oncogene expressed in the brain) and DLGAP2 (bladder cancer tumor suppressor) genes. 

Another study examined the correlation of various features with CpG island DNA 

methylation. The study extracted features of 190 CpG islands from human chromosome 21 

and tested these CpGs on the remaining CpGs islands in the genome to identify methylated 

CpG islands (71). DNA methylation was associated with bladder cancer, a form of neoplasia 

and this was mainly due to the hypermethylation of CpG islands at the promoter regions of 

the genome (72). Other ML models such as artificial neural networks (ANN), linear 

discriminant analysis (LDA), Hidden markov model (HMM) and support vector machines 

(SVMs) have been used in predicting DNA methylation patterns. ANN and LDA have been 

employed for the classification into small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC) cell lines. The study reported DNA methylation levels across 20 loci in 41 

SCLC and 46 NSCLC wherein 10 ANN models and 10 LDA models were trained using 10 

different datasets, thereby proving effective use of ANN and LDA for development of 

automated methods in lung cancer classification (73).

Due to the tremendous amount of experimental data, the usefulness of ML approaches is not 

only confined to individual studies but also widely used to develop epigenetics databases 

using DL and Text mining techniques. DNA methylation DB’s play a vital role in studying 

co-valent modification of the genetic material of a cell, particularly in the complex genomes 

of vertebrates. Cancer methylation DB’s such as PubMeth (74), MethyCancer (75) and 

MethCancerDb (76) are advantageous for investigating irregular patterns of methylation 

associated with different cancers.

Generally, the development in the field of computational methods and machine learning have 

had a positive impact on the field, particularly in epigenetic studies. Methods such as Active 

Learning have effectively addressed the expense of generating epigenetic data whereas 

Imbalanced Class has addressed the problem of occurrence of low epimutations in the data. 

While supervised learning is more precise and has both predictive and interpretive data, 

unsupervised learning does not require class labels on data. Also with the advent of the 

method of deep learning, the problem associated with manually relevant genomic features 

has been addressed (66). However, machine learning as a newly advanced method of 

studying epigenetics is vulnerable to some challenges which makes it disadvantageous. For 

example, deep learning is more responsive to specific parameters of choice and takes quite a 
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long time to learn. Imbalanced class learning is liable to overfitting of data based on the 

prejudice against minority class (66).These DNA methylation DB’s contain explicit 

information on DNA methylation patterns and specific genes across different species, 

individuals, tissues, cells and phenotypes.

3.2. Computational techniques for histone modifications analysis

The use of computational methods such as comparative genomics and ML to examine, 

model and forecast histone modifications in DNA sequences is of great interest. 

Computational methods have also been used to develop a simplified stochastic model to 

analyze the biostability and heredity conditions of an epigenetic memory-dependent silent 

mating-type region in the yeast. This model demonstrated robust biostability, which is 

resistant to high noise related to a random increase or loss of nucleosome modifications and 

a random partitioning after DNA replication (77). Comparative genomics has utilized 

technological innovations to identify histone markers and regulatory elements in eukaryotic 

genomes by performing genome-wide chromatin structure analysis. As a result, the study 

identified a binary pattern of histone modifications between euchromatic genes wherein 

active and inactive genes were hyperacetylated at histone H3 and H4 and hypermethylated to 

lysine 4 and lysine 79 of histone H3, respectively (78). It was also found that histone 

modification patterns of active genes are confined to the transcribed region and their 

regulation is closely associated with polymerase activity (79)Another investigation 

demonstrated extensive use of high-resolution genome-wide mapping technique (GMAT) in 

detecting histone H3 acetylation in active gene promoter regions. The accessibility and gene 

expression of a genetic domain to chromatin were found to be closely associated with 

promoter hyperacetylation (80) and further determine lysine-9/14-diacetylated histone H3 

distribution in human peripheral T cells (81). The GMAT technique has also proven to be 

very effective in identifying nucleosome positioning sequences (NPSs) in Saccharomyces 
cerevisiae genes. Genes with a comparatively compact NPS framework over the promoter 

region were found to possess TATA box embedded in the NPS and tend to be regulated by 

chromatin enhancing and transforming factors (82).

Numerous studies have also reported the implementation of ML algorithms/techniques for 

determining histone positions as well as the various histone modifications such as 

acetylation, methylation and phosphorylation in DNA sequences (83). For instance, a study 

demonstrated efficient employment of HMMs models in determining differential histone 

modification sites (DHMS) by comparing the whole genome and ChIP-seq libraries. A new 

approach, ChIPDiff was proposed to unravel differential H3K4me3 and H3K36me3 sites 

between mouse embryonic stem cell (ESC) and neural progenitor cell (NPC) states (84). As 

a result, H3K27me3 DHMSs had high sensitivity, high specificity and greater technical 

reproducibility (84). Another investigation reported use of HMMs in conjunction with 

wavelet analysis to the non-partisan discovery of “domain-level” behavior in genomic 

functional data, along with activation and/or repressive histone modifications, RNA output 

and DNA replication timing. It was hypothesized that high-order patterns trends can be 

mutually studied in the HeLa cells to distinguish between 53 active and 62 repressed 

functional domains within the ENCODE regions based on the ENCODE project consortium 

(85). Besides, HMMs and supervised learning, Multilinear (ML) Regression and 
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Multivariate Adaptive Regression Splines (MARS) have been used to build predictive 

models of gene expression to determine histone modifications and variants levels in human 

CD4+ T-cells (86) thereby identifying a close association of histone lysine and arginine 

methylation (H4R3me2) with PRMT5-catalyzed symmetric dimethylation gene expression 

repression (87).

Besides proving to be beneficial in analyzing and/or interpreting disease-specific (or 

research-specific) datasets, ML approaches have also been deployed in developing databases 

for predicting histone modifications (88). For instance, DeepHistone database was developed 

using a DL framework combining sequence information and usability evidence for 

chromatin to reliably assess various alteration sites specific to different histone markers (83). 

Another database, DeepChrome was developed using deep convolutional neural network 

framework to classify gene expressions by taking histone modifications data as input, 

thereby providing a visual representation of pattern maps using learnt deep model (83). 

Besides DeepHistone and DeepChrome, other databases as listed in Table 2 have also been 

developed to predict genome-wide histone modifications events, chromatin interactions, 

conserved sequence motifs, chromatin-associated proteins across different organisms.

Table 2 summarizes DNA methylation and histone methylation DB’s which contains 

specific information on DNA methylation patterns and histone modification events which 

are very helpful in understanding various epigenetic events within the specific types of cells 

and also in an evolutionary context. These DB’s are very helpful in understanding various 

epigenetic events within the specific types of cells and also in an evolutionary context. These 

approaches are extremely beneficial for the interpretation of epigenetic events such as DNA 

methylation and histone modifications.

4. Next-generation sequencing and epigenomics

4.1 Next-generation sequencing platforms

Next generation sequencing NGS describes a recently revolutionized form of sequencing 

characterized by speed and accuracy of the process such that the human genome can be fully 

sequenced in one day in contrast to Sanger sequencing that was relatively very slow (110). 

NGS technologies have made significant contributions in identifying differentially 

methylated DNA regions along with the discovery of new gene regulatory elements in 

epigenetic machinery (111). Besides DNA methylation, histone modifications and 

transcriptomes are also being consistently investigated using NGS genome-wide 

methodologies (111). Due to the lack of preservation of the methylation signature in PCR 

amplification, NGS methods have been extensively used to conserve the epigenetic 

landmark in the DNA. These approaches have also been employed in other aspects of 

chromatin organization such as DNA accessibility (112) and high-order chromatin 

complexes globally (113). Illumina genome analyzer, soLiD and Roche:454 Genome 

sequencer FLX (GS FLX) are three NGS platforms which have various advantages and 

disadvantages. NGS involves the implementation of specific protocols pertaining to library 

preparation, sequencing, read alignment and data analysis techniques using different 

software for varying sequencing platforms as demonstrated in Figure 1.
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Consequently, various computational approaches have recently emerged that are developed 

for the detection of DNA methylation and histone modifications. While these technologies 

are not yet ubiquitous due to relatively high costs and are still in the development phase, 

these methods are encouraging towards identifying approximately 10% higher methylation 

states in comparison to conventional methods. Table 3 summarizes a comprehensive list of 

different computational tools that can be used for analysis using NGS methodologies.

Despite numerous variations in their technicalities, the three platforms display a basic 

workflow starting from preparation of sequencing library, which is built from DNA 

fragments wherein the ends are modified by a ligating platform using specific PCR and 

sequencing adapters. Conventional methods usually involve splitting of breaking genomic 

DNA (gDNA) randomly into smaller sizes followed by generation of either fragment 

templates or mate-pair templates. The primary characteristic of NGS technologies is that the 

template is linked to a solid surface thereby assisting in immobilization which in turn 

facilitates numerous sequencing reactions/protocols. Table 4 summarizes primary features of 

sequencing platforms along with their advantages and disadvantages.

4.2. DNA methylation profiling and Next-generation sequencing

Despite recent advancements, 5mC analysis possess various limitations such as robustness 

and lack of the consistency as the methyl group prevents the direct labeling for subsequent 

affinity purification and detection (111). Initially DNA methylation profiles were being 

studied using methods such as microarrays and methyl-specific polymerase chain reaction 

which were cost effective and required small DNA input. The method however have 

limitations in that they have low levels of accuracy and low sample input (127). Next-

generation sequencing (NGS) platforms are now advancing that facilitate a significant 

investigation of the methylation patterns of numerous CpG sites and the creation of genomic 

maps of DNA methylation at a single base resolution (127). Integration of NGS and 

methylation studies can therefore be a potent approach for DNA methylation studies 

involving clinical research due to their versatility in clinical diagnosis and prognosis while in 

pharmacogenomics, targeting certain CpG islands on promoters of certain genes of tumors 

may predict the likelihood of disease response to treatment. NGS approaches to the genome-

wide profile of DNA methylation can be broadly classified by focusing on affinity 

enrichment-based methods, restriction enzyme-based methods and direct bisulfite-based 

conversion methods (128). Studies have suggested that these methods can also be 

assimilated to enhance single method resolution and performance. For instance, methylated 

immunoprecipitation of DNA (MeDIP-seq) and MRE-seq methods can be employed in 

combination for profiling of methylated and unmethylated regions within the genome (49). 

Therefore, the use of NGS and methylation arrays can be a powerful approach for DNA 

methylation studies which are primarily involving clinical research in terms of data 

exploration, data integration and screening methods Figure 2 represents a historical 

description of NGS-based methods applied to DNA methylation profiling.

4.2.1 Affinity-based enrichment methods—Affinity-based enrichment methods are 

comprised of MeDIP-Seq and methylated-CpG binding proteins (MBD-Seq) to determine 

the methylated genomic regions. MeDIP-Seq is an immune-precipitation based technique 
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that uses antibodies against a single-stranded methylcytosine and thereby performing 

immunoprecipitation in a denatured state (127). MeDIP-seq method can determine 

approximately 80% of the 28 million CpGs in the human genome at around 100–300 bases 

(129). MBD-Seq is very similar to MeDIP-Seq wherein the enrichment of genomic 

fragments occurs depending on its methylation content. Upon the enrichment of genomic 

fragments, standard library construction methods are employed to generate a library 

determining the methylation regions within the genome (130). Unlike MeDIP-Seq, in the 

MBD-Seq technique, the fragments of weakly methylated DNA are elucidated at lower salt 

concentrations relative to fragments of highly or strongly methylated DNA such as 

methylated CpG Islands. These methods extensively characterize enriched CpGs which 

includes their islands and promoter regions (127). Affinity-based enrichment techniques 

have been applied in assays to determine methyl-CpG binding activity and DNA methylation 

in early Xenopus embryos (131). In this experiment, methylated DNA affinity precipitation 

method was implemented to assay binding of proteins to methylated DNA. Endogenous 

MeCP2 and MBD3 were precipitated from Xenopus oocyte extracts and conditions for 

methylation-specific binding were optimized. For a reverse experiment, DNA methylation in 

early Xenopus embryos was assessed by MBD affinity capture (131).

The main limitations of these approaches are the limited quantification across regions and 

lack of base-specific data analysis, which ultimately diminishes the insight that could be 

gathered from them. Poor quantification across genomic regions and lack of base-specific 

data analysis are the major drawbacks of affinity-based enrichment methods. Such 

methodologies, therefore, require significant experimental work and extensive use of 

bioinformatics approaches for in-depth analysis (129).

4.2.2. Restriction enzyme (RE)-based methods—(132)RE-based approaches use 

restriction enzymes that can cleave recognition sequences at the DNA methylation site 

which can potentially identify 5mC in a particular sequence of interest. This method is either 

based on single methyl-sensitive RE digestion such as HpaII; HELP-seq, Methyl-seq and 

MSCC or multiple RE digestion such as AciI, Hinc6I and MRE-seq (132). Restriction- 

sensitive endonucleases such as Hpall digest the high-quality DNA at an unmethylated 

region followed by ligation with an adaptor which assists other restriction enzymes such as 

EcoP15I or MmeI (132). RE-based methods are the most cost-effective and time-consuming 

sequencing method which involves minute amounts of DNA (133). RE-based methodologies 

pose unique challenges while sequencing on either Illumina Genome Analyzer or SOLiD 

platforms. The primary drawback of this method is the inability to adapt coverage regions of 

interest as this method relies on the restriction sites positions within the genome which 

makes it incapable of determining the genes with sparse CCGG motifs (127). To overcome 

this restriction enzyme challenge, LpnPI was used to perform restriction digestion and was 

blocked by fragment sizes less than 32 bp to prevent complete digestion. The results showed 

that methylated DNA sequencing (MeD-seq) of LpnPI-digested fragments revealed highly 

reproducible genome-wide CpG methylation profiles for >50% of all potentially methylated 

CpGs, at a sequencing depth less than one-tenth required for whole-genome bisulfite 

sequencing (WGBS) (134).
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4.2.3. Bisulfite conversion-based methods—The protocol of bisulfite sequencing 

(BS-Seq) begins with the treatment of denatured DNA with bisulfite, during which the non-

modified cytosine is converted to uracil; although, methylated cytosines remain stable 

without undergoing any changes leading to the identification of 5mC resolution (135). As a 

result, the genomic regions treated with bisulfite are amplified by site-specific PCR, cloned, 

and imperiled to Sanger sequencing. Additionally, sequencing reads are evaluated 

periodically and visualized as a matrix with each clone’s CpG material depicted as a row. 

After the treatment with bisulfite, the sequencing library is subjected to PCR amplifications 

which extend the sequencing of the adapter thereby allowing clonal amplification and 

sequence. Recent advancements in NGS systems have enhanced the performance and 

reliability of this method thereby reducing the costs associated with experimental 

procedures.

Whole-genome bisulfite sequencing (WGBS) is by far the most informative that targets the 

whole genome, which in turn makes it the most expensive technology for base resolution. 

The process begins with the creation of genomic DNA libraries that are further subjected to 

bisulfite conversion, following sequencing and aligning to the reference genome (136). Even 

though BS-seq is by far the most direct assay by exhibiting the highest methylation detection 

resolution, this approach is specifically restricted to various studies which aim to answer 

specific questions related to a comprehensive DNA methylation profiling (127).

In the reduced representation of bisulfite sequencing (RRBS) method, the genome is 

digested by Msp1 (a methylation-insensitive restriction enzyme) and specific DNA 

fragments approximately ranging from 100–300 bps are selected to generate a fragment 

library using NGS platforms (137). These shortlisted DNA fragments are considered as the 

input for the library construction using adapters (methylated) and are further subjected to 

bisulfite conversion (138). Although RRBS covers only 12% of CpGs, the CpGs are 

enormously enriched in CpG islands (139). The method has been applied in an experiment 

to detect methylome profiling in plants which is termed as plant-reduced representation 

bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease 

digestion, fragment end repair and adapter ligation, followed by bisulfite conversion, PCR 

amplification and NGS. The results have produced tens of millions of RRPS methylated 

regions using multiple samples (140). Application of the method is limited to the high cost 

of performing the assays to large number of patients (141).

4.3 Histone modifications profiling and Next-generation sequencing

The underlying beliefs for mapping these genome-wide post-translation modifications 

involve an NGS methodology such as chromatin immunoprecipitation (ChIP) (142). The 

process begins by either integrating histones biologically with DNA via the intervention of a 

cross-linking reagent (such as formaldehyde) or releasing the histones in their native form by 

nuclease addition which results in digestion of genomic DNA (gDNA) at unprotected linker 

sequences (142). The protein / DNA mixture is subjected to immunoprecipitation after 

gDNA fragmentation using antibodies raised against post-translational modification (143). 

Subsequently, during the process of immunoprecipitation, DNA fragments associated with 

histone peptides are subjected to purification and library construction followed by direct 
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sequencing (144). Single-cell ChIP-sequencing in different stem cells and progenitor cells 

have led to the identification of population sub-groups that are differentiated based on 

variations in pluripotent chromatin signatures and primer distinction (145).

Numerous studies have suggested that direct sequencing of ChIP fractions have remarkable 

benefits over alternative techniques such as ChIP-chip wherein fragments obtained from 

ChIP are potentially determined by hybridization to the microarray. A study on the same 

experiments reported that ChIP-chip obstructed unique and biologically distinct peaks that 

were observed in ChIP-Seq. Furthermore, the study also reported that in ChIP-Seq, 

fragments of the DNA are sequenced explicitly, rather than being hybridized on an array. 

Unlike hybridization, ChIP-Seq does not have background noise which arises during the 

hybridization process due to the higher frequency of inconsistently matched sequences. In 

comparison to ChIP, Nucleic acid hybridization is dynamic process that depends on several 

variables such as GC-content, concentration secondary structure of the target and test 

sequences (146). Genome-wide CHIP-Seq has been applied in histone-modification profiles, 

including mapping of H3K4 acetylation and H3K4 trimethylation, H3K9 acetylation, and 

H3K27 methylation, which have been used for defining breast cancer subtypes and 

recognition of special players in tumorigenesis (141). Past research has reported the use of 

next generation sequencing in breast cancer studies. This was done using cell based models 

transcribing three oncogenes and reductions in histones H3K9me2 and H3K9me3, and 

elevations in the demethylases for H3K9me1 and H3K9me2 (KDM3A, or JMJD1A) as 

important events in breast cancer (141).

Recent advancements in technologies have offered innovative and more efficient NGS 

platforms such as the Illumina Genome Analyzer and SOLiD offers significant advantages 

by offering parallel processing of shorter reads and facilitating direct library construction 

from the immuno-precipitated products unlike early methods of ChIP such as capillary 

sequencing (147). The process of library construction for Illumina Genome Analyzer and 

SOLiD is very similar to typical approaches of the whole genome shotgun sequencing. The 

process begins with the repairing of the disheveled ends (within low nanogram range) of the 

enriched fragmented DNA and further linking the resulting fragments on either A-tailed end 

in Illumina Genome Analyzer or blunt end in SOLiD DNA fragments. The adapter-ligated 

product is later amplified with PCR primers and conjugated to the adapter sequences. 

Additionally, in SoLiD, the addition of two independent adapter sequences during ligation 

enables the inclusion of 50% of adapted fragments in PCR amplification. Unlike SoLiD, 

Illumina genome Analyzer library preparation utilizes adapters which are partially 

analogous generating a “fork” in the adapter which is ultimately resolved during PCR (148).

Either of these platforms facilitate enhanced spatial resolution which is crucial for the 

epigenome characterization comprising post-translation modifications of chromatin and 

nucleosome positioning. For instance, a study exhibited profiling of twenty histone 

methylation marks, histone variant H2A.Z, RNA Polymerase II and the DNA-binding 

protein CTCF in human T cells, totaling close to 8 million tags per sample using Solexa 

(149). Another investigation demonstrated the role of histone modifications during cell 

differentiation by profiling seven lysine trimethylation marks in mouse ES cells in 

pluripotent and lineage-committed cells (150). ChIP-seq has also been implemented in 
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conjugation with Roche 454 pyrosequencing for generating histone variant H2A.Z maps in 

yeast (151) and common fruit fly (152). These studies have significantly highlighted the 

advantages of NGS methodologies in histone modification profiling.

NGS technologically has fundamentally pioneered DNA methylation and histone 

modification research leading to the determination of new approaches which can potentially 

extend understanding and characterization of epigenetic machinery at a global level. 

However, the biggest limitation for NGS in clinical therapeutics is the tremendous cost 

associated with infrastructure, requirements of high-performance computing concerning data 

handling capacity and storage, and requirement of expert bioinformatician support to 

analyze and interpret the vast amount of data generated using NGS technologies. In addition, 

the efficacious assessment of datasets generated by various research facilities employing 

common DNA profiling and histone modification techniques involves the application of 

experimental and computational methods specifications to facilitate significant relationships 

between the experiments (141).

5. Concluding remarks

Investigators have made extensive use of computational methods ranging from different 

databases designed specifically for demonstration of epigenetic machineries such as DNA 

methylation and histone modifications. Furthermore, in-depth use of NGS technologies has 

contributed significantly towards DNA methylation profiling and histone modification 

profiling at a relatively affordable price. This is a paramount in the field of medicine, 

particularly with respect to oncology studies. Such massive-parallel high-throughput 

sequencing technologies offer promising results to decipher the existence and trends of 

epigenetic modifications as well as their effects on the different processes of pathology and 

physiology. However, some challenges do exist for the next generation sequencing in that it 

can be technologically demanding. A fundamental principle to this endeavor is the creation 

of statistically validated quality methods for assessing data quality and further rendering 

significant efforts towards enrichment-dependent epigenomic profiles which are mainly used 

in genomic studies. As a result, the increasing amount of epigenomic datasets facilitates 

bioinformatics-based methodologies being deployed regularly for continuous development 

of new methods and/or techniques for proper curation and maintenance of existing databases 

and methodologies.
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Highlights

1. Implementation of computational approaches towards understanding the 

complex interactions between DNA methylation and histone modifications.

2. Different computational techniques such as machine learning for analyzing 

epigenetic machinery.

3. Various epigenetics databases and resources for analyzing large scale datasets 

in epigenetics.

4. NGS approaches in DNA methylation and histone modifications profiling.
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Figure 1. 
Bioinformatics pipeline NGS analysis. Raw datasets are generated either using single-end or 

pair-end sequencing which is then tested for quality control. Afterward, the data are aligned 

to the reference genome. The process of variant calling is diverse and based on the 

experiment and/or clinical research, numerous softwares or methods are employed. Finally, 

depending on different requirements, annotation is performed using different softwares as 

mentioned above.
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Figure 2. 
NGS methods in DNA methylation profiling. Affinity-based enrichment methods: MeDIP-

Seq: methylated DNA immunoprecipitation sequencing, MBD-Seq: methyl-CpG binding 

domain sequencing; Busulfite conversion-based methods: RRBS-Seq: reduced 

representation bisulfite sequencing, WGBS: whole-genome bisulfite sequencing.
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Table 3.

List of various tools used during NGS pipeline analysis

Tools Description URL References

Quality control (QC)

FastQC A QC tool for high-throughput data https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/

RnBeads A QC tool for DNA methylation data https://rnbeads.org/ (114)

Meffil A QC tool specifically designed to handle gigantic 
DNA methylation data https://github.com/perishky/meffil/ (115)

Alignment

BWA Alignment tool for mapping low-divergent 
sequences http://bio-bwa.sourceforge.net/bwa.shtml (116)

Hisat2 Alignment tool for RNA-seq reads https://github.com/DaehwanKimLab/hisat2/blob/master/
docs/_data/collaborate.yml (117)

Bowtie Ultra-fast, memory efficient short read aligner http://bowtie.cbcb.umd.edu/ (118)

DNAscan

fast and efficient bioinformatics pipeline that allows 
for the analysis of DNA Next Generation 
sequencing data, requiring very little computational 
effort and memory usage.

https://github.com/KHP-Informatics/DNAscan (119)

Variant calling

SAMtools Variant calling tool which is based on UNIX 
commands

https://samtools.github.io/bcftools/howtos/variant-
calling.html (120)

GATK A genome analysis toolkit for variant detection https://gatk.broadinstitute.org/hc/en-us (121)

SNVer A statistical tool for calling rare variant in analyzing 
poor or individual NGS data https://sourceforge.net/projects/snver/ (122)

Annotation

ANNOVAR A tool for functionally annotating genetic variants https://annovar.openbioinformatics.org/en/latest/user-
guide/filter/ (123)

SAVANT Sequence annotation and visualization analysis tool 
for genomic data http://compbio.cs.toronto.edu/savant (124)

SVA NGS tool for annotating and visualizing human 
genomic data https://www.ebi.ac.uk/ena/browser/sva (125)

VariantDB A flexible annotation and filtering tool for NGS data http://www.biomina.be/app/variantdb/ (126)
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