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Abstract

Background: Studies of germ-free (GF) mice demonstrate that gut microbiota can influence 

behaviour by modulating neurochemical pathways in the brain, and that bacterial colonization 

normalizes behavioural deficits in GF-mice. Since disrupted GABAergic and glutamatergic 

signaling are reported in mood disorders, this study investigated the effect of gut microbiota 

manipulations on EIB-relevant gene expression in the brain.

Methods: GF Swiss-Webster mice were colonized with E. coli JM83, complex microbiota 

(specific-pathogen-free; SPF), or no microbiota, and compared with controls (n=6/group). 21 

synaptic genes representing GABAergic, glutamatergic, BDNF, and astrocytic functions were 

measured in the hippocampus, amygdala, and prefrontal cortex using quantitative PCR. Gene co-

expression analysis was used to identify gene modules related to colonization status, and 

compared by permutation analysis. Gene expression profiles were compared to existing post-

mortem cohorts of depressed subjects (n=28 cases vs 28 controls).
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Results: Region-specific alterations in gene expression were observed in GF-mice compared to 

controls. 58% of all genes (14/24) altered in GF-mice were normalized following SPF-

colonization. GF-mice displayed disorganization of gene co-expression networks in all three brain 

regions (hippocampus, p=0.0003; amygdala, p=0.0012; mPFC, p=0.0069), which was restored by 

SPF colonization in hippocampus (p v.s. GF =0.0003, p v.s. control = 0.60). The hippocampal 

gene expression profile in GF-mice was significantly correlated with that in human depression 

(ρ=0.51, p=0.027), and this correlation was not observed after colonization.

Conclusion: Together, we show that the absence of gut microbiota disrupts the expression of 

EIB-relevant genes in mice, and colonization restores EIB-relevant expression, in ways that are 

relevant to human depression.
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Introduction

Knowledge of the role of intestinal microbiota on human health is rapidly expanding. 

Microbiota show a profound influence on numerous host processes, including immune 

system development, brain function, and behaviour (Bercik et al., 2011; Collins et al., 2012; 

McVey Neufeld et al., 2019; Sharon et al., 2019; Valles-Colomer et al., 2019). Mental illness 

represents the leading global disease burden, but treatments for common illnesses such as 

anxiety disorders and depression show poor response rates of approximately 50% (Bandelow 

et al., 2014; Prins et al., 2011). Modulating intestinal microbiota represents a novel and 

unexploited therapeutic approach, although it requires a more refined understanding of how 

microbiota affect biological systems related to mental illness.

γ-amino butyric acid (GABA), the primary inhibitory neurotransmitter in the brain, is 

implicated in psychiatric and neurological disorders, including anxiety, major depressive 

disorder (MDD), bipolar disorder, schizophrenia, autism, Alzheimer’s disease, and epilepsy 

(Lin and Sibille, 2013; Schur et al., 2016; Treiman, 2001). Neuroimaging meta-analyses 

have shown significantly decreased GABA concentrations in cortical brain regions of 

depressed patients (Schur et al., 2016). Human and rodent studies have identified altered 

GABAergic and glutamatergic gene expression in the anterior cingulate cortex, amygdala, 

and hippocampus (Chang et al., 2014; Guilloux et al., 2012; Kohen et al., 2014; Lussier et 

al., 2013; Tripp et al., 2012). Coordinated activity of inhibitory GABAergic interneurons 

with excitatory glutamatergic pyramidal cells is required to maintain the excitation-

inhibition balance (EIB) and proper information processing (Fee et al., 2017). EIB 

maintenance also requires neurotrophic and astrocytic support, both of which show deficits 

in depression and animal models of stress (Guilloux et al., 2012; Oh et al., 2012; Poskanzer 

and Yuste, 2016).

Disrupted communication along the gut-brain axis is implicated in gastrointestinal and 

psychiatric disorders (De Palma et al., 2015; De Palma et al., 2014). Dysbiosis, a 

maladaptive shift in the balance of microbiota, is observed in many brain disorders that 

demonstrate changes in EIB, such as epilepsy, MDD, bipolar disorder, schizophrenia, and 
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autism (Dahlin and Prast-Nielsen, 2019; Fields et al., 2018; Grochowska et al., 2018; Lum et 

al., 2020). Oral administration of probiotic Bifidobacterium longum (NCC3001) to patients 

with IBS and co-morbid depression improved depression scores and altered coordinated 

activity of brain networks involved in mood control (Pinto-Sanchez et al., 2017). Dysbiosis 

is also observed in animal models relevant to such disorders (Lum et al., 2020). Microbiota 

transplantation from patients with irritable bowel syndrome (IBS) induced gut and brain 

dysfunction in recipient mice (De Palma et al., 2017). Germ-free (GF) mice, lacking gut 

microbiota from birth, display increased exploration and impaired social and fear-related 

behaviors (Bercik et al., 2011; Desbonnet et al., 2014; Diaz et al., 2011; Hoban et al., 2018; 

Stilling et al., 2018), increased blood brain barrier permeability (Braniste et al., 2014), 

increased hypothalamic-pituitary-adrenal axis responsivity (Sudo et al., 2004), and impaired 

microglial development (Erny et al., 2015). Strikingly, these changes are reversed by 

colonization with specific-pathogen-free (SPF) microbiota (Clarke et al., 2013; Diaz et al., 

2011; Hoban et al., 2018; Neufeld et al., 2011; Sudo et al., 2004; Vodicka et al., 2018).

Although microbiota can affect the GABAergic and glutamatergic signaling underlying EIB, 

a system often dysregulated in mood and anxiety disorders, a broad analysis of EIB-relevant 

gene expression in critical brain regions has not been performed. Here, we investigated the 

effect of microbiota on the expression of a representative group of synaptic genes frequently 

implicated in depression, anxiety-like behaviour, and EIB regulation (Oh et al., 2019). We 

measured gene expression levels in the amygdala, hippocampus, and mPFC from GF-mice, 

ex-GF-mice colonized with SPF microbiota or mono-colonized with E. coli, and compared 

them to control mice. We decided to use E.coli JM83 (derivative of E.coli K 12 commensal 

strain) for mono-colonization for consistency with prior literature on GF mouse model 

(Hapfelmeier et al., 2010). E.coli JM83 is a good candidate to study the gut microbiota-brain 

interaction because it is easy to grow and resilient to harsh conditions within the GF 

facilities. Being a non-pathogenic bacterial strain, E.coli JM83, does not induce overt 

inflammation following mono-colonization and as a result cause minimal mortality in GF-

mice.

Within the framework of our hypothesis stating that microbiota can regulate aspects of EIB, 

we predicted that GF-mice would show altered gene-expression in a brain region-dependent 

manner and that bacterial colonization would normalize these changes. We also predicted 

that the effect of microbiota manipulation would be reflected in the dynamic 

interrelationship of these genes, as measured by gene co-expression analysis. Finally, we 

tested whether microbiota-induced gene expression changes parallel those observed in 

depression.

Methods

Gnotobiotic mice

10–14 week old GF Swiss Webster mice (n=6/group) were maintained axenic in sterile 

isolators at the Farncombe Family Axenic Gnotobiotic Unit of Central Animal Facility, 

McMaster University, Canada. 12-week old conventional Swiss Webster mice (n=6) were 

used as controls (Taconic Farms, Hudson, NY, USA). Handling of GF and colonized mice 

was performed in gnotobiotic isolators under strict axenic conditions, as previously 
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described (De Palma et al., 2015). Mice were housed 3–4/cage and maintained on a 12-hour 

day/night cycle with unrestricted access to autoclaved pelleted diet (Teklad S-2335 Mouse 

Breeder Sterilizable Diet, Envigo, product code 7004) and water. Microbiota status was 

assessed regularly by direct bacteriology and 16s rRNA PCR testing. Given technical and 

practical constraints of breeding GF-mice, uniform sex distributions were not possible. 

Control and mono-colonized groups contained two females, whereas GF and SPF-colonized 

contained one. All experiments were approved by the McMaster University Animal Care 

Committee.

Bacterial colonization of GF-mice

GF-mice (n=6/group) were colonized with SPF microbiota or mono-colonized with 109 

CFU of E. coli JM83 via a single intragastric gavage as previously described (De Palma et 

al., 2015). After four weeks, mice were sacrificed and brains immediately snap frozen in 

isopentane over dry ice and stored at −80°C (Figure 1). E. coli JM83 was grown in LB broth 

and incubated at 37°C, and shaking at 160 rpm for 12 hours. Bacteria were collected by 

centrifugation (15 min, 3500g), washed in sterile PBS, and concentrated to a density of 109 

CFU/ml in PBS, under a sterile laminar flow hood. Fresh cecal contents from two SPF Swiss 

Webster donors (1 male, 1 female, 12 weeks old) were pooled and suspended in sterile PBS 

for the ex-GF SPF colonization. Bacterial suspensions were sealed in sterile tubes and 

imported into sterile isolators for intragastric gavage.

Sample Preparation

Under RNase-free conditions, brains were sectioned to the mPFC (bregma ~+1.7mm), 

amygdala (bregma ~−1.3mm), then hippocampus (bregma ~−2.7mm) using a cryostat 

(Leica), and grey matter collected via micropunch (George Paxinos, 2012). RNA extraction 

and cDNA synthesis were performed using PicoPure RNA isolation and Superscript VILO 

cDNA synthesis kits, respectively (ThermoFisher Scientific, Walton, MA).

Quantitative Polymerase Chain Reaction (qPCR)

qPCR was performed on a CFX96 Touch Thermocycler (Bio-Rad, Hercules, CA) using 

SYBR green Master Mix (Bio-Rad, Hercules, CA) using primers for Bdnf, Dlg4, Gabra1, 
Gabra2, Gabra5, Gad1, Gad2, Gfap, Gria1, Grin2a, Grin2b, Ntrk2.fl, Ntrk2.t1, Pvalb, 
Slc17a7, Slc1a2, Slc32a1, Slc6a1, Sst, Vgf, and Vip. Gapdh and Ppia were used as loading 

controls, were highly correlated (r>0.9), and showed less than a 5% change across groups in 

all brain regions. Primers were developed as previously described (Oh et al., 2016). Primer 

sequences are provided in Supplemental Table 1

Statistical Analysis

Differential Gene Expression: Log2-based delta Ct values were transformed into non-

log expression values (arbitrary units). Gene expression was compared across groups within 

each region using one-way ANOVA.

ANOVAs were corrected for multiple comparisons across the 21 genes × 3 regions studied 

using the Benjamini-Hochberg false discovery rate (FDR) method (Benjamini and 

Hochberg, 2000). ANOVA results were considered significant at 5% FDR, and pair-wise 
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post-hoc t-tests were performed with Bonferroni correction. Statistical analyses were 

performed in R, version 3.5.1 (Team, 2018).

Co-expression Analysis: Weighted gene co-expression network analysis (WGCNA) 

(Langfelder and Horvath, 2008) was used to assess changes in the co-ordinated expression 

of genes across experimental groups within each brain region. Briefly, WGCNA generates a 

correlation matrix within each group, by which genes are then hierarchically clustered. 

Modules of highly co-expressed genes are generated, such that a given gene may only be a 

member of one module. A soft-thresholding power of β=4 was used as this showed the 

greatest similarity in scale-free topology and mean connectivity across networks. Given the 

moderate sample size and number of genes in this study we used WGCNA primarily to 

group genes by rough similarity in gene expression, an approach suited to capture large 

effects. We opted not to examine eigengene correlations, hub genes, or differences in intra-

module measures of connectivity which are more routinely reported in larger datasets.

For between-group comparisons, the proportion of genes present across modules was 

measured, and empirical p-values representing the significance of these differences were 

determined using permutation testing (n=10,000). Stouffer’s p-value meta-analysis (i.e. 

equal weighting) was used to combine the multiple between-group module comparisons 

(after Bonferroni correction) (Heard and Rubin-Delanchy, 2018). Co-expression networks 

were visualized using Cytoscape (Shannon et al., 2003).

Comparison to Large-Scale MDD Microarray Datasets—We compared 

experimental group fold-changes to published post-mortem transcriptomic studies in MDD 

subjects (Ding et al., 2015; Duric et al., 2010). Analyses were restricted to male subjects 

given the predominantly male group composition of the mouse studies. Mean log2 fold-

changes (LFCs) in GF, mono-colonized, and SPF-colonized groups were compared gene-

wise to LFCs from post-mortem MDD datasets from hippocampal region CA1 (Duric et al., 

2010), amygdala, and anterior cingulate cortex (ACC) (Ding et al., 2015). Study selection 

was primarily driven by data availability. Other transcriptomic studies of MDD in the 

hippocampus, amygdala, and ACC were available through the Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/), though incomplete annotations of Affymetrix probe 

IDs, incomplete datasets, and absence of raw data precluded their inclusion. The recent 

region-specific RNAseq dataset of (Labonte et al., 2017) did not contain hippocampal 

samples and was not used. The ACC is homologous to the murine mPFC regions examined 

here (George Paxinos, 2012). Similarity in LFC profile was assessed by Spearman 

correlation given the log-scale nature of the data, differences in expression measures, and 

our interest in comparing the profiles (i.e. rank-orders) of expression rather than absolute 

values.

Results

Absence of gut microbiota significantly altered glutamatergic/GABAergic synaptic gene 
expression

We sought to determine how microbiota influence EIB-relevant synaptic gene expression in 

mice. qPCR was performed on hippocampus, amygdala, and mPFC from conventional 
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(control), GF, and ex-GF-mice colonized either with SPF microbiota or mono-colonized 

with E. coli (n=6/group) (Figure 1). We selected fifteen GABAergic/glutamatergic genes, 

four BDNF-related, and 2 astrocytic genes due to their role in EIB maintenance and their 

influence by BDNF (Ding et al., 2015; Oh et al., 2016; Oh et al., 2019).

Region-specific alterations in gene expression were observed in GF-mice compared to 

controls (Figure 2A, “GF” columns). Boxplot visualization of the data underlying this 

heatmap showing group differences and within-group low variability are shown in Figure 2B 

and Supplementary Figures 1. Broadly, the hippocampus was characterized by dysregulation 

across all functional groups of genes, the amygdala showed elevated expression of 

GABAergic genes, and the mPFC showed decreased expression of glutamatergic genes. The 

amygdala and mPFC showed generally opposing expression profiles in GABAergic and 

glutamatergic genes. Despite our modest sample size, scatterplots (Supplementary Figures 

2–4) show robust group-level consistency in effects. In total, 24/63 (38%), of the 21 genes × 

3 regions measured, were significantly differentially expressed in GF-mice, indicating that 

an absence of gut microbiota leads to region-specific alterations in EIB-relevant gene 

expression.

Bacterial colonization of GF-mice with SPF microbiota normalized GABAergic/
glutamatergic synaptic gene expression

In each brain region, we observed a striking normalization of gene expression in SPF-

colonized mice, and a partial normalization in mono-colonized mice. We defined full 

normalization as genes showing both no significant difference between controls and 

colonized mice, and a significant difference between GF and colonized mice. Partial 

normalization indicates only a lack of a significant difference between controls and 

colonized mice. Notably, across all brain regions, 14/24 (58%) of the genes significantly 

altered in GF mice showed full normalization and 7/24 (29%) showed partial normalization 

after SPF colonization, resulting in 87% of genes being normalized to some degree by 

complex microbiota (Figure 2A, “SPF Col” columns). Conversely, only 2/24 (8%) genes 

altered in GF-mice showed full normalization and 8/24 (33%) showed partial normalization, 

resulting in 41% of genes affected by mono-colonization (Figure 2A, “Mono Col” columns).

SPF-colonization showed a similar magnitude of effect across all brain regions, with 4/8 

differentially expressed genes in the hippocampus, 5/10 in the amygdala, and 5/7 in the 

mPFC being fully normalized. In the hippocampus, all GABAergic and glutamatergic genes 

altered in GF-mice were either fully or partially normalized in SPF-colonized mice. In the 

amygdala and mPFC, 8/9 and 5/6 of the GABAergic and glutamatergic genes were either 

fully or partially normalized, respectively. Mono-colonization fully normalized Dlg4 in the 

hippocampus, Gabra5 in the amygdala, and no gene in the mPFC. These results indicate that 

the composition of the gut microbiome has a dynamic and region-specific influence on EIB-

relevant genes, and that normalization is dependent on the complexity of the microbiota.
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Absence of gut microbiota leads to profound dysregulations of gene co-expression 
networks in all three brain areas, which are restored by SPF colonization

We next applied weighted gene co-expression network analysis (WGCNA) to assess 

coordinated gene expression across areas and conditions. Gene co-expression networks were 

constructed for each brain region and assessed for degree of conservation across 

experimental groups, defined as the percentage of overlapping genes. Gene networks of 

control mice displayed highly organized co-expression structures in all three brain regions: 

nearly all GABA, glutamate, and astrocytic genes were co-expressed in a single module, 

with smaller modules containing BDNF genes (Figure 3, upper-most panels). See details in 

Supplementary Figures 5–7.

In contrast, GF-mice display significant disorganization of co-expression networks 

compared to control mice in all three brain regions (hippocampus, p=0.0003; amygdala, 

p=0.0012; mPFC, p=0.0069), manifested as increased numbers of smaller un-connected 

modules (Figure 3). Strikingly, colonization of GF-mice with SPF microbiota restored the 

overall gene co-expression structure in the hippocampus (p v.s. GF =0.0003, p v.s. control = 

0.60). This normalization saw the majority of previously disorganized genes reorganize into 

a single module that was not significantly different from controls. This normalization was 

not observed in the amygdala (p v.s. GF = 0.010, p v.s. control = 0.011) or mPFC (p v.s. GF 

= 0.0062, p v.s. control = 0.0062) of SPF-colonized mice. Finally, gene modules in mono-

colonized mice were different from the other groups with no apparent reorganization 

towards control modules in any region examined (Hippocampus, p v.s. GF = 0.012, p v.s. 

control = 0.0056; amygdala, p v.s. GF = 0.012, p v.s. control = 0.016; mPFC, p v.s. GF 

=0.0007, p v.s. control = 2.7×10−6).

Given our low sample size, we sought to support these co-expression findings with a parallel 

statistical approach, namely principal component analysis (PCA). PCA was performed on 

the omnibus gene expression within each brain region. We found the first 3 components 

consistently accounted for over 60% of the overall gene expression variance 

(hippocampus=60.6%, amygdala=75.6%, mPFC=73.2%). Moreover, plotting these 3 

components revealed separation of the control and SPF-colonized groups from the GF and 

mono-colonized groups (Supplementary Figures 8–10). This separation was most robust in 

the hippocampus and weaker in the amygdala and mPFC, paralleling the co-expression 

results. These PCA findings support our co-expression results through independent 

analytical methods. Ultimately, these results indicate that gut microbiota have profound 

impacts on co-ordinated EIB-relevant gene expression in the brain, and that bacterial 

colonization appears to restore these patterns of co-expression in the hippocampus.

GF-mice and post-mortem MDD subjects have similar hippocampal gene expression 
profiles

Given the involvement of these genes in mood and anxiety disorders, we next determined the 

similarity of regional expression profiles to post-mortem MDD subjects. Gene expression 

changes for each experimental group was compared to the log2 fold change obtained from 

previously published large-scale gene expression studies of post-mortem samples from 

subjects with MDD (Table 1) (Duric et al., 2010; Joeyen-Waldorf et al., 2012). The gene 
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expression profile of the hippocampus in GF-mice showed a significant correlation (ρ=0.51, 

p=0.027) with that of the hippocampus in MDD subjects (Figure 4). This correlation was not 

significant after mono-colonization (ρ=0.32, p=0.18) or SPF-colonization (ρ=0.28, p=0.24).

A non-significant, but trend-level, correlation was observed between the expression profile 

of the ACC in MDD and the mPFC in both GF-mice (ρ=0.43, p=0.059) and mono-colonized 

mice (ρ=0.42, p=0.058). This correlation was also non-significant in SPF-colonized mice 

(ρ=0.31, p=0.19). No significant correlations were observed in the amygdala.

These results indicate that GF-mice have an EIB-relevant gene expression profile 

reminiscent of MDD in the hippocampus, and that this profile is responsive to changes in gut 

microbiota.

Discussion

In this study, we sought to determine the effect of gut microbiota on the expression of EIB-

relevant genes, and the ability of different bacterial colonization schemes to reverse these 

effects. First, we found that GF-mice show region-specific changes in EIB-relevant gene 

expression in the hippocampus, amygdala, and mPFC. Second, colonization of GF-mice 

with complex SPF microbiota reversed the majority of these changes, whereas colonization 

with a single bacterial strain, E. coli JM83, showed a negligible effect. Third, GF-mice show 

significant disruptions in the robust co-expression patterns found in conventional (control) 

mice, across all brain regions. Fourth, colonization with SPF microbiota, but not mono-

colonization, restores co-expression patterns in the hippocampus and marginally in the 

amygdala. Lastly, the profile of EIB-relevant gene expression in the hippocampus of GF-

mice, but not SPF colonized mice, replicates that of the hippocampus in MDD subjects.

GF-mice show region-specific disruption in EIB-relevant genes and rescue by colonization

We observed diverse transcriptional changes in the hippocampus, up-regulation of 

glutamatergic and GABAergic genes in the amygdala and down-regulation of these genes in 

the mPFC of GF-mice. These three regions are highly relevant to psychiatric disorders given 

the mood-regulating role of the mPFC and amygdala, and the role of the hippocampus in 

learning and memory. Maintenance of EIB is critical to proper brain function, and EIB 

disruptions can corrupt information processing within and across brain regions, contributing 

to behavioural and cognitive deficits (Fee et al., 2017). GABA and glutamate genes showed 

concordant directionality within the amygdala and mPFC, suggesting maintenance of EIB 

within these brain regions but at an elevated level of activity in the amygdala, and reduced 

level in the mPFC. This mirrors a substantial body of literature in MDD and animal models 

of stress reporting increased amygdala activity and volume, with reciprocal activity and 

structural changes in the mPFC (Duric et al., 2013; Hill et al., 2011; Nikolova et al., 2018; 

Swartz et al., 2015; Victor et al., 2010). Convergent neuro-structural changes occur in GF-

mice where aspiny and pyramidal neurons of the amygdala (GABAergic and glutamatergic 

cell-types, respectively) show dendritic hypertrophy (Luczynski et al., 2016). Reduced 

BDNF expression in the amygdala of GF-mice replicates previous observations in mice 

treated with antimicrobial agents (Bercik et al., 2011). A similar EIB-maintenance 

phenomenon appears to occur in the hippocampus, where disruptions in each functional 
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group of genes were observed, and GABA and glutamate-related genes were altered in a 

balanced manner.

Our primary finding was a striking normalization of these differential expression profiles in 

GF-mice to control-like levels in all brain regions after colonization with SPF microbiota. 

Indeed, 58% of all genes altered in GF-mice were fully normalized, and 29% were partially 

normalized, to control levels. This was not observed with mono-colonization with E. coli 
JM83, where only 8% of genes were fully normalized (33% partially). This indicates that the 

complexity of the microbiota is proportional to its ability to normalize the expression of 

these EIB-relevant genes. There is evidence that manipulation of gut microbiota can 

modulate behaviour and brain chemistry both early (Chu et al., 2019; Desbonnet et al., 2015; 

Stilling et al., 2015) and later in life (Bercik et al., 2011; De Palma et al., 2015). Here, we 

found that the altered gene expression profile in 10–14 weeks old GF-mice normalized after 

SPF colonization. Future studies are needed to address the role of age in gut microbiota-

induced alterations in EIB-relevant synaptic gene expression in the brain. Importantly, our 

co-expression results suggest additional region-specific critical periods.

Absence of gut microbiota disrupts gene co-expression networks, and microbiota 
colonization selectively reorganizes hippocampal networks

Gene co-expression networks typically reflect common metabolic, signaling, or regulatory 

pathways within cells and tissues (Langfelder and Horvath, 2008). Here, within a restricted 

set of synaptic genes, we observed highly organized co-expression in control mice, with 

GABAergic and glutamatergic genes clustering into a single co-expression module and 

residual genes in smaller modules. This highly organized expression is consistent with, and 

may reflect, the balance between excitatory and inhibitory tone present in controls and the 

dynamic interrelationship of these two neurotransmitter systems (Haider et al., 2006). 

Similar to our differential expression findings, GF-mice showed a significant disorganization 

of co-expression across all brain regions, characterized by dissolution of the large 

GABAergic/glutamatergic module into several small modules. Though speculative, such co-

expression patterns may reflect a loss of proper synchrony in excitatory and inhibitory 

function in GF-mice. Interestingly, this disorganization was not reversed by mono-

colonization in any group but was largely reversed in the hippocampus, but not the amygdala 

or mPFC, of SPF microbiota colonized mice. These findings were supported by our PCA 

results showing separation of control + SPF-colonized expression profiles from those of GF 

+ mono-colonized mice. Given the importance of these genes in contributing to EIB (Oh et 

al., 2019), it is possible that residual co-expression differences reflect residual EIB deficits 

in the amygdala and mPFC. This may increase stress vulnerability in these mice, given the 

critical role of these two regions in the behavioural response to stress (Ghosal et al., 2017; 

Gilabert-Juan et al., 2013; Guilloux et al., 2012; Roozendaal et al., 2009). Moreover, these 

results further identify the insufficiency of mono-colonization with JM83 to restore control-

like neurobiology. Overall, despite the limited number of samples and genes in our study, we 

consistently observed that synaptic genes group together in controls, segregate in GF-mice, 

and re-group only in the hippocampus of SPF-colonized mice.
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GF-mice, but not SPF-colonized mice, recapitulate region-specific MDD expression 
profiles

Through comparisons of MDD-correlated, and gut microbiome-induced gene expression 

profiles, we showed that gut microbiota modulate similar neurobiological substrates to those 

affected in psychiatric disorders. Despite observations that GF-mice do not generally show a 

purely anxiety- or anhedonia-like behavioural profile, cross-species differences in changes in 

other brain regions, environmental, and genetic factors may explain the seemingly 

discordant behavioural profiles and concordant gene expression profiles (De Palma et al., 

2015; Neufeld et al., 2011). Nevertheless, we found that GF-mice show a gene expression 

profile in the hippocampus that was significantly correlated to that of MDD subjects. 

However, this correlation was not observed in SPF-colonized mice. GF-mice and individuals 

with MDD show hippocampus-dependent cognitive deficits, suggesting that similar 

neurobiological changes may underlie these deficits. To our knowledge, this is the first 

comparison of brain region-specific gene expression in GF-mice and post-mortem 

psychiatric disorder cohorts. Clinical studies demonstrate altered gut microbiome profiles in 

MDD, and machine learning algorithms can, within datasets, distinguish symptomatic MDD 

subjects and healthy controls by microbiome composition (Simpson et al., 2020). Taken 

together, these findings indicate that there may be cross-species similarities in the 

relationship between gut microbiota and the brain, despite species differences in the specific 

composition of the gut microbiome (Hugenholtz and de Vos, 2018), and that altered gut 

microbiome may represent a contributing etiological factor leading to brain EIB gene 

expression changes in MDD. Further studies are needed to identify specific microbiome 

compositions which are associated with neurobiological and behavioural deficits, and the 

degrees of reversal that is achievable with different microbiome-based strategies.

In summary, these results demonstrate the possibility of modulating brain gene expression, 

relevant to information processing in cortical and sub-cortical regions, by modulating the 

composition of the gut microbiome. These changes appear to be relevant to systems involved 

in psychiatric disorders, and warrant further investigation to systematically characterize 

large-scale transcriptomic changes and associated behavioural changes.

Limitations, Future Directions, and Conclusions

Our results must be viewed in the context of several limitations. First, low sample size and 

varied sex composition limited our power to detect small effects and precluded inferences 

regarding sex-specificity, in addition to accessing behavioural consequences. Breeding 

difficulties and availability of GF facilities constrained the number of GF-mice available for 

use and thus imposed limitations on sample size and sex composition. Despite our limited 

sample size, our differential expression findings are relatively consistent and minimally 

influenced by outlying data. Second, acknowledging the limitations of co-expression 

analyses using few subjects and a restricted gene-list, we opted for a conservative analytical 

approach assessing only module composition (i.e. cross-tabulation based preservation), 

rather than intra- or inter-module connectivity which demand large samples and broader 

gene lists. Third, though the genes examined here are involved in EIB maintenance, they are 

not an exact EIB proxy. Changes in the expression of individual genes do not necessarily 

imply altered electrophysiological properties of neurons. However, diverse changes in these 
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genes would be suggestive of regional or systems-level changes that may affect EIB 

regulation.

Future studies should endeavour to replicate our RNA findings in both sexes at proteomic, 

neurophysiological, behavioural and cognitive levels before definitive functional conclusions 

can be drawn. Though we draw comparisons between GF-mice and post-mortem MDD gene 

expression profiles, we do not anticipate these similarities being wholly specific to MDD. 

Future studies should also examine transdiagnostic and diagnosis-specific similarities to GF-

mice, and determine if these changes represent a generalized association between microbiota 

and central gene expression.

In conclusion, these findings identify a robust influence of microbiota composition on EIB-

relevant synaptic gene expression in multiple brain regions and provide evidence to further 

investigate the role of gut microbiota in the pathology of mood disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Previous studies in mice show that gut microbiota can influence behaviour by 

modulating neurochemical pathways in the brain

In this study we report:

• Absence of gut microbiota disrupts the expression and synchronization of 

excitation-inhibition relevant genes in the brain of mice

• These changes parallel those observed in the hippocampus of human subjects 

with depression

• Gut bacterial recolonization normalized the expression and synchronization of 

the same genes suggesting a role for the microbiome in disease and recovery
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Figure 1. Colonization timeline.
10–14 weeks old Swiss Webster GF-mice were colonized with SPF microbiota or mono-

colonized with 109 CFU of E. coli JM83 via a single intragastric gavage. Control 

(conventional mice) and GF cohorts received saline via a single intragastric gavage. After 

four weeks, mice were sacrificed and brains collected for different assays. (n=6/group, 3–4/

cage)
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Figure 2. Region-specific effects of microbiota on EIB-relevant synaptic gene expression in mice.
(A) Log2 fold-changes are visualized for genes showing a significant (p<0.05) effect of 

group in ANOVA and a significant difference (p<0.05) from controls (conventional mice) in 

post-hoc t-tests. Increased expression is visualized in red, and decreased expression in blue. 

◊ indicates fully normalized genes, i.e. no significant difference (p>0.05) from controls and a 

significant difference (p<0.05) from germ-free (GF) mice in post-hoc t-tests. “Con” 

indicates conventional mice, “Mono Col” indicates mice colonized with E. coli JM83 alone, 

and “SPF Col” indicates mice colonized with SPF microbiota. (B) Tukey box-and-whisker 

plots showing raw gene expression data for the hippocampus. Controls are shown in red, GF 

mice in green, mono-colonized mice in blue, and SPF-colonized mice in violet.
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Figure 3. Region-specific effects of microbiota on gene co-expression networks.
Nodes represent genes (gene names removed for visual clarity, see supplementary figures 1–

3 for complete annotations), and edges represent correlated gene expression between genes. 

Similarity of modules across experimental groups was performed by permutation test, and 

statistical significance was determined by p-value meta-analysis of all module-wise 

comparisons across groups. *p<0.05, **p<0.01, ***p<0.001.
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Figure 4. Comparison of GF mouse and human MDD gene expression profiles in the 
hippocampus.
Log2 fold-change of the gene expression in GF-mice versus controls (conventional mice), 

compared to those observed in individuals with MDD versus controls. Spearman correlation 

revealed a significant positive association (ρ=0.51, p=0.027) between the two gene 

expression profiles. The shaded area shows the 95% confidence interval. This association 

remains significant after removal of Ntrk2.fl and Gria1 (ρ=0.742, p=9.48×10–4). *p<0.05.
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Table 1.
GF-mice show a transcriptional profile significantly correlated to that of post-mortem 
MDD subjects.

Spearman correlations, and p-values, comparing transcriptional changes observed to post-mortem cohorts of 

MDD subjects.

Human MOD gene expression

Experimental 
Group

Hippocampus (Duric et al., 
2010) Amygdala (Ding et al., 2015) mPFC (Ding et al., 2015)

Rho p Rho p Rho p

Mouse gene 
expression

GF 0.51* 0.027* 0.19 0.43 0.43 0.059
#

Mono-Colonized 0.32 0.18 0.36 0.13 0.42 0.058
#

SPF-Colonized 0.28 0.24 0.36 0.16 0.31 0.19

*
p<0.05,

#
p<0.1.
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