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Abstract
Sneddon syndrome is a rare disorder affecting small and medium-sized blood vessels that is characterized by the association 
of livedo reticularis and stroke. We performed whole-exome sequencing (WES) in 2 affected siblings of a consanguineous 
family with childhood-onset stroke and identified a homozygous nonsense mutation within the epidermal growth factor 
repeat (EGFr) 19 of NOTCH3, p.(Arg735Ter). WES of 6 additional cases with adult-onset stroke revealed 2 patients carry-
ing heterozygous loss-of-function variants in putative NOTCH3 downstream genes, ANGPTL4, and PALLD. Our findings 
suggest that impaired NOTCH3 signaling is one underlying disease mechanism and that bi-allelic loss-of-function mutation 
in NOTCH3 is a cause of familial Sneddon syndrome with pediatric stroke.

Keywords  NOTCH3 · CADASIL · Sneddon syndrome · Homozygous nonsense mutation

Introduction

Sneddon syndrome (SS) is a rare disorder (about 4 patients 
per million), affecting mainly young and predominately 
female adults [1,2]. It is characterized by recurrent strokes 
and livedo reticularis, a violaceous, netlike patterning of the 

skin [3]. Skin biopsies often display distinct histopathologi-
cal findings consisting in sequential stage-specific changes in 
small to medium- sized arteries at the border between dermis 
and subcutis such as a possibly short-lived endotheliitis, fol-
lowed by inflammatory obstruction, subendothelial cell pro-
liferation and fibrosis of the occluded artery and shrinkage 
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of the vessel [3–5]. Nevertheless, several cases with SS have 
also been described showing inconspicuous histopathologi-
cal results [6]. Apart from cerebrovascular events as the 
prominent clinical manifestation, the range of associated 
pathologies varies from migraine and seizures to sponta-
neous abortion or cardiac and renal involvement [2]. The 
pathogenesis of SS is still unresolved and a matter of discus-
sion [5]. An association with the occurrence of antiphos-
pholipid antibodies and cofactors is described, although the 
reported frequencies show a vast range also including cases 
without any antibodies [7]. One explanatory model proposes 
that the presence of antiphospholipid antibodies might point 
towards a thrombotic process causing the disease whereas 
skin biopsies of antibody negative patients suggest a primary 
inflammatory process with migration and proliferation of 
smooth muscle cells leading to the narrowing and occlu-
sion of the vessel [3,8]. Furthermore, it has been suggested 
that genetic factors also contribute to disease development 
[9,10]. In 2014, a compound heterozygous mutation in the 
adenosine deaminase 2 (ADA2) gene was identified in a large 
Portuguese family, who presented with livedo reticularis, 
stroke during early adulthood, leg ulcerations and inter-
mittent fever [11]. More recently, a homozygous NOTCH3 
nonsense mutation was identified in a patient who exhibited 
livedo reticularis from birth and childhood-onset cavitating 
leukoencephalopathy with multiple deep lacunar infarcts, 
disseminated microbleeds and two saccular aneurysms of 
middle cerebral arteries [12,13].

NOTCH3 encodes a transmembrane receptor predomi-
nantly expressed in mural cells of small blood vessels that 
plays a critical role in their integrity [14]. Dominant muta-
tions in NOTCH3 cause CADASIL, a small vessel disease 
of the brain that manifests in mid-adulthood with leukoen-
cephalopathy and subcortical ischemic events, progres-
sively leading to disability, cognitive decline and premature 
death (MIM#125,310) [15]. In our study, we performed 
whole–exome sequencing (WES) in a consanguineous fam-
ily with SS and 6 additional unrelated patients to analyze the 
genetic background of this disease.

Methods

Study participants

The diagnosis of SS was made based on the clinical criteria 
for SS, the occurrence of generalized livedo reticularis and 
the history of cerebrovascular events.

Sequence analyses

Whole exome data were generated from individuals III:2 
and III:3 of family 1 and from the 6 other SS cases. Exomes 

were enriched with the SureSelect Human All Exon v6 kit 
(Agilent Technologies, Santa Clara, USA) and DNA librar-
ies were sequenced on a HiSeq 4000 instrument (2 × 100 
cycles, Illumina, San Diego, USA). The average exome cov-
erages ranged from 115 × to 197 × and 100% of the NOTCH3 
region was covered with at least 25 ×. Variants were filtered 
on the minor allele frequency (MAF < 0.001), which was 
estimated using the in-house database of the Helmholtz-
zentrum (> 20.000 exomes) and confirmed by the Genome 
Aggregation Database (gnomAD). NOTCH3, PALLD and 
ANGPTL4 sequence variants were confirmed by Sanger 
sequencing using standard protocols.

Differential gene expression of GSE58368 
and GSE55203

To find out differentially expressed genes in Notch3 knock-
out (KO) mouse models we analyzed 2 microarray datasets 
(GSE58368 and GSE55203) derived from the Gene Expres-
sion Omnibus (GEO) database (https​://www.ncbi.nlm.nih.
gov/gds/). Using the GEO2R web tool(https​://www.ncbi.
nlm.nih.gov/geo/geo2r​/) samples from the same cell type 
were analyzed comparing either heterozygous vs. homozy-
gous (GSE58368) or homozygous vs. wildtype (GSE55203) 
mice.

Results

In the present study, we performed WES in 2 patients of 
a family with SS (Fig. 1a, subject III:2 and III:3). Clini-
cal details of patient III:3 were previously reported [10]. 
Briefly, of 5 siblings 4 are affected with SS presenting 
livedo reticularis and a history of early onset stroke in 
childhood. Brain MRI from subjects III:2 and III:3 showed 
severe periventricular and subcortical white matter lesions 
and also multiple microbleeds predominantly in the white 
matter in sibling III:3 (Fig. 1b and Table 1). Laboratory 
results of sibling III:3 were negative for antiphospholipid 
antibodies and thrombophilia in general. No data were 
available on the antibody profile of the second sibling 
(III:2). The mother was reported to be healthy and the 
father, who died from a myocardial infarction at the age of 
54, was reported to have had livedo reticularis but no signs 
of cerebrovascular disease (Fig. 1a). Exome-data analysis 
revealed in both siblings a large homozygous region of 9 
Megabases on chr.19p13., indicating consanguinity. This 
region harbored only two homozygous variants shared by 
both siblings. First, a missense variant was detected in the 
KANK2 gene p.(Met278Lys), which is not present in any 
publicly available database. This variant was discarded 
since mutations in this gene have been associated with 
a distinct recessive disease characterized by a nephrotic 

https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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syndrome and palmoplantar keratoderma with woolly 
hair (OMIM*614610). Second, a homozygous nonsense 
variant was identified in exon 14 of the NOTCH3 gene, 
p.(Arg735Ter) (Fig.  1b), which lies in the Epidermal 
Growth Factor repeat (EGFr) 19 of NOTCH3. This vari-
ant is predicted to result in a premature stop codon and 
elicit nonsense-mediated mRNA decay [16]. The variant 
is present heterozygously in 2 out of 61.000 individuals 
in the gnomAD database. (https​://gnoma​d.broad​insti​tute.
org/). The healthy mother was tested to be heterozygous 
for the p.(Arg735Ter) variant (Fig. 1c, II:3). No other 
family member was available for genetic testing either 
because they lived in another region of the country and 
were not able to transfer to the clinic for testing or were 
not interested in participating in the study. Based on the 
severity of the mutation and the known role of NOTCH3 
in cerebrovascular disease, we believe that this mutation 
is most probably the cause of the disease in this family. To 
analyze whether NOTCH3 loss-of-function (lof) mutations 
are a more frequent cause for SS, we performed WES in 
6 additional unrelated patients (Table 2). We found none 
of the patients to carry a rare variant (MAF < 0.01) in the 
NOTCH3 or in the ADA2 gene. Moreover, high coverage 

sequencing allowed us to also exclude copy number varia-
tions in both genes. We next hypothesized that genetic var-
iations in genes involved in the NOTCH3 pathway might 
be plausible disease candidates. To explore this possibility, 
we made use of two microarray datasets of Notch3 KO 
mouse models from which RNA expression data of brain 
microvascular fragments (GSE55203) or brain-derived 
smooth muscle cells (GSE58368) were deposited. Using 
the GEO2R tool we searched for genes which were signifi-
cantly downregulated in KO cells compared to wildtype 
or heterozygous cells (p value < 0.01), assuming that these 
genes are likely downstream in the NOTCH3 signaling 
pathway. We then intersected these 445 genes with the 85 
genes carrying lof variants in our 6 patients. We found two 
patients with lof variants in putative NOTCH3 downstream 
genes. Patient 895 carried a heterozygous nonsense variant 
in the Palladin (PALLD) gene, p.(Arg287Ter) and patient 
898 carried a heterozygous frameshift variant in the Angi-
opoietin-like 4 gene (ANGPTL4), p.(Gly313AlafsTer49). 
Both variants are present heterozygously in the gno-
mAD database (PALLD: 10/277212 alleles, ANGPTL4: 
57/280350 alleles) (Fig. 2, Table 2).

Fig. 1   Genealogical tree of the mutated family and representative 
brain MRI of patient III:3 a Pedigree of family 1: Unaffected fam-
ily members are indicated by open symbols; affected members by 
closed symbols including livedo reticularis and cerebrovascular 
manifestations; half closed symbol (II:1) indicates partial phenotype 
of SS, with only livedo reticularis; diagonal bars through symbols 

denote deceased individuals. b Sanger-Sequence Pherograms show-
ing the NOTCH3 variant in heterozygous form (II:3) and homozygous 
form (III:2, III:3). c Brain MRI from patient III:3 showing diffuse 
white matter hyperintensities on fluid-attenuated inversion recovery 
(FLAIR) images; lacunes on T1 and microbleeds on T2*-weighted 
images, lesions are depicted by an arrow

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
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Discussion

Herein, we identified a homozygous nonsense mutation in 
the NOTCH3 gene in 2 affected siblings of a consanguineous 
SS family with pediatric stroke. Remarkably, a NOTCH3 
null mutation was identified in another unrelated patient 
with similar clinical and MRI features, as well as childhood-
onset, originally diagnosed with SS [12,13]. These findings, 
added to the fact that NOTCH3 plays a key role in small 
brain vessels, strongly suggests that loss of NOTCH3 signal-
ing is one underlying disease mechanism for SS.

Although these three patients with SS and a NOTCH3 
null mutation exhibit clinical and neuroimaging features that 
share similarities with those observed in CADASIL patients, 
we believe that this genetic form of SS and CADASIL are 
two distinct entities. First, stroke events started in these 3 SS 
patients in childhood whereas they occur in CADASIL patients 
in adulthood, at a mean age of 49 years [15]. Second, livedo 
reticularis is absent in CADASIL [15]. Third, CADASIL 
mutations are dominantly inherited and characteristically 
lead to the loss or gain of a cysteine residue in one of the 
EGFr of the extracellular domain of NOTCH3 [15]. Fourth, 

accumulating evidence indicates that CADASIL is not caused 
by a loss of NOTCH3 function [17–19], but by a neomor-
phic effect related to the abnormal vascular accumulation of 
NOTCH3 protein and possibly an increased activity of the 
mutant receptor [20,21]. Interestingly, patients with NOTCH3 
lof mutations like our patient (III:2) and the previous described 
case [12,13] seem to differ from other SS patients. In addition 
to the childhood-onset and the more severe disease course, 
NOTCH3 lof mutation carriers showed negative serum anti-
body profiles and no extraneurological manifestations. Thus, 
one might hypothesize that NOTCH3 lof mutations lead to a 
distinct and probably more severe clinical subtype of SS. In an 
attempt to find other possible contributing genes in SS patients 
with adult-onset stroke, we searched for lof variants in genes 
downstream to NOTCH3. Hereby, we found 2 patients carry-
ing heterozygous lof variants in the PALLD and ANGPTL4 
genes. Interestingly, both genes show connections to vascular 
biology and stroke. PALLD, which is predominantly expressed 
in arterial smooth muscle cells in the brain (https​://betsh​oltzl​
ab.org/Vascu​larSi​ngleC​ells/datab​ase.html), was shown to be 
involved in the modulation of the actin cytoskeleton and plays 
a role in vascular remodeling [22,23]. In addition, PALLD gene 

Table 1   Main clinical and neuroimaging features of family members

R right side, L left side, WMH white matter hyperintensities, His histology, n.a. not available,  +  deceased
NOTCH3 complete variant description: NOTCH3: g.chr19:15296161G > A (GRCh37/hg19); c.2203C > T (NM_000435.2); p.(Arg735Ter) 
(rs773299588)

Patient (sex, age in years)
NOTCH3 variant

Livedo reticularis Age at 1st stroke Neurological manifesta-
tions

Brain MRI Serology

III:2 (F, 49)
p.(Arg735Ter) (homozy-

gous)

Yes
His.: n.a

3 months Small vessel stroke
Hemiparesis L; mild 

cognitive impairment; 
reduced mobility

Syncopes, urinary incon-
tinency, pseudobulbar 
palsy with dysphagia and 
unmotivated laughing

Diffuse WMH
Multiple lacunar infarc-

tions

n.a

III:3 (F, 41)
p.(Arg735Ter) (homozy-

gous)

Yes
His.: normal

5 years Small vessel stroke
Hemiparesis R, ataxia, 

mild to moderate 
memory problems, pro-
gressive impairment of 
mobility, pseudobulbar 
palsy with dysarthria and 
unmotivated laughing

Diffuse WMH
Multiple lacunar infarc-

tions
Microbleeds
Normal MR angiography

Anti-phospholipid 
antibodies nega-
tive

II:1 (M, 54 +)
n.a

Yes
His.: n.a

None None n.a n.a

II.2 (F, 72)
p.(Arg735Ter) (heterozy-

gous)

No None None n.a n.a

III:4 (F, 47)
n.a

Yes
His.:n.a

Childhood Hemiparesis L since 
childhood, dysarthria, 
impaired mobility, 
memory problems

n.a n.a

III:5 (M, 33)
n.a

Yes
His.: n.a

2 years Hemiparesis R n.a n.a

https://betsholtzlab.org/VascularSingleCells/database.html
https://betsholtzlab.org/VascularSingleCells/database.html
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polymorphisms were found to be associated with stroke [24]. 
ANGPTL4 was found to be involved in angiogenesis and ves-
sel sprouting in a rat stroke model and was also shown to have 
a vasculoprotective effect in a mouse stroke model [25,26]. 
However, both variants PALLD-Arg287Ter and ANGPTL4- 
Gly313AlafsTer49 are, although rare, present in the general 
population with 1 in ~ 14,000 and 1 in ~ 2500 respectively and 
thus unlikely to cause SS on their own. Therefore the pre-
sented candidate genes must only be regarded as suggestions 
for follow up studies and caution in interpretation is advised. 
Alternatively, we suggest that they could increase disease sus-
ceptibility, possibly in combination with other genetic and/or 
environmental factors. However, one limitation of our study 
is that unfortunately other family members of patients 895 
and 898 were lost to follow up and segregation of the variants 
could therefore not be investigated.

In conclusion, we propose NOTCH3 null mutations as a 
genetic cause for SS with childhood-onset stroke. We further 
suggest that impairment of NOTCH3 signaling may also 
contribute to SS pathogenesis in general.
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Fig. 2   Gene expression profiles GSE58368 and GSE55203 of Palld 
and Angptl4. Datasets were downloaded from the Gene Expres-
sion Omnibus (GEO) database. Data derived from GSE58368, show 
Angptl4 gene expression in brain derived smooth muscle cells from 
from Notch3 heterozygote mice (Notch3 ±) compared to cells from 

Notch3 KO (Notch3 −/−) mice. Data derived from GSE55203 
show Palld gene expression in brain microvascular fragments from 
Notch3 KO (Notch3 −/−) mice compared to those from wild-type 
(Notch3 + / +) mice
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