Skip to main content
. 2021 Feb 5;22(4):1633. doi: 10.3390/ijms22041633

Figure 4.

Figure 4

The microfluidic cancer-on-chip model. The setup of models suitable for the study of the complex interactions among different cell types and signalling molecules within the tumour microenvironment is still a major challenge. Commonly used 2D in vitro models poorly represent in vivo tumoral niches, and thus many 3D models have been developed. Among these models, the microfluidic cancer-on-chip model has the unique advantage of recapitulating tumoral microenvironment in a bioengineered microdevice able to summarize crucial functional aspects of the peritumoral niche, e.g., gas exchange, to maintain chemical and oxygen gradients, the preservation of biomechanical forces and pressure, the inclusion of multiple cell types and finally the presence of endothelial cells organized in an aligned structure resembling blood vessels.