Skip to main content
. 2021 Feb 5;21(4):1122. doi: 10.3390/s21041122

Table 2.

Average patch and WSI prediction time, slowdown and number of trainable parameters for each of the CNN architectures considered in this work.

Model Avg. Prediction Time (patch) Avg. Prediction Time (WSI) Slowdown * Trainable Parameters
PROMETEO 3.054 ± 4.845 ms 4.201 ± 1.739 s 1,107,010
ResNet34 8.982 ± 10.086 ms 10.712 ± 3.134 s 2.55× 21,800,107
InceptionV3 41.301 ± 44.282 ms 49.076 ± 14.353 s 11.68× 23,851,784
VGG16 28.664 ± 9.241 ms 34.921 ± 10.160 s 8.31× 138,357,544
VGG19 29.931 ± 9.305 ms 36.250 ± 10.536 s 8.63× 143,667,240
MobileNet 25.689 ± 10.986 ms 31.110 ± 9.030 s 7.41× 4,253,864
DenseNet121 42.489 ± 16.859 ms 51.483 ± 14.945 s 12.25× 8,062,504
Xception 34.050 ± 11.789 ms 41.764 ± 12.175 s 9.94× 22,910,480
ResNet101 43.287 ± 14.679 ms 52.517 ± 15.266 s 12.50× 44,707,176

* Calculated by using the average prediction time per WSI and taking the PROMETEO architecture as reference. A slowdown of A× means that model B is A times slower than PROMETEO.