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Abstract: The management of a controllable production in the manufacturing system is essential to
achieve viable advantages, particularly during emergency conditions. Disasters, either man-made
or natural, affect production and supply chains negatively with perilous effects. On the other hand,
flexibility and resilience to manage the perpetuated risks in a manufacturing system are vital for
achieving a controllable production rate. Still, these performances are strongly dependent on the
multi-criteria decision making in the working environment with the policies launched during the
crisis. Undoubtedly, health stability in a society generates ripple effects in the supply chain due
to high demand fluctuation, likewise due to the Coronavirus disease-2019 (COVID-19) pandemic.
Incorporation of dependent demand factors to manage the risk from uncertainty during this pandemic
has been a challenge to achieve a viable profit for the supply chain partners. A non-linear supply
chain management model is developed with a controllable production rate to provide an economic
benefit to the manufacturing firm in terms of the optimized total cost of production and to deal with
the different situations under variable demand. The costs in the model are set as fuzzy to cope up
with the uncertain conditions created by lasting pandemic. A numerical experiment is performed by
utilizing the data set of the multi-stage manufacturing firm. The optimal results provide support for
the industrial managers based on the proactive plan by the optimal utilization of the resources and
controllable production rate to cope with the emergencies in a pandemic.

Keywords: risk supply chain management; COVID-19 pandemic; fuzzy costs; controllable produc-
tion rate; demand depending emergency level; imperfect production

1. Introduction

Supply chain management (SCM) tends to organize and manage a complete set of
activities integrated through a supply network ranging from suppliers to end-users [1].
Currently, uncertainty is an inevitable fact in supply chain models. In the aspect of swift
technological progressions, the fundamental SCM has tailored rapidly to supply chain
networks [2]. A few varying conditions are controllable and assignable while others are
uncontrollable and natural. These uncontrollable conditions endanger and challenge the
resilience of a supply chain, and can be in the form of environmental and climatic disaster
scenarios [3], which negatively affect the global SCM with significant economic losses. For
instance, the demand for the traditional drug Radix isatidis encountered disruption during
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the SARS 2003 epidemic. The belief of the Chinese Government in this drug to combat
SARS expanded the demand multi-fold. Likewise, certain production disruptions can be
caused by material supply mismatches, labor strikes and machinery breakdowns [4,5]. For
instance, back in 2011, tsunami and earthquake disruption instigated Toyota’s auxiliary
plants in the areas that produce vehicles and parts to cease operations. In such a situation,
an emergency-based SCM with a controllable production rate for flexible manufacturing is
an effective solution to deal with maximum disruptions in the chain.

A disaster is either a natural or manmade event that inflicts abrupt and uncontrollable
damage throughout a community [6]. Widespread pandemic diseases are perilous forms
of disaster, which not only affect a region economically, but importantly lives are lost.
Globally, they cause serious macro-economic activity losses during the pandemic and post-
pandemic time-frames. Normally, in any disaster scenario, residents expect and require
exceptional relief and support, as losses surpass the capability of an affected community to
face and meet its demands from normal resources [7]. An outbreak of the recent pandemic;
COVID-19 disease and its economic impacts are highly ambiguous, which makes it a
daunting task for policymakers to formulate an appropriate macroeconomic response [8].
This perpetrates an immense pressure on policymakers to be preventive and reactive
simultaneously at distinct spots. For this purpose, disaster management activities are very
essential to assess product needs, forecasting demands, procurement, managing inventory
and logistics, and relief distribution to curtail the losses [9].

Previously, researchers i.e., Zavvar et al. [10] have worked on disaster SCM in the
pharmaceutical sector by developing a multi-objective model. For Song et al. [11] work
is a motivation from real-world disaster scenarios; they developed an SCM model for
distribution of medical kits. Cao et al. [12] developed a multi-objective programming
model for a relief disbursement supply chain operated over large scale natural disasters.
Kaur [13] developed a resilient supply chain model for procurement and logistics during a
geothermal disaster. All these studies have been conducted on geothermal disasters, while
pandemic is being somehow ignored by researchers at large. During a pandemic, supply
chains are surrounded by a number of uncertain variables, which makes it a daunting
task to opt for an optimal policy. Thus, understanding uncertainty is vital for controlling
policies in an effective SC model. Fuzzy sets-based approaches can be used to overcome
these uncertainties in an appropriate manner to ensure practicality in a supply chain.

For uncertain factors during uneven times, flexibility in the operations of a supply
chain has developed to be an integral part of research. It can be also utilized to hedge
the variability in customer demands in a pandemic situation. For such an objective,
productivity levels should be adjusted to match the current demands, in such a way to
satisfy the closest customer or allocate priority to higher-margin/critical products [14].
The extent of manufacturing adaptability and flexibility has paved the path to distinct
frameworks, and depersonalization like; capacity, production, and logistics flexibility [15].
The novelty about this article is that it targets supply chain management in a pandemic
environment (COVID-19) having various scalable emergency levels. Further, non-linear
modelling for a controllable production rate is designed embedded with an imperfection
model, as proper utilization of the available resources during the pandemic is of prime
importance. The costs in the model are set as fuzzy to cope up with the uncertain conditions
created by lasting pandemic.

The article is structured in a way i.e., introduction to the supply chain, background
to the research article related to SC in pandemics, and its challenges are discussed in
this section. In Section 2, the literature is presented through an author contributions
table that identifies research gaps. Section 3 presents a detailed analysis of the variable
demand, controllable production rate, inventory management, and emergency-based SCM
model formulation. Section 4 deals with the numerical experiments, which consist of the
required data for performing experiments using the proposed SCM model. The significantly
solution methods and numerical results are illustrated in Section 5. Section 6 is utilized to
support industrial experts and managers to understand the importance of the study by a
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proactive analysis during pandemic conditions, whereas the last Section 7 concludes the
research study.

2. Related Study

In the past, research studies [7,9,16] analyzed various supply chain models in disaster-
based scenarios; while enlightening the traditional deployment of many organizations,
they discovered that production policies and inter-organizational integrations are a vital
challenge in any disaster management activity. Moreover, in developing regions, several
political and socio-economic issues, predominantly, corruption, weak transparency, and
non-accountability enormously hinder the triumph of disaster management efforts [17].
A valuable robust supply chain practically emphasizes actual need assessments that fun-
damentally include a swift, dynamic and coordinated ground evaluation. Though some
investigations in developing countries indicate that this assessed demand target been
derived from a certain source are randomly reduced forestalling exaggeration of demand;
i.e., bullwhip, and no scientific approach is used [18]. Indeed, the robustness of a supply
chain is based on the inherent flexibility of the chain [19]. Normal circumstance production
is completely different from a disaster-affected one. Hence, for an emergency supply
chain management, establishing models, defining roles along with responsibilities, and
coordination across every tier of the chain is required, which is an overwhelming task for
developing countries [20]. Recently, researchers have identified OR methods for containing
the ripple effects generated by the COVID situation [21].

Flexibility in a manufacturing system implies that the production criteria may be
altered as desired [22]. A supply chain is flexible in process lead time, production process,
production time and rate until it is an in-control state, however, an out-of-control state
destabilizes the aforementioned parameters [23]. Flexibility in manufacturing revolves
around controllable lead time and cycle time, as it plays a vital role in reducing costs across
the supply chain framework. Ouyang et al. [24] studied discrete lead time cash cost in a
supply chain management (SCM) system for the first time, where lead time demand was
considered as a random variable. Later on, their research was modified in [25], where
they injected the concept of reorder point instead of the safety factor. However, both
these models assumed setup costs to be constant. Porteus [26] presented the concept
of continuous investment for the reduction of setup cost and quality improvement for
fundamental economic production quantity (EPQ) model. Taking this concept, Liang-
Yuh [27] introduced setup cost reduction and quality improvement in an SCM environment
for the first time. Jha and Shanker [28] developed an inventory model with the parameters
of controllable lead time and service level constraints. Giri et al. [29] introduced a flexible
production rate-based EPQ model, which addressed the issue of higher stress levels of the
machinery with the increase in production rate. In this EPQ model, the unit production cost
was stated as a function of the production rate, under general failure and overhaul time
conditions. Yi and Sarker [30] proposed an SCM model including consignment policy in
which a single buyer utilized investments to manipultae lead time, though the production
rate was held constant in their study. Li et al. [31] considered lead-time along with risk-
averse firm and calculated optimal prices. AlDurgam et al. [32] examined an inventory
model considering stochastic demand and controllable production rate along with lead
time curtail. Furthermore, Heydari et al. [33] established a coordinate SCM model including
lead time reduction cost.

Besides reducing lead times, uncertainty in the demand can be triggered by an uncon-
trollable factor i.e., in this work the emerging challenge of COVID-19. In such scenarios,
controllable production rates are highly effective. Most of the industries across developing
countries dependent upon inputs from China, irrespective of their size, started to observe
production curtailment. Most significantly, some panic among firms and consumers dis-
torted usual consumption patterns thus creating market anomalies. Only a robust SCM
model with flexible and controllable production rates can sustain such a highly unstable
market environment. A critical review of a design for robustness in a supply chain network
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was studied in [34]. Khouja and Mehrez [35] presented the idea of controllable production
rates. Christian [36] presented an EPQ model where the production cycle consisted of mul-
tiple runs at various production rates. The author revealed that the production rates should
take a value between the demand rate and the production rate that reduces the production
cost. Later on, Glock (referred to earlier [22]) developed an integrated inventory model
with variable production rates. Afterwards, Glock [37] extended his work to a multiple
stage system. Moreover, studies of Glock [37,38], also verified that variable production
rates either in a single or multi-stage environment imply a significant impact on product
defect reduction and system’s cost. Tayyab and Sarkar [39] constructed a multi-stage
inventory production model considering the constant rate of production with a random
defective rate. Furthermore, Malik and Sarkar [40] developed a model that focused on
setup cost reduction, in which controllable lead time with uncertain demand was discussed.
There is plenty of work carried on the development of models in SCM with controllable
production rates, setup cost reduction, demand constraints, procurement, transportation
objective, quality improvement, and lead time crashing costs [40–43].

During any pandemic, a production environment with defective rates under demand
uncertainty is a highly discouraging issue, as resources are of prime importance in an emer-
gency situation. There are various studies about imperfect production, but no link between
imperfect production with variable production in a pandemic scenario is found. Khouja
and Mehrez (referred to previously [35]) proved the deterioration in the quality of product
with an increase in production rates in an economic production inventory model. They
reassessed the work of [44,45] and assumed it as a function of quality. Khouja [46] further
extended his previous model by assuming that the production rate had a probability to
shift production system from in control to the out of control state. Connolly [47] established
an automated production setup via integration of the manufacturing system with the SCM
framework. The principle benefit of their system was less quantity of defective parts and
no requirement for the reduction of setup cost. Later on, Sana [48] studied unit production
cost as a function of product reliability and controllable production rate in an imperfect
production system. The model was later extended with stochastic demand by [49], sam-
pling in an inspection by [50], and stochastic repair time by [51]. Kim et al. [52] stated that
practically shunning defective products must be part of the elementary production system.
Sarkar [53] also developed an imperfect production inventory model, assuming a dual-
stage assembly operation with backorders and variable production rate. Further, tradeoff
between various objectives, and system uncertain analysis in a lifecycle of three-echelon
shale gas supply chain has been studied by [54–56]. Decision for vendor selection [57],
production and distribution [58], pricing strategy [59], and sustainable parameters for
stakeholder’s satisfaction [60] are vital studies for providing a baseline of SCM.

Government policies, high absenteeism rate of affected labor, inoperability, and drastic
effects on the inflow and outflow of the supply chain may initiate severe economic crises,
system failure and even a shutdown. Table 1 summarizes the literature in which various
author contributions are presented and it aligns with the claim of the current research.
Overall, there has been no research conducted on the integration of an imperfect variable
production system operating in a pandemic emergency-based scenario with the supply
chain. Considering the abovementioned problems, the current study is concentrated on
investigation and inoculation of disaster effected supply chain through flexibility and
variability in imperfect production-based sectors of the developing countries. The current
study focuses on production rate flexibility to cope up with the uncertainties that emerged
from scenarios such as pandemic (e.g., COVID-19) in an economic region.
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Table 1. Previous author relevant contributions in the research.

Author(s)
Model Type Production Rate Production Parameter Imperfect

Production
Resource Leveling Cost Mini-

mization
Disaster Based Model Environment

SCM Production System Constant Variable Lead Time Cycle Time Workforce Machines Geo-Thermal Pandemic Deterministic Uncertain

Sabegh (2017) [10]
√ √ √ √ √ √ √ √

Song (2018) [11]
√ √ √ √

Cao (2018) [12]
√ √ √ √ √

Kaur and Singh (2019) [13]
√ √ √ √ √ √ √ √

Mishra (2017) [18]
√ √

Ouyang (2002) [27]
√ √ √ √ √

Jha (2009) [28]
√ √ √ √

Yi (2013) [31]
√ √ √

Glock (2011) [37]
√ √ √ √

Sarkar (2018) [41]
√ √ √ √ √

Connolly (2002) [47]
√ √

Proposed Re-
Search

√ √ √ √ √ √ √ √ √ √
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3. Emergency-Based SCM Modelling

The COVID-19 pandemic created an emergency situation for the supply of raw ma-
terials and finished goods, which adversely affected the whole SCM economically and
socially. The mathematical model of vendor-manufacturer based SCM is constructed on the
management of resources, inventory, analysis of variable demand, controllable production
rate, and assumptions, to deal with the distinct levels of the emergency during pandemic.

3.1. Variable Demand Depending Emergency Level

The proposed emergency-based SCM considers variable demand depending on the
emergency levels due to the recent COVID pandemic. Initially, it was evident that the
outbreak compelled governments to primarily restrict the social contact among people,
and gradually closing various activities of public at large, which eventually reached to an
extreme emergency level of lockdown. Worldwide, different countries have responded in
various manners to the outbreak in terms of the lockdown. Indeed, lockdowns played a
beneficial role in controlling the widespread, but as soon as relaxation is provided, high
influxes in new cases were observed, for instance in Hong Kong [61]. After the outbreak,
China had put sixteen (16) cities in complete lockdown situation, with closure of retailers,
transport and other business activities. On the other hand, Sweden, directed its population
towards social distancing and preliminary lockdowns [62]. Denmark rushed towards a
complete lockdown, and the results appeared fruitful when they removed the restrictions
gradually afterwards. Italy and Spain went into preliminary to complete lockdowns,
however they suffered a lot from the pandemic spread. The US and UK responded lately
with lockdown phases, they sustained a preliminary lockdown for a significant portion of
time, however it did not go well for them, and they gradually increased stepwise to full
lockdown situations in certain states [63].

Various countries adopted different timings and procedures for the lockdown periods,
however their levels mostly followed a similar trend. Observing the local, national, and
international practices, we came up with setting of different levels after brainstorming with
the experts. The emergency levels are different at different locations and cities depending
on the policies and guidelines provided by the local government, that is the reason six (6)
levels of emergency are developed and linked with the decreasing demand as expressed in
the Equations (1) and (2). The six different levels of emergency by controlling COVID-19
are based on real time consequences and are reflecting the movements, transportation,
supply, lockdown etc., as given in Table 2.

Table 2. The emergency levels with status and real-life conditions from 0 to 5.

Emergency Level (Ω) Emergency Status Conditions

0 No emergency No pandemic, where the conditions are normal and favorable for production and sales.

1 Preventive level Social distancing; Educational sectors and social gathering closed, checking and testing
of workforce internationally.

2 Preliminary lockdown Unessential commodity retailers closed, Inter-professional/states public transportation
closed, workforce disturbance, partial lockdown of lavish commodity retailers.

3 Partial lockdown Complete closure of public transport, inter-district transports, and unessential
commodity retailers, supply shortages, demand supply imparity.

4 Partial curfew Time slabs allotted to important personality and needy people for movements, severe
supply shortages to the retailers and manufacturers.

5 Fully curfew Complete curfew and full lockdown, no movements are allowed except serious
emergencies, only authorized transport available for supply to retailer/manufacturer.

These actions affect negatively on the market demand of the production and service
businesses due to shortages of raw materials caused by supply shortages and customer
unavailability in a market. On other hand, certain products in markets were saturated due
to unavailability of customers to buy (decreasing demand) due to the pandemic, which
created an economic anomaly for businesses and governments. Therefore, to justify the
decreasing demand as a function of the emergency levels, decreasing linear and exponential
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equations are generated. The idea of decreasing linear and exponential functions is taken
from the research work done by [64–66]. The linear equation is as follows:

D(Ω) = σ1 − ρ1Ω (1)

where, D(Ω) is the variable demand depending emergency level (Ω) due to the pandemic,
ρ1 is the lowest possible market demand and scaling factor, σ1 is the initial demand. The
market demand can be affected exponentially by the increasing level of the emergency due
to pandemic situation. The representation is well given by the equation given as follows:

D(Ω) = ρ2 + σ2e−Ωλ (2)

where, ρ2 is the lowest possible market demand, σ2 is the scaling factor, and λ is the shape
factor. The graphical representations of the exponentially and linearly decreasing demand
by the emergency levels due to pandemic are shown in Figure 1.

Figure 1. The effect of emergency levels on the market demand: (a) is showing an exponentially decreasing demand and
(b) is representing the linear relationship between emergency levels and market demand.

3.2. Fuzzy Costs Theory for Uncertain Environment

The COVID-19 pandemic created an uncertain environment for supply and demand
of goods, which is dangerous for global SCM. Numerous uncertainties are possible in real
supply chain management problems, but they are modeled traditionally using approaches
derived from probability theory. However, there are undeniable uncertainties, which
cannot be controlled optimally using probabilistic models. This issue arises in model
problems in inventory, production, and SCM under uncertain environments to find optimal
solutions [67]. Therefore, the solution to deal such problems is with fuzzy set theorems,
rather than probability theory [68]. Vujosevic et al. [69] developed the inventory models in
a fuzzy sense where ordering cost was represented as a triangular fuzzy and holding cost
by a trapezoidal fuzzy number. Therefore, an SCM model with emergency conditions due
to COVID-19 pandemic considering basic costs in fuzzy logic where the signed distance
method is used for defuzzification.

In order to fuzzify all the basic inventory and production costs involved in the emer-
gency based SCM, we consider triangular fuzzy numbers. The distance of triangular fuzzy
number x is given in Equation (4) as follows:

d(x̃, 0̃1) = x +
1
4
(∆2 − ∆1) (3)

where x be a triangular fuzzy number, x̃ = (x − ∆1, x, x + ∆2) where 0 < ∆1 < x and
0 < ∆2 ≤ 1− x. Further, ∆1 and ∆2 are determined by the decision makers.
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3.3. Supply Chain between Vendor and Manufacturer

The supply chain management model is based on a multi-stage imperfect manu-
facturer and vendor with controllable production rates, the flow diagram of the firms
manufacturing process. The first stage includes the basic manufacturing operations, the
second stage is dedicated to the vendor’s manufacturing, and the third stage is the finishing
stage of the manufacturer. Due to the capacity constraints of the manufacturing firm, few
processing steps of each product are delivered to the vendor for manufacturing. The raw
materials in a manufacturing firm are first processed through the basic manufacturing
operations, then the semi-finished parts are transported to the vendor. The inspection
operations are carried out, where the parts are sorted into good and defective parts. The
defective rate is considered a function of occupational stress among workers’ and is directly
proportional to it. The defective parts are returned for reworking operations, and again
inspected afterwards to sort out the rejected parts, which are eliminated from the flow of
production or disposed of in some way. In order to compensate the rejection to meet the
required demand, the same quantity of rejections is ordered to be manufactured from first
stage of the supply chain management chain. The good parts are further delivered to the
final stage of the supply chain management chain for further processing.

3.4. Inventory Management of the Vendor-Manufacturer SCM

Vendor-manufacturer-based supply chain management deals with the complex oper-
ations by the combination of labor, machine cells and materials. It includes the complex
management of inventory between vendor and manufacturer. The inventory diagram of
the supply chain management considerers an imperfect production system, where the
SCM cycle time is given on the x-axis and inventory is given on the y-axis. The upper
portion shows the inventory of the manufacturing firm while the lower portion consisting
of reworking operations along with buffer storage is associated with the vendor inventory.

The inventory of the supply chain management is based on multi-stage manufacturing,
where the manufacturer’s first stage production is done with respect to Pja production in
cycle time t1j and Imax(ja) is the maximum inventory. Afterward, parts are transported to
the vendor for the remaining operations of the outsourcing process. Here, the parts are
inspected and sorted in parallel to the production rate of Pjb(1 − αj) in t2j. The reworking
parts αjQj are inspected and are recycled with the production rate of Pjb(1 − αjβj) in cycle
time t3j where the maximum inventory is denoted by Imax(jb). The rejection rate after
inspection is formulated as αjβjQj. In this direction, the inventory is transferred again to
the manufacturing site for the final and finishing stage of the manufacturer by attaining
the production rate of Pjc − Dj to reach to the maximum inventory of Imax(jc) in cycle time
t4j + t5j. The equations for each of cycle time are given as:

t1j =
Qj
Pja

,

t2j =
Qj
Pjb

,

t3j =
Qjαj
Pjb

,

t4j =
Qj
Pc

,

t5j =
Qj

Dj(Ω)

(
1− Dj(Ω)

Pjc

)
.

3.5. Assumptions of the Model

The following assumptions were used for the proposed model.

(1) The SCM mathematical model is based on multiple types of products. [I] The control-
lable production rate is considered to cope with varying demand. [II] The demand is
variable and depending on the emergency level due to pandemic based disaster. [III]
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The unit production rate of the system is taken as variable, which is depending on the
production cost of the manufacturing firm.

(2) The manufacturer deliver product to the vendor due to limited constraint. The
imperfect products are produced, for which reworking is done and inspection cost is
incurred. The rejected products are recycled and disposed.

(3) The production model is carried out for parallel machining process.

3.6. Notation

The decision variables and the parameters used in the proposed mathematical mod-
elling of the SCM are denoted by the notations listed as follows:

Indices
j: The index used to indicate number of products, j = 1, 2, ... N
a: To indicate the parameters for first stage of manufacture
b: Used with the vendor parameters
c: To represent the final stage of manufacture
Decision variables
Tj: Cycle time to manufacture the j-th product (units)
Lja: Labors utilized at 1st stage to manufacture the j-th product (workers)
Ljc: Labors utilized to manufacture the j-th product at 1st during final stage (workers)

Kja:
Number of machine units utilized at the 1st stage to manufacture the j-th product
(workstations)

Kjc:
Number of machine units utilized to manufacture the j-th product during the finishing stage
(workstations)

Pja: Plant production rate of the j-th product in the 1st stage (units/year)
Pjc: Plant production rate of the j-th product in the 2nd stage of manufacture (units/year)
Manufacturer Parameters
Crm Raw material cost of the j-th product ($/unit)
TDmj Manufacturer total tool-die cost of the j-th product ($/unit)
TDmaj Tool-die cost of the j-th product in 1st stage of manufacture ($/unit)
TDmcj Tool-die cost of the the j-th product in final stage ($/unit)
gj Total indirect production cost of the j-th product ($/unit)
gmaj Indirect cost of the j-th product in first stage of manufacture ($/unit)
gmcj Indirect production cost of j-th product in the final stage of manufacture ($/unit)
Dj(Ω) Variable demand depending emergency level due to pandemic ($/unit)
Qj Production quantity (units)
lja Average labor utilized per machine in first stage of manufacture (labor/machine)
ljc Average labor utilized per machine in final stage of manufacture (labor/machine)
Wj Average wedge of labor to manufacture the j-th product ($/labor)
Aj Setup cost for j-th product ($/year)
hmj Manufacturer’s holding cost of each product per cycle ($/unit/year)
Gj Reworking cost of the j-th product ($/unit)

εja
Production rate of each machine unit to manufacture the j-th product in the 1st stage
(units/machine)

εjc
Production rate of each machine unit at final stage to manufacture the j-th product
(units/machine)

TCmj Total cost of manufacture ($/cycle)
Vendor Parameters
TDbj Vendor tool-die cost of the j-th product ($/unit)
Gbj Indirect part production cost of the j-th product with the vendor ($/unit)
θj Fixed inspection cost of the j-th product ($/year)
αj Proportion of scrap produced in a defective j-th product (%)
βj Defective rate for the j-th product (%)
ψj Variable inspection cost of the j-th product ($/unit)
Rj Reworking cost of the j-th product ($/unit)
γ1 Scrap disposal cost ($/unit)
ρ Efficiency of the labor (%)
Pjb Production rate of jth product manufactured by the vendor (units/year)
TCbj Total cost of the vendor ($/cycle) MR marginal rate of the vendor ($/cycle)
Other Parameters
∆2 The maximum possible value of the parameters ($)
∆1 The minimum possible value of the parameters ($)
TCj Total cost of supply chain management for the j-th product ($/cycle)
TI Total inventory
A Area
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3.7. Mathematical Model Formulation

The basic costs related to inventory and production are uncertain because of pandemic
situation created as a result of COVID-19. Not considering these uncertain conditions
results in an unreliable supply chain (SC) model. For this reason, all basic costs associated
with the vendor and manufacturer the proposed model are considered as fuzzy costs. The
signed distance formula is utilized to solve the fuzzy sets of parameters. The total cost of
SCM is the sum of manufacturer cost and vendor cost as given in Equation (4) and their
formulations are further represented as follows:

TCj = TCmj + TCvj (4)

3.7.1. Manufacturer’s Cost

The total cost associated with the manufacturer include the cost related to the first
stage and final stage of the SCM, where the basic costs are setup, production, labor, holding,
and carbon emission as expressed in Equation (5):

Total cost of manufacturer = Seup cost + Manufacturing cost + Labor cost + Holding cost
+ Carbon emissions cost

(5)

The breakup of the manufacturer’s total costs is necessary to understand each cost
clearly. That is the reason, all the costs are described mathematically and theoretically.

Setup Cost

Aj( f uzzy) =
J

∑
j=1

(Aj +
1
4
(∆aj2 − ∆aj1)) (6)

Controllable Production Rate

Cycle time is taken as a decision variable in the SCM model, which is dependent
upon the production rates of the manufacturing system. The plant production rates of
the manufacturer, i.e., Pja and Pjc for the first and final stage, rely on the production
rate of the machines (ε∗ja and ε∗jc). In order to meet the decreasing demand as a variable
depending emergency level in disaster or pandemic situation, the production rates are
considered as a variable (i.e., ε∗ja and ε∗jc) to take an advantage of flexible production,
where, ε∗ja ∈ [ε∗ja−min, ε∗ja−max] and ε∗jc ∈ [ε∗jc−min, ε∗jc−max]. The production rates of the
manufacturer in the first and final stage can be expressed as P∗ja = K∗jaε∗ja, and P∗jc = K∗jcε∗jc.
where, K∗ja and K∗jc are the number of optimal machines required in the first stage and final
stage of the manufacturer in SCM.

Production Cost

The cost of production is the sum of all the costs associated with the raw material,
indirect cost, and tool-die cost [51]. The expression of fuzzy production cost is given in
Equation (6a).

Production Cost

=
J

∑
j=1

[(Crm + 1
4 (∆crm2 − ∆crm1)) + (TDmaj +

1
4 (∆tma2 − ∆tma1))Pja +

(gmaj+
1
4 (∆ga2−∆ga1))

Pja
]

.Pjat1j + [(TDmcj +
1
4 (∆tmc2 − ∆tmc1))Pjc +

(gmcj+
1
4 (∆gc2−∆gc1))

Pjc
]Qj

(6a)

Holding Cost

The holding cost will be applied on the inventory supported by manufacturer and
vendor. The average inventory is calculated as the ratio of the sum of inventories in the
form of area under the curve to the cycle time of the production. The cycle time and
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inventory levels of the production system are calculated by step by step procedure. The
holding cost is expressed as follows:

TI = A123 + A10,11,12 + A11,12,13 (6b)

=
Q2

j
2Pja

+
(Qj−u)2

2Pjc
(1− Dj

Pjc
) +

(Qj+u)2

2Dj
(1− Dj

Pjc
)

2

Holding cost =
J

∑
j=1

(hmj +
1
4 (∆hm2 − ∆hm1))[

Q2
j

2Pja
+

(Qj−u)2

2Pjc
(1− Dj

Pjc
) +

(Qj+u)2

2Dj
(1− Dj

Pjc
)

2
].

(6c)

Carbon Emission Costs

Carbon emissions are generated during manufacturing of products in the production
system, which significantly affect people, society and the environment. The cost of carbon
is incurred by state governments to address the global warming issue. The proposed
model considers the carbon emission cost, which is the function of the production rate
of the system. The cost of carbon emissions is generated during the life cycle production
where A is the emissions function parameter (ton·year/unit3), B is the emissions function
parameter (ton·year/unit2), and C is the emissions function parameter (ton/unit) [62]. The
corresponding Equation (6d) is as follows:

Carbon Emission Cost =
J

∑
j=1

γ2[(AP2
ja − BPja + C)Pjat1j + (AP2

jc − BPjc + C)Qj]. (6d)

Labor Cost

This cost is associated with the utilization of the workforce in the production system.
The wages are paid to the workers on the basis of their skill levels. Here, the cost is incurred
to reflect the importance of the unskilled workers to understand the importance of the
human factor in the production system. The labor cost is calculated on the basis of the
machines required in the stages of the supply chain management, which is expressed in
fuzzy form as in Equation (7):

LC =
J

∑
j=1

Lj(Wj +
1
4
(∆w2 − ∆w1)) (7)

The number of machines and the number of laborers required for the production
system are expressed below as:

Kj = Kja + Kjc (7a)

Lj = Lja + Ljc, (7b)

Number of labors = Labor rate ×Number of machines ÷ labor efficiency

Lj =
lja
ρ Kja +

ljc
ρ Kjc

(7c)

where, Lj is the number of labors and Kj is the number of machines and where, Ija and Ijc are
the labor rate or the number of laborers working on each machine while ρ is the efficiency
of the workers. Therefore, the mathematical form of the total cost of manufacturer in
the fuzzy system is expressed as in Equation (8). The tilde sign is used for parameters
considering fuzzy (numbers) costs:

T̃Cm =
J

∑
j=1

[(Aj +
1
4 (∆aj2 − ∆aj1)) + ((Crm + 1

4 (∆crm2 − ∆crm1)) + (TDmaj +
1
4 (∆tma2 − ∆tma1))Pja

+
(gmaj+

1
4 (∆ga2−∆ga1))

Pja
)Pjat1j + ((TDmcj +

1
4 (∆tmc2 − ∆tmc1))Pjc +

(gmcj+
1
4 (∆gc2−∆gc1))

Pjc
)

Qj + Lj(Wj +
1
4 (∆w2 − ∆w1)) + (hmj +

1
4 (∆hm2 − ∆hm1))[

Q2
j

2Pja
+

(Qj−u)2

2Pjc
(1− Dj

Pjc
) +

(Qj+u)2

2Dj

(1− Dj
Pjc

)
2
] + γ2[(AP2

ja − BPja + C)Pjat1j + (AP2
jc − BPjc + C)Qj]].

(8)
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3.7.2. Vendor Cost

The semi-finished products are delivered to the vendor to perform operations. The
costs of the vendor are the sum of the costs associated with the production, holding,
inspection, rework, and disposal, given in Equation (9):

Vendor cost = Production cost + Holding cost + Inspection cost + Reworking cost+Scrap disposal cost + Buffer cost. (9)

Production Cost of Vendor

The expression for production cost utilizes the value from the research work done
by [53], except for the cost of raw materials, because the semi-finished products are received
from the manufacturer. The fuzzy cost expression is as given in Equation (10):

=
J

∑
j=1

[[(TDoj +
1
4
(∆to2 − ∆to1))Pjb(1− αj) +

(goj +
1
4 (∆go2 − ∆go1))

Pjb(1− αj)
]Pjb(1− αj)t2j]. (10)

Holding Cost of Vendor

The holding cost of the vendor is obtained from the sum of inventories. The corre-
sponding fuzzy expression is represented by Equation (11):

Total Inventory = Area456 + Area5678 + Area689

=
Q2

j (1−αj)

2Pjb
+

αj(1−αj)Q2
j

Pjb
+

α2
j Q2

j (1−αj β j)

2Pjb
,

HC =
J

∑
j=1

[(hbj +
1
4 (∆hb2 − ∆hb1))[

Q2
j (1−αj)

2Pjb
+

αj(1−αj)Q2
j

Pjb
+

α2
j Q2

j (1−αj β j)

2Pjb
]].

(11)

Inspection Cost

Inspections are carried out, where the products are checked according to the estab-
lished quality control dimensions and checks. The parts are categorized into good, rejected
and rework parts. Total inspection cost (ICj) of the production is the sum of the fixed and
variable inspection cost in the production, expressed by Equation (12):

=
J

∑
j=1

[θj + ψjPjat1j + ψjPjbt2j]. (12)

Reworking Cost

Inspections are carried out to inspect defective products along the production flow.
Rework parts are returned to the same workstation for processing, which involves costs of
processing, energy, labor, etc.:

=
J

∑
j=1

Rj Imaxjba,

=
J

∑
j=1

RjαjQj(1− αjβ j).
(13)

Disposal Cost

Rejected products or scraps are obtained after inspection operations and are discarded.
As a result, a cost is incurred due to the applies disposal process or recycling given as:

=
J

∑
j=1

γ1Pjbt2jαjβ j. (14)
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The mathematical expression for fuzzy vendor cost to sum all the costs equations is
represented as given in Equation (15):

T̃Cb =
J

∑
j=1

[((TDbj +
1
4 (∆tb2 − ∆tb1))Pjb(1− αj) +

(gbj+
1
4 (∆gb2−∆gb1))

Pjb(1−αj)
)Pjb(1− αj)t2j

+(hoj +
1
4 (∆hb2 − ∆hb1))(

Q2
j (1−αj)

2Pjb
+

αj(1−αj)Q2
j

Pjb
+

α2
j Q2

j (1−αj β j)

2Pjb
)

+θj + ψjPjat1j + ψjPjbt2j + RjαjQj(1− αjβ j) + γ1Pjbt2jαjβ j]

(15)

The production system of the manufacturing firm is analyzed by the formulation of
the mathematical model, which is based on the cycle time of production. The objective of
the proposed model is to minimize the total cost of SCM, which is given as the following
fuzzy expression as:

T̃Cj = T̃Cm + MR× (T̃Cv)

where, MR is the marginal rate of the vendor. Hence the mathematical expression of the
objective function is given by Equation (11):

TCj =
J

∑
j=1

1
Tj
[(Aj +

1
4 (∆aj2 − ∆aj1)) + ((Crm + 1

4 (∆crm2 − ∆crm1)) + (TDmaj +
1
4 (∆tma2 − ∆tma1))Pja

+
(gmaj+

1
4 (∆ga2−∆ga1))

Pja
)Pjat1j + ((TDmcj +

1
4 (∆tmc2 − ∆tmc1))Pjc +

(gmcj+
1
4 (∆gc2−∆gc1))

Pjc
)Qj

+Lj(Wj +
1
4 (∆w2 − ∆w1)) + (hmj +

1
4 (∆hm2 − ∆hm1))[

Q2
j

2Pja
+

(DjTj)
2

2Pjc
(1− Dj

Pjc
) +

(Qj+u)2

2Dj
(1− Dj

Pjc
)

2
]

+γ2Pjat1j[(AP2
ja − BPja + C) + (AP2

jc − BPjc + C)Qj] + s.SCj + MR[((TDbj +
1
4 (∆tb2 − ∆tb1))(1− αj)

Pjb +
(gbj+

1
4 (∆gb2−∆gb1))

Pjb(1−αj)
)Pjb(1− αj)t2j + (hbj +

1
4 (∆hb2 − ∆hb1))[

Q2
j (1−αj)

2Pjb
+

αj(1−αj)Q2
j

Pjb

+
α2

j Q2
j (1−αj β j)

2Pjb
] + θj + ψjPjat1j + ψjPjbt2j + RjαjQj(1− αjβ j) + γ1Pjbt2jαjβ j]]

(16)

where:
Lj = Lja + Ljc

Qj =
TjDj(Ω)

1− α2
j β j

t1j =
TjDj

Kjaε ja(1− α2
j β j)

t2j =
TjDj

Pjb(1− α2
j β j)

t4j =
TjDj

Kjcε jc

t5j = (
TjDj

1− α2
j β j
− u)(

Kjcε jc − Dj

DjKjcε jc
)

The SCM mathematical model is non-linear by minimizing total cost of SCM, where
the decision variables are (Tj, Lja, Ljc, Kja, Kjc, Pja, and Pjc).

4. Numerical Experiments

The model is formulated for emergency-based SCM consisting of suppliers and man-
ufacturers. The variabilities in the proposed model make it non-linear in nature, where
the production function constraint is non-linear. The decision variables considered rely
on the implemented production planning decisions. The pragmatic application of the
proposed emergency-based SCM is proposed to face variable demand situations. To avoid
shortages, the managers are required to keep the production rate as a controllable feature
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to be set as per demand. On the other hand, the demand is also variable and dependent
on the level of emergency incurred due to the pandemic conditions in the disaster. The
production rate of the manufacturing system is linked with the integrated production rate
of man and machine. Therefore, it is limited to setting the production rate of the operations
before delivering the products to the vendor which should be greater than the vendor’s
production rate, and furthermore, the rate of production operations performed during
the 2nd stage of the manufacturer must be greater than the predecessor. The variable
production system is considered for multi-product and multi-stage production to minimize
the total cost of SCM.

To set the model application in real life scenario, an automobile part manufacturing
industry is considered. The production of the industry is purely discrete; manufacturing
three parts i.e., A, B and C. The data utilized to perform the experiment is taken from the
research described in [70–72]. The manufacturing-based data for each product, given in
Table 3, consist of tool-die, production, holding and production rate, which is taken from
the research work of [53]. On the basis of the capacity of the machines inside manufacturing
firm, the controllable production rate of the machines at first stage i.e., [ε ja−min, ε ja−max]
are considered as (120, 150), (130, 160), (140, 170) and final stage i.e., [ε jc−min, ε jc−max]
are considered as (110, 130), (115, 140), and (125, 150) to manufacture parts A, B and
C, respectively.

Table 3. Automobile industry manufacturer data.

Product
Type

Tool-Die Cost
($/machine)

Fixed Production Cost
($/unit)

Holding
($/unit/year)

Raw Material
($/unit)

Setup
($/year)

Labor
($/labor-year)

Demand
(units/year)

A 0.01 600 0.5 18 10 1000 900
B 0.01 610 0.5 19.5 1 1000 800
C 0.02 628 0.5 21 12 1000 800

All the data related to the imperfect item production are given in Table 4, which
covers the inspection, reworking, recycling and buffer costs. The reworked parts again
bear an extra cost in the form of energy, labor and machine costs called reworking cost.
The inspection cost is categorized as fixed, including the initial investment and variable
cost depending upon the production quantity. The recycling cost includes the operations
to dispose the given rejected products which cannot be reworked in some way. These costs
having a significant impact on the total cost of production.

Table 4. Automobile industry vendors’ data.

Product
Type

Tool-Die Cost
($/machine)

Fixed Prod.
Cost ($/unit)

Holding
($/unit/year)

Raw Material
(%)

Fixed Inspect.
($/year)

Variable Inspection
($/unit)

Rework
($/unit)

Disposal
($/unit/year)

A 0.01 600 0.5 18 5 0.1 0.116 0.83
B 0.01 610 0.5 19.5 5.5 0.2 0.116 0.83
C 0.02 628 0.5 21 6 0.3 0.15 0.83

5. Numerical Results

The objective is to make the production flat, where the number of workstations,
workers, and production time cycle are required. The production rate of the system
depends upon the production rate of the machines, which is kept in such a way that there
are no shortages in the system. The systems of equations generated from the proposed
model consist of non-linear equations, which are complex enough to solve using analytical
methods. There are numerous techniques that can be used to find the optimal solution
of non-linear models, e.g., interior point optimization (IPO), particle swarm optimization
(PSO), pattern search (PS), genetic algorithm (GA), min-max optimization (MMO), etc. All
these algorithms are available in the OPTIMTOOL application of the MATLAB software
package, but it requires an MATLAB code to be generated in the M-file of the package.
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Analytically, the methodology is applied to search the optimal and global solutions.
However, these analytical methods are time consuming and ineffective, and have been
largely replaced by techniques based on quadratic programming. These methods as
sequential quadratic programming (SQP), which are based on Newton’s method to deal
with the unconstrained optimizations and identified as a most effective method to solve
big-data problems. Schittkowski [73] validated these methods on the basis of successful
solutions and proved they have good accuracy for big-data research problems [74]. The
works of Biggs [75,76] ensure that the SQP method implements the Newton’s method for
constrained optimization in an effective way when solving unconstrained optimization
problems [77]. The proposed model is coded in MATLAB 2017b to find the optimal result
and the solution using SQP as given in Table 5. A sequential quadratic programming (SQP)
method is utilized, which is available in the OPTIMTOOL of the MATLAB 2017b version.
Firsts of all, the two type of demands i.e., exponential and linear are considered for the
calculation of the minimum total cost (TCj) of SCM:

(1) It is found that in case of exponentially decreasing demand, the optimal TCj of SCM is
obtained as $124835.5, where the cycle time are (13.68, 15.264, 15) days cycle, optimal
machine utilization are (4, 3, 3) for first stage and (4, 4, 4) for final stage, labor required
are (10, 7, 7) for first stage and (10, 10, 10) for final stage, and optimal production rate
to be set are (600, 480, 510) and (520, 560, 600) units/cycle for manufacturing parts A,
B and C, respectively.

(2) On the other hand, the optimal TCj with linear demand is calculated as $226282.3.
The results are well evaluated against solution methodology of PS and GA as an
evidence. The possible optimal production plan for manufacturing of parts A, B, and
C as a solution consider production cycle time (7.92, 8, 8) days, machines utilization
(6, 5, 5) at first stage and (7, 6, 6) at final stage of manufacturing respectively. The
indirect decision variable i.e., labor required, are calculated as (15, 12, 12) and (17, 15,
15) whereas optimal controllable production rate is required to set at (900, 800, 850)
and (910, 840, 900) for first and final stage of manufacture, respectively.

Table 5. The optimal result of the supply chain model with emergency level Ω = 1.

Decision
Variable Abbreviation SQP (Exponential

Demand)
SQP (Linear

Demand)
Pattern Search

(Linear Demand)
GA (Linear
Demand)

Cycle times
T1 0.0383 0.022 0.022 0.022
T2 0.0424 0.025 0.025 0.025
T3 0.0419 0.025 0.025 0.025

Machine units

Kja1 4 6 6 6
Kja2 3 5 5 5
Kja3 3 5 5 5
Kjc1 4 7 7 7
Kjc2 4 6 6 74
Kjc3 4 6 6 6

Labor required

Lja1 10 15 15 15
Lja2 7 12 12 12
Lja3 7 12 12 12
Ljc1 10 17 17 17
Ljc2 10 15 15 15
Ljc3 10 15 15 15

Plant production

Pja1 600 900 1350 1350
Pja2 480 800 800 800
Pja3 510 850 850 850
Pjc1 520 910 910 910
Pjc2 560 840 840 840
Pjc3 600 900 900 900

Total cost of SCM TCj 124,835.5 226,282.3 226,282.3 507,138.85
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6. Managerial Insights

The COVID-19 pandemic created a huge disruption affecting governments, industries,
supply chains, businesses, retailers and people economically. This negative impact con-
tinues to increase until it is controlled. The reason is that the product demand is highly
uncertain and is dependent on the actions of the local government, i.e., to control the trans-
mission of the virus among people. In this hard time, the industrial managers and experts
should make proactive decisions to avoid huge SCM economic losses. These decisions
include variable production rates, machine utilization, required labor force, and inventory
levels. Therefore, the proposed emergency-based SCM model provides a platform for
managers regarding these important decisions during different conditions implemented by
the government due to the ongoing pandemic. These optimal results and optimal solutions
are presented in Table 6. The demand considered in this analysis is decreasing linearly
against emergency levels from 0 to 5.

Table 6. The utilization of resources with respect to the emergency levels (Ω) due to COVID-19 pandemic.

Decision Variables Abbreviations Ω = 0 Ω = 1 Ω = 2 Ω = 3 Ω = 4 Ω = 5

Machines utilization

K1a 7 6 6 5 4 4
K2a 6 5 5 4 4 3
K3a 6 5 5 4 3 3
K1c 8 7 7 6 5 4
K2c 7 6 5 5 4 3
K3c 6 6 5 4 4 3
L1a 17 15 15 12 10 10
L2a 15 12 12 10 10 7
L3a 15 12 12 10 7 7

Labors required

L1c 19 17 17 15 12 10
L2c 17 15 12 12 10 7
L3c 15 15 12 10 10 7
P1a 1050 900 900 750 600 600
P2a 960 800 800 640 640 480
P3a 1020 850 850 680 510 510

Plant Production rate
P1c 1040 910 910 780 650 520
P2c 980 840 700 700 560 420
P3c 900 900 750 600 600 450

Total cost of SCM TCj 263,420.5 226,282 201,373 166,475 137,547 110,251

These results are discussed well for understanding them by the following manage-
rial insights:

(1) The first analysis is about the optimal utilization of resources, i.e., machine units
and the required labor force. The analysis is represented graphically in Figure 2.
The left-hand side curve in the figure shows the relationship between machine units
(Kj) and emergency levels (Ω), where the manufacturer is required to utilize optimal
machines for manufacturing products A, B, and C in each stage, respectively, to
cope with decreasing dependent demand. The analysis of the required labor force
(Lj) is illustrated on the right-hand side of the Figure 2, where the relationship is
again inversted to justify the market demand from emergency level 0 to 5. From this
analysis, it is important for managers to avoid extra production and excess supply by
the optimal utilization of workers and machines during various emergency situations
due to COVID-19.

(2) The second insight reflects the significance of controllable production rates. The
proposed research model is solved by considering controllable production rates
of the manufacturing plant during the first stage and final stage of the SCM. The
value of controllable production rate is the input given by the production manager
after analyzing the market demand. During COVID-19, this is a challenging task
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for decision makers to set and control production rate with respect to the extreme
variation in the market demand. The analysis of the controllable production rate
(Pj) for first and final stage of manufacturer is well illustrated against increasing
emergency level (Ω) on the left-hand side of the Figure 3. The production rate should
be set decreasing with respect to the decreasing market demand to avoid cost of
production. Similarly, the analysis of the total cost of SCM (TCj) is represented at
right hand side of the Figure 3. It is found that the total cost of production can be
optimized at minimum level during emergency level by controlling production rate
and production resources.

Figure 2. The optimal utilization of the resources in pandemic conditions: (a) Machines utilization (b) Labor force required.

Figure 3. The representation of plant production rate and total cost during emergency: (a) is showing the optimal controllable
production rate required by manufacturing plant (b) is the representation of decreasing total cost of SCM by the proactive
approach to cope with variable demand.

7. Conclusions

The resilience of supply chain management (SCM) is badly affected by the current
novel COVID-19 pandemic, which causes emergencies due to the varying demand and
supply shortages. Various emergencies resulting due to pandemic are examined and
analyzed. An emergency-based SCM is developed for the uncertain product supply and
inventory management situation between vendors and manufacturers with imperfections.
This research aims to help decision-makers and managers cope with the consequences
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and global disruption created by the COVID-19 pandemic. A pragmatic application of
the model is justified by undertaking an automobile part manufacturing industry as a
exemplary manufacturer in SCM for flexible production as abrupt demand surges in the
manufacturing sector have been indicated by recent studies [78] and in particular in the
automobile sector [79]. A timely need to mitigate costly effects was required. Further, the
demand is variable and uncertain during different emergency situations of the COVID
resulting from government actions. For this purpose, an optimal total cost of SCM is
obtained by solving a non-linear mathematical model using SQP methodology with linear
and exponential demand. As the pandemic is of a highly uncertain nature, fuzziness is
incorporated to deal with the possible fluctuations in costs and positive and negative
demand surges. The results reflect the best utilization of the machine units, labor force, and
controllable production rate against various emergency levels for flexible manufacturing.
A set of sensitivity experiments allows us to illustrate the behavior of the proposed SCM
model and to derive useful insights. More specifically, the study is a proactive approach
for decision-makers to take advantage of the controllable production rate to avoid excess
supply against decreasing demand with the minimum optimal cost of SCM.

The solution of the research is provided by incorporating a controllable production
rate for flexible manufacturing, inventory level control, and best resource utilization to cope
with the fluctuating demand due to the emergency levels determined by the government to
control the transmission of the virus. The results of the research show a deep knowledge of
the varying demand concerning the emergency level in a pandemic. The research is effective
for governments and disaster management stakeholders to understand the consequences
of emergency levels during a pandemic. The right decision at the right time regarding
implementing a smart emergency level will be beneficial for the small/medium enterprises
(SMEs), and the economy of the state. The study is a form of the disaster management
approach for the traders, logistics, retailers, manufacturers, and supply chains to manage
resources and production optimally to deal successfully with unbalanced markets during
the COVID-19 pandemic.

The proposed research model can be extended to a three-echelon SCM by including
retailer or wholesellers. The reason is that these small enterprises are more affected by
emergencies (social distancing and lockdown) created by the COVID-19 pandemic because
of their asset limitations and for this purpose a rapid, timely and decisive plan is required.
The demand variation during a pandemic may be decreased by following certain other
distributions. The essence of randomization using stochastic modeling can be incorporated
to make the proposed model more generic and realistic. Further, the proposed model can
also be expanded in order to consider more realistic scenarios such as multi-echelon supply
chains with single-buyer multiple vendors, multiple buyers and single vendors or multiple
buyers and multiple vendors. Overall, the COVID-19 pandemic is dangerous for the world
economy due to the resulting short term and long term global SCM disruption. However, in
the current scenario, industries need to face this challenge with timely proactive approaches
to avoid irreparable losses.
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