Table 1.
Study | TL Approach Used | Pre-Training Model Used | Application | Image Dataset | Pre-Processing | Pre-Training Dataset |
---|---|---|---|---|---|---|
Byra et al. [26] | Fine-tuning | VGG19 & InceptionV3 | Classification | OASBUD | Compression and augmentation | ImageNet |
Byra et al. [24] | Fine-tuning | VGG19 | Classification | 882 US images of their own and public images UDIAT and OASBUD | Matching layer | ImageNet |
Hijab et al. [27] | Fine-tuning | VGG16 | Classification | 1300 US Images | Augmentation | ImageNet |
Yap et al. [25] | Fine-tuning | AlexNet | Detection | Dataset A and B | Splitting in to patches | ImageNet |
Yap et al. [28] | Fine-tuning | AlexNet | Detection | Dataset A and B | Ground-truth labeling | ImageNet |
Huynh et al. [23] | Feature extractor | AlexNet | Classification | Breast mammogram dataset with 2393 regions of interest (ROIs) | Compression and augmentation | ImageNet |
Hadad et al. [29] | Fine-tuning | VGG128 | Detection and classification | MRI data | Augmentation | Medical Image (Mammography image) |