Skip to main content
. 2021 Feb 10;13(4):738. doi: 10.3390/cancers13040738

Table 1.

Summary of previous transfer learning (TL) approaches for breast cancer diagnosis using ultrasound. OASBUD, open access series of breast ultrasound data; US, ultrasound; UDIAT, UDIAT Diagnostic Centre of the Parc Tauli Corporation ultrasound image data; dataset A, ultrasound images obtained with BK Medical Panther 2002 and BK Medical Hawk 2102; dataset B, UDIAT Diagnostic Centre of the Parc Tauli Corporation ultrasound image data.

Study TL Approach Used Pre-Training Model Used Application Image Dataset Pre-Processing Pre-Training Dataset
Byra et al. [26] Fine-tuning VGG19 & InceptionV3 Classification OASBUD Compression and augmentation ImageNet
Byra et al. [24] Fine-tuning VGG19 Classification 882 US images of their own and public images UDIAT and OASBUD Matching layer ImageNet
Hijab et al. [27] Fine-tuning VGG16 Classification 1300 US Images Augmentation ImageNet
Yap et al. [25] Fine-tuning AlexNet Detection Dataset A and B Splitting in to patches ImageNet
Yap et al. [28] Fine-tuning AlexNet Detection Dataset A and B Ground-truth labeling ImageNet
Huynh et al. [23] Feature extractor AlexNet Classification Breast mammogram dataset with 2393 regions of interest (ROIs) Compression and augmentation ImageNet
Hadad et al. [29] Fine-tuning VGG128 Detection and classification MRI data Augmentation Medical Image (Mammography image)