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Abstract

In semi-competing risks, the occurrence of some non-terminal event is subject to a terminal event, 

usually death. While existing methods for semi-competing risks data analysis assume complete 

information on all relevant covariates, data on at least one covariate are often not readily available 

in practice. In this setting, for standard univariate time-to-event analyses, researchers may choose 

from several strategies for sub-sampling patients on whom to collect complete data, including the 

nested case-control study design. Here, we consider a semi-competing risks analysis through the 

reuse of data from an existing nested case-control study for which risk sets were formed based on 

either the non-terminal or the terminal event. Additionally, we introduce the supplemented nested 
case-control design in which detailed data are collected on additional events of the other type. We 

propose estimation with respect to a frailty illness-death model through maximum weighted 

likelihood, specifying the baseline hazard functions either parametrically or semi-parametrically 

via B-splines. Two standard error estimators are proposed: (i) a computationally simple sandwich 

estimator and (ii) an estimator based on a perturbation resampling procedure. We derive the 

asymptotic properties of the proposed methods and evaluate their small-sample properties via 

simulation. The designs/methods are illustrated with an investigation of risk factors for acute graft-

versus-host disease among N = 8838 patients undergoing hematopoietic stem cell transplantation, 

for which death is a significant competing risk.
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1. Introduction

Acute graft-versus-host disease (aGVHD) is a complication experienced by about 50% of 

patients who undergo hematopoietic stem cell transplantation (HSCT) for leukemia.1 An 

important challenge for studies of aGVHD following HSCT is high mortality; in data from 

the Center for International Blood and Marrow Transplant Research (CIBMTR), 15.1% of N 
= 8838 patients who underwent HSCT between 1999 and 2011 died within 100 days. It is 

therefore appropriate to frame this study as a problem of semi-competing risks,2 in which 

scientific interest lies with some non-terminal event (e.g. aGVHD), the occurrence of which 

is subject to a terminal event (e.g. death). The terminal event is thus a competing risk for the 

non-terminal event, but not vice-versa. Although less familiar than competing risks, semi-

competing risks arises in a broad range of applications including cancer,3 diabetes,4 

cardiovascular disease,5 and Alzheimer’s disease.6

Let T1 and T2 be the time to the non-terminal and terminal events, respectively. In semi-

competing risks, the joint distribution of (T1, T2) has restricted support since patients cannot 

experience a non-terminal event after a terminal event has occurred. As such, dependence 

between the two events must be explicitly acknowledged even if primary scientific interest 

lies in the non-terminal event.7 Various methods for semi-competing risks have emerged 

over the last 15 years.8,9 Here, we focus on a class of methods that frames the data as having 

arisen from the so-called illness-death model.10

In all methods in the literature to date, complete data on all relevant risk factor covariates is 

presumed to be readily available, but this often will not be the case in practice. In large 

cohort studies, blood or saliva may be routinely collected on all participants but biomarkers 

not initially evaluated on everyone. In registry, claims, or electronic health records-based 

studies key covariates (e.g. current smoking status) may not be routinely recorded and 

require either manual chart review or additional data collection efforts. In these settings, if 

researchers are to learn about estimands of interest (such as the associations encoded in an 

illness-death model), they require a cost-efficient means of obtaining information on the 

otherwise-missing covariates for at least a sub-sample of patients. Towards this, researchers 

have a wide variety of study designs at their disposal. One design for time-to-event outcomes 

is the nested case-control (NCC) design.13 Typically, NCC designs are implemented by 

identifying all cases (i.e. those who experienced the event) and then selecting a random 

sample of non-cases from each risk set defined by each case. Estimation and inference are 

then performed with respect to a univariate Cox model for the time-to-event outcome that 

was the basis of the design.14,15

In this study, we suppose that an NCC study has been conducted, but that the analysis is to 

proceed using an illness-death model (in lieu of a univariate model). Specifically, we 

propose a statistical framework for estimation and inference with respect to an illness-death 

model for semi-competing risks data arising from an existing NCC study, into which patients 

were selected based on either the non-terminal or terminal event, but not both. We refer to 

the event used to form risk sets as the index event, and the other as the non-index event. 
Throughout, it is assumed that information on both events is available for all individuals 

selected into the study. In addition, we introduce the supplemented NCC design (SNCC 
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design) in which otherwise-missing covariates are also collected on cases of the non-index 

event in the original NCC study. We perform estimation via maximum weighted likelihood 

with respect to a frailty illness-death model, permitting baseline hazard functions to be 

specified parametrically as well as semi-parametrically via B-splines. For standard error 

estimation, we propose a sandwich estimator and a perturbation resampling-based 

procedure. We derive asymptotic properties of this estimator and evaluate its small-sample 

characteristics through a simulation study. The methods are illustrated with the 

aforementioned CIBMTR data.

2. The illness-death model for semi-competing risks

A central premise of this setting is that, given complete data on all covariates, the scientific 

question would be addressed via the fit of an illness-death model specified by three intensity 

or hazard functions: λ1 (t1), the hazard of the non-terminal event (implicitly in the absence 

of the terminal event); λ2(t2), the hazard of the terminal event conditional on the non-

terminal event not having occurred; and λ3(t2|t1), the hazard of the terminal event 

conditional on the non-terminal event having occurred at time t1 (see Figure A.1 in Online 

Appendix A).

In practice, analysts need to specify models for these three hazard functions. Here, following 

Xu et al.11 and Lee et al.,3 we focus on Cox model specifications of the form

λ1 t1 γ = γλ01 t1 exp β1′X1 (1)

λ2 t2 γ = γλ02 t2 exp β2′X2 (2)

λ3 t2 t1, γ = γλ03 t2 t1 exp β3′X3 (3)

with Xg a vector of transition-specific covariates, g ∈ {1, 2, 3}, and γ a shared patient-

specific frailty. Note, for simplicity, we omit a patient-specific index in the notation but do 

introduce it when we discuss estimation and inference (see below). Analogous to random 

effects in generalized linear mixed models (GLMMs), γ serves to account for residual 

within-patient dependence between the two events that is not accounted for by the covariates 

in the three models.7 Furthermore, analogous to a “random intercepts” GLMM, the vast 

majority of the illness-death model literature assumes that the frailties arise from some 

parametric distribution with mean 1.0 and variance θ, although some work has been done on 

more flexible specifications.16 While analysts are free to choose any such distribution, 

Gamma (θ−1, θ−1) is most commonly adopted (as in this study), since it produces a closed-

form expression for the marginalized likelihood (Online Appendix A.2).

2.1. Specification of the baseline hazard function

Towards specification of the baseline hazard functions in expressions (1) to (3), one useful 

option in small-sample settings is to adopt a parametric specification, such as a Weibull (ϕg1, 

ϕg2) distribution for which λ0(t) = ϕg1ϕg2tϕg1−1. A second option is to adopt a flexible 
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specification via, say, B-splines. Specifically, one could define logλ0g(t) = ∑k = 1
Kg Bgk(t)ϕgk

where Kg is the number of B-spline basis functions with Bgk(·) the kth such function, and ϕg 

≡ (ϕg1, …, ϕgKg)′ is a (Kg × 1) vector of coefficients (see Online Appendix A.4). Note, by 

modeling logλ0g(t), rather than λ0g(t) directly, we avoid the need to introduce constraints on 

ϕg that ensure positivity.17,18 Finally, since λ03(t2|t1) is a function of two continuous 

variables, it may be difficult to specify parametrically or estimate non-parametrically. In 

practice, this is typically resolved by adopting either a Markov specification, where λ3(t2|t1, 

γ) ≡ λ3(t2, γ), or a semi-Markov specification, where λ3(t2|t1, γ) ≡ λ3(t2 − t1, γ).11

3. NCC designs for semi-competing risks

Given an i.i.d. sample of size N from the population of interest, with complete data on all 

elements of X = (X1, X2, X3), estimation and inference for the illness-death model given by 

equations (1) to (3) are well established in both the frequentist10,11 and Bayesian paradigms.
3,12,19 Here, we propose analyses under an NCC design in which complete data on X are not 

available.

3.1. The NCC design

The NCC study design is a frequently used, cost-efficient outcome-dependent sampling 

design for univariate time-to-event outcomes.13 Within the univariate setting, the design first 

identifies all patients who experience the index event. For each such “case,” m “controls” are 

randomly sampled without replacement from the risk set formed at the time of the event. 

The otherwise-unavailable covariate data are then ascertained for the case and each selected 

control. Since the sampling of controls across different risk sets is independent, the same 

patient may be sampled as a control for more than one case and/or become a case after 

having been previously selected as a control.

Typically, data arising from an NCC design are analyzed using univariate time-to-event 

models, with estimation and inference via a modification of the usual partial likelihood14 or 

inverse probability weighting (IPW).15 In some settings, interest may lie with a non-index 

event; to that end, recent work permits the reuse of controls from the original NCC design to 

estimate components of a univariate model for the non-index event via IPW.20,21 Here, we 

suppose that scientific interest lies with an illness-death model, of the form given by 

equations (1) to (3). With this in mind, we consider settings where the data from the NCC 

design are to be re-used for estimation and inference with respect to the illness-death model, 

with the index event being either the non-terminal or the terminal event. Throughout, we 

assume that, in addition to information on the otherwise-unavailable covariates, information 

on the non-index event is available on all individuals selected by the design through the end 

of follow-up.

3.2. The SNCC design

The NCC design is most commonly used when the index event is rare, with all patients who 

experienced the event being “selected” along with a sub-sample of those who did not. As 

applied to the semi-competing risks context, this implies that all patients who experience the 

index event will be in the NCC sub-sample. This, however, is not guaranteed for those 
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patients who only experience the non-index event. In the aGVHD context, for example, 

consider an NCC study with the index event being death. While patients who experienced 

both aGVHD and death are guaranteed to be in the sub-sample (and therefore have complete 

data), patients who experienced aGVHD but were censored prior to death are not guaranteed 

to be in the sub-sample. Depending on the event rates and who was selected in the risk sets 

formed by the index event, estimation and inference may be difficult and/or inefficient for 

certain transitions. To mitigate this, we propose that the NCC study be post hoc 

supplemented by sampling additional patients who did not experience the index event but 

did experience the non-index event. As with the patients already selected, covariate 

information on these patients would be retrospectively ascertained. We refer to this novel 

design as an SNCC design. In the remainder of this study, for ease of exposition, we label 

standard (i.e. unsupplemented) NCC designs based on the non-terminal event and the 

terminal event as NT-NCC and T-NCC designs, respectively. Analogously, we label SNCC 

designs based on the non-terminal event and the terminal event as NT-SNCC and T-SNCC 

designs, respectively.

4. Maximum weighted likelihood for the illness-death model

Towards estimation and inference for the illness-death model, we develop a strategy based 

on IPW; the methods will be implemented in an upcoming version of the SemiCompRisks R 

package. Note, since the presence of a frailty term links the estimation of all parameters, a 

partial likelihood-based strategy is not feasible. For simplicity, we adopt a semi-Markov 

specification for the baseline hazard functions; details for the Markov specification are 

provided in Online Appendix A.2.

4.1. Estimation and inference given complete data

Let Yi = (Yi1, δi1, Yi2, δi2) denote the observed outcome data for individual i, where Yi1 = 

min(Ti1, Ti2, Ci), with Ci denoting the right-censoring time, δi1 = I{Ti1 ≤ min(Ti2, Ci)}, Yi2 

= min(Ti2, Ci), and δi2 = I{Ti2 ≤ Ci}. Ci is assumed to be independent of (Yi1, Yi2) 

conditional on the covariates in the model. Let ξ = (θ, β1, β2, β3, ϕ) denote the collection of 

unknown parameters from models (1) to (3), where ϕ = (ϕ1, ϕ2, ϕ3) indexes the specification 

of the three baseline hazard functions. Adopting γ ~ Gamma (θ−1, θ−1), detailed arguments 

in Online Appendix A.2 show that the (integrated) observed data likelihood for individual i 
are

ℒi ξ = λ1
∗ yi1

δi1λ2
∗ yi1

1 − δi1 δi2λ3
∗ yi2 − yi1

δi1δi2 1 + θ δi1δi2

× 1 + θ Λ1
∗ yi1 + Λ2

∗ yi1 + Λ3
∗ yi2 − yi1

− 1
θ + δi1 + δi2 ,

where λg*(t) is defined so that λg(t) = γλg*(t), and Λg*(t) = ∫ 0
t λg*(s)∂s.

Given complete data, D = {Yi, Xi; i = 1, …, N}, one could proceed via the log-likelihood: 

ℓ(ξ) = ∑i = 1
N logℒi(ξ) = ∑i = 1

N ℓi(ξ). See Online Appendix A.3 for the corresponding score 

functions when the baseline hazard functions are parameterized using a Weibull distribution. 

If the log-baseline hazard functions are specified using B-splines, analysts may choose to 
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induce smoothness by applying a penalty on the second derivatives,17 that is, basing 

estimation and inference on a penalized log-likelihood ℓp(ξ) = ℓ(ξ) − P(κ1, κ2, κ3, ξ), where 

P(κ1, κ2, κ3, ξ) = ∑g = 1
3 κg∫ (logλ0g)″2(u)du. See Online Appendices A.4 and A.5 for the score 

functions corresponding to ℓ(ξ) and ℓp(ξ), and a cross-validation procedure for selecting {κ1, 

κ2, κ3}.

4.2. Estimation and inference given data from an NCC or SNCC design

Suppose now that complete data are only available on a sub-sample of patients selected via 

an unsupplemented NCC design, DNCC. If the index event is non-terminal, let Y i* = Y i1, 

while if it is terminal, let Y i* = Y i2. For either event type, let δi* be an indicator of whether 

individual i was observed to experience the index event. Then, define ℛi = {j:Y j* ≥ Y i*} as 

the risk set formed at the observed event time if δi* = 1. Furthermore, let R0ij be a binary 

variable indicating whether individual i was selected as a control from ℛj. Following 

Samuelsen15 and Cai and Zheng,22 DNCC consists of all individuals for whom Ri = 1, where 

Ri = δi* + (1 − δi*)R0i and R0i = 1 − ∏j: i ∈ ℛj(1 − δj*R0ij) is an indicator that the individual 

was selected as a control from at least one of the risk sets formed by the observed index 

events. Furthermore, the corresponding probability of being selected by the NCC design 

over the course of the observed follow-up period is πi = P(Ri = 1; DNCC) = δi* + (1 − δi*)π0i

where

π0i = 1 −
j: i ∈ ℛj

1 − δj
∗ m

ℛj − 1 . (4)

An estimate of ξ, denoted ξ , can be obtained via maximization of ℓw(ξ) = ∑i = 1
N Riπi−1ℓi(ξ)

or ℓwp(ξ) = ℓw(ξ) − P(κ1, κ2, κ3, ξ). Note, in the univariate time-to-event context, Samuelsen15 

refers to ℓw(ξ) as the log pseudo-likelihood.

Now suppose that DNCC was supplemented with all cases of the non-index type who were 

not selected at the outset. Building on the notation above, let DSNCC denote the sub-sample 

of patients selected by the SNCC design, consisting of individuals for whom Ri = 1, where 

Ri = δi
m + (1 − δi

m)R0i, with δi
m = max(δi1, δi2) and R0i defined as above. Furthermore, the 

corresponding probability of being selected by the SNCC design over the course of the 

observed follow-up period is πi = P(Ri = 1; DSNCC) = δi
m + (1 − δi

m)π0i where π0i is as 

defined above.

4.3. Asymptotics and standard error estimation

Here, we summarize the asymptotic properties of the proposed maximum weighted 

likelihood estimator and propose two estimators of the asymptotic standard error. Since the 

primary focus of this study is valid estimation and inference from an NCC or SNCC design, 

we focus the presentation here on unpenalized estimation (i.e. when κg = 0 for g ∈ {1, 2, 
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3}); analogous arguments regarding penalized likelihood estimation are given in Online 

Appendix B.2.

Let Uw(ξ) = ∑i = 1
N Ui

w(ξ) = ∑i = 1
N Riπi−1Ui(ξ) denote the score functions corresponding to 

ℓw(ξ), with Ui(ξ) = ∂ℓi(ξ)/∂ξ. Assuming the model is correctly specified, it is straightforward 

to show that EY, R[Uw(ξ)] = EY[U(ξ)] = 0 (Online Appendix B.1). Since solutions of 

unbiased estimating equations are asymptotically linear and asymptotically linear estimators 

have a unique influence function, then assuming suitable regularity conditions,23 we have 

that N(ξ − ξ0) d Normal(0, J−1ΓJ−1), where ξ0 is the true parameter value, J = 

EY,R[∂Uw(ξ)/∂ξ]|ξ=ξ0 and Γ = VarY,R[Uw(ξ)]|ξ=ξ0.

In practice, given suitable plug-in estimators, the asymptotic variance of ξ  can be estimated 

by Var[ξ ] = N−1J−1ΓJ−1
. Towards this, following the arguments above, note that

EY, R
∂

∂ξ Uw ξ = EY ER Y
∂

∂ξ i = 1

N
Riπi−1Ui ξ

= EY
∂

∂ξ U ξ ,

and that

VarY, R Uw ξ = VarY ER Y
i = 1

N
Riπi−1Ui ξ + EY VarR Y

i = 1

N
Riπi−1Ui ξ

= VarY U ξ + EY
i = 1

N

j = 1

N Cov Ri, Rj
πij

Ui ξ Uj ξ T

where πij = P(Ri = 1, Rj = 1) is the joint probability that individuals i and j are selected by 

the NCC design at some pointy during the observed follow-up period. Hence, one can write 

Var[ξ ] = VarI[ξ ] + VarII[ξ ] = N−1J−1ΓIJ−1 + N−1J−1ΓIIJ−1
, where the first component 

estimates the sandwich variance of the complete data estimator (i.e. for the full cohort) and 

the second is an additional term that is due to the design. One option that avoids the 

calculation of all Cov[Ri, Rj] is to use a plug-in estimator that ignores the design component,
24 specifically Var[ξ ] = N−1J−1ΓIJ−1

 where

J = 1
N i = 1

N ∂
∂ξ Uiw(ξ ), ΓI = 1

N i = 1

N
Uiw(ξ )Uiw(ξ )T .

Note, since the sampling indicators for two individuals (i.e. Ri and Rj) are negatively 

correlated if they are members of the same risk set, Var[ξ ] may be expected to yield standard 

error estimates that are too large and thus conservative, particularly when risk sets are small.

As an alternative to the sandwich estimator, Var[ξ ], we propose an estimator based on a 

perturbation resampling procedure under NCC designs for estimators that minimize some 
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generic loss function.22 This method recovers the impact of the negative correlation among 

the sampling indicators on variance estimation by exploiting the relationship between exact 

weights under sampling without replacement and estimated weights under sampling with 

replacement. First, generate ℐ = {ℐab:a, b = 1, …, N} as N2 random draws from a 

distribution with E[ℐab] = Var[ℐab] = 1.0 (e.g. Exponential (1)). Let S be an indicator of 

whether the NCC design is supplemented. Then, set

Ri∗ = δi∗(1 − S) + δimS ℐii + [1 − δi∗(1 − S) + δimS ] × 1 −
l: i ∈ ℛl

(1 − δl
∗R0ilℐil)

and

πi∗ = δi∗(1 − S) + δimS + [1 − δi∗(1 − S) + δimS ] × 1 − exp −
l: i ∈ ℛl

δl
∗Σk ∈ ℛlR0klℐkl

ℛl − 1

for each i ∈ DNCC or i ∈ DSNCC, as appropriate. If case s is selected in the supplementation 

step, then Rs* = ℐss and πs* = 1, but R0is = 0 for all patients i ≠ s. Then, compute all 

perturbed weights wi* = Ri*/πi* and let ξ (1) be the solution to: Uw * (ξ) = ∑i = 1
N Riwi*Ui(ξ) = 0. 

These steps are repeated B times to give {ξ (b), b = 1, …, B}, which approximates the sampling 

distribution of ξ . Thus, an estimate of Var[ξ ] is the (empirical) variance of the ξ (b).

5. Simulations

We conducted a series of simulation studies to evaluate the small-sample operating 

characteristics of the proposed methods. In each simulation, 10,000 “full cohorts” of size N 
= 10,000 were initially generated. From these, data that would be observed from a given 

NCC design were generated by mimicking the appropriate selection procedure.

5.1. Setup

For each of the 10,000 full cohorts, we randomly generated N = 10,000 covariate vectors X 
= (XA, XB, XC), with XA (the covariate of interest) a Bernoulli random variable with P(XA = 

1) = expit(−1.25 + 1.25XB), and XB and XC both independent Bernoulli (0.5) random 

variables. Given X, semi-competing risks outcome data were generated under models (1) to 

(3) using the simID() function in the SemiCompRisks package in R. Table 2 in Online 

Appendix C provides the true values of the regression coefficients used in all simulations. 

For the baseline hazard functions λ0g(·) for g ∈ {1, 2, 3}, we considered two primary 

scenarios based on underlying Weibull distributions; Table 3 and Figure 2 in Online 

Appendix C provide the parameter values and corresponding baseline survivor functions. In 

Scenario 1, the parameters were chosen such that, on average, 22.2% of patients experienced 

the non-terminal event, 21.5% experienced the terminal event, and 11.7% experienced both 

events, following independent censoring from a Uniform (50, 60) distribution. In Scenario 2, 

the event rates were approximately half of those in Scenario 1, in line with the observed 
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event rates in the CIBMTR data. We considered θ = 1 and θ = 3 for the variance of the 

subject-specific frailties.

As we elaborate upon below, the proposed methods exhibited (relatively) poor performance 

when the data arise from the NT-NCC design. We examined performance for this design 

under two additional scenarios: Scenario 3 in which the event rates were approximately 

double those of Scenario 1, and Scenario 4 in which the event rates were approximately the 

same as in Scenario 1 but the terminal events occurred later in time.

For each full cohort, we generated four NCC data sets by mimicking the NCC sampling 

scheme using the nonterminal event as the index event and, separately, the terminal event as 

the index event, considering m = 1 and m = 3 controls per case. For each resulting data set, 

we mimicked a SNCC design that included all non-index cases who were not originally 

selected. Thus, eight NCC data sets were generated for each full cohort.

5.2. Analyses

For each of the full cohorts and NCC data sets, we obtained maximum likelihood and 

maximum weighted likelihood estimates of the unknown parameters, adopting a Weibull 

specification for the baseline hazards. Additionally, for Scenario 1, unpenalized maximum 

likelihood and maximum weighted likelihood estimates were also obtained based on a B-

spline specification for the log-baseline hazard functions with Kg = 6. Throughout, we 

computed both proposed standard error estimators. For the conservative sandwich estimator, 

the derivatives in J  were computed numerically. For the perturbation resampling-based 

estimator, we set B = 500; because of the computational burden involved, we only evaluated 

the perturbation resampling-based estimator for the first 2000 simulation iterations for the 

Weibull specification of the baseline hazards.

To avoid a small number of iterations having an unduly large impact on the results, we 

removed all iterations whose exponentiated estimates of logθ were > 6 median absolute 

deviation (MAD) from the median estimate,25 rarely excluding more than 1% of iterations. 

Online Appendix D provides a table illustrating the number of iterations removed for all 

outputs in Tables 1 to 4. This rule was also applied within each perturbation estimate of the 

standard error. Additionally, in Scenario 2 for m = 1, there was some instability in the 

estimation of βA2 for the NT-NCC design; 289 iterations were removed whose estimates for 

that parameter were >6 MAD from the median estimate.

5.3. Results: Point and standard error estimation

Tables 1 to 3 and Figure 1 present select results for Scenarios 1 and 2 under θ = 1; 

comprehensive results for all parameters and for when θ = 3 are provided in Online 

Appendix D. We see that point estimates are generally unbiased for each of the NT-SNCC, 

T-NCC, and T-SNCC designs. Table 1 shows that the standard error estimators are both 

generally close to the empirical standard error and yield 95% confidence intervals (CIs) with 

close to nominal coverage. That the sandwich standard error estimator performs well is as 

expected; the risk sets from which the controls are selected are relatively large, so that 

negative correlation among sampling indicators would be expected to have little impact. 
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Results for the perturbation resampling estimator under the remaining scenarios can be 

found in Online Appendix D. Comparing Tables 1 and 2, we see that, for Scenario 1 at least, 

the adoption of a B-spline for the log-baseline hazard functions did not adversely introduce 

any systematic small-sample bias in either the point or standard error estimates. Figure 1 

shows that the spline-based model also performs well in estimating the baseline survival 

functions.

For the NT-NCC design, the performance of the point and standard error estimators is sub-

optimal, particularly for θ. We note that IPW estimation is known to be unstable when some 

individuals who have low probabilities of selection are nonetheless selected and, therefore, 

have large weights.26 In the context of an NT-NCC design, all individuals who experience 

the non-terminal event will have weight 1.0; it is individuals who did not and are therefore 

eligible to be selected as controls, who will have weight > 1.0. From expression (4), 

potential controls will have a low probability of selection if they are members of few risk 

sets, which can happen if they have short observed follow-up times (either due to censoring 

or experiencing the terminal event) and/or the nonterminal event rate is low. Table 4 presents 

results for the NT-NCC design under Scenarios 3 and 4, indicating that the non-terminal 

event rate and the timing of the events play an important role in the extent of small-sample 

bias and coverage of 95% CIs. Moreover, the results suggest caution may be needed if θ is 

of central scientific interest and yet information is solely available from an NT-NCC design. 

We note that under each of the other three designs (i.e. the NT-SNCC, T-NCC, and T-SNCC 

designs), individuals who experience the terminal event are guaranteed to be selected and 

therefore have a weight of 1.0. As confirmed in Tables 1 to 3, these designs are less likely to 

suffer from the phenomena explored in Table 4.

5.4. Results: Relative uncertainty

Tables 1 to 3 also report on relative uncertainty, defined as the ratio of the (empirical) 

standard error for estimates based on a given NCC design to that of the estimates from an 

analysis of the full cohort (i.e. the relative widths of the respective 95% CIs). Note that the 

NCC design plays an important and distinct role across the parameters. For example, of the 

three regression parameters, βA2 is estimated with comparable efficiency across the NT-

SNCC, T-NCC, and T-SNCC designs (with relative uncertainty ranging from 1.10 to 1.13). 

This is because all individuals who experience the terminal event only, a group that is critical 

to estimation of parameters for the second transition in the illness-death model, are 

guaranteed to be selected. In contrast, βA2 is estimated inefficiently under the NT-NCC 

design because individuals who transition directly to the terminal event are not guaranteed to 

be selected if the risk sets are being formed on the basis of the non-terminal event. This 

imbalance also factors into the suboptimal estimation of θ, which in turn affects the quality 

of the estimation of all other parameters in the NT-NCC design—this may explain why βA1 

is estimated somewhat less efficiently under the NT-NCC design than under the T-NCC 

design. The same patterns hold for the relative uncertainty of estimates using the spline 

specification of the baseline hazards, shown in Table 2.

Comparing the two unsupplemented designs, we see that the T-NCC design yields more 

efficient estimators than the NT-NCC design, with the exception of βA3. This is because 
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individuals who experience the non-terminal event but are censored prior to experiencing the 

terminal event are not guaranteed to contribute, in contrast to the design where the non-

terminal event is taken as the index event. Throughout, supplementation improves relative 

uncertainty, regardless of which event is the index event, for all parameters in all settings.

6. Application: aGVHD

6.1. Background and data

Data were extracted from the CIBMTR databases for patients who underwent first 

allogeneic human leukocyte antigen (HLA)-identical sibling or unrelated donor HSCT 

between January 1999 and December 2011. From these data, we conceive of a hypothetical 

study of the association between aGVHD prophylaxis regimen and grade III or IV aGVHD 

within 100 days of transplantation.1 To maintain a comparable time scale for aGVHD and 

death, follow-up was administratively censored at 100 days. For simplicity, we restrict our 

attention to a sub-sample of N = 8838 patients with complete data on key covariates and 

who underwent one of five aGVHD prophylaxis treatments (Table E.1 of the Online 

Appendix). Among these patients, 5.1% were diagnosed with aGVHD and died within 100 

days, 10.0% died within 100 days without a diagnosis of aGVHD, 12.6% were diagnosed 

with aGVHD but did not die within 100 days, and 72.4% did not experience either event 

(Table E.1 of the Online Appendix).

6.2. Design and analysis

For the hypothetical study, we suppose that only basic clinical information (sex, age, and 

diagnosis) is readily available, and that chart review is required for all other factors needed 

for the analysis. Towards this, we mimicked two NCC studies: one based on aGVHD within 

100 days as the index event and the second based on death within 100 days. In both studies, 

we selected all cases who experienced the index event and m = 1 control from each risk set. 

For the first study, based on aGVHD, the total sample size was 2840; for the second, based 

on death, the total sample size was 2427. Finally, we supplemented both studies to mimic 

the SNCC design. For example, in the second study, we additionally selected all those 

patients among the 12.6% who experienced aGVHD but did not die and were not selected as 

controls. Following supplementation, the total sample sizes were 3391 and 3598, 

respectively.

For each hazard (1) to (3), we adopted a B-spline with Kg = 6 for the log-baseline hazard 

functions and adjusted for sex, HLA compatibility, age, African-American race, Karnofsky 

score, diagnosis, disease stage, year of treatment, graft type, conditioning intensity, whether 

in-vivo T-cell depletion was performed, and aGVHD prophylaxis. For each NCC and SNCC 

data set, we fit the model using the unpenalized weighted likelihood estimator. To serve as a 

“gold standard,” we analyzed the full cohort (i.e. all N = 8838 patients). Finally, in addition 

to hazard ratio (HR) estimates, we report Wald-based 95% CIs using both proposed standard 

error estimators.
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6.3. Results

Figure 2 and Table 5 summarize the results. Figure 2(a) shows that the estimates of the 

baseline survivor function for aGVHD induced by the B-spline-based estimates of logλ01(·) 

from the four designs correspond closely to that of the full cohort analysis. From Figure 

2(b), the estimates of the baseline survivor function for death without aGVHD generally 

correspond, with the one exception being that based on the NT-NCC design. From Figure 

2(c), the estimators based on the NT-NCC and T-NCC designs also overestimate mortality 

following aGVHD. In each case, however, the supplementation resolves the overestimation.

Table 5 presents results regarding the association between aGVHD prophylaxis and risk of 

aGVHD (see Table E.2 of the Online Appendix for complete results). From the top row, we 

find that ex vivo T-cell depletion (TCD)/CD34+ selection is associated with a lower risk of 

aGVHD when compared to the referent regimen of tacrolimus/methotrexate (Tac/MTX) 

(HR: 0.64, 95% CI: 0.47, 0.87), while Tac alone (HR: 1.31, 95% CI: 1.13, 1.52) and 

cyclosporin A (CsA) alone (HR: 1.69, 95% CI: 1.37, 2.09) are associated with an increased 

risk. From the remainder of the table, despite only being based on 27% to 41% of the cohort, 

the HR point estimates generally align with those from the full cohort. As anticipated, 

estimates from the SNCC designs are generally closer to the full cohort estimates than those 

from the unsupplemented NCC designs. Finally, supplementation leads to efficiency gains 

over analyses of the corresponding unsupplemented NCC studies. For example, while the 

point estimates for the Tac HR are similar, the width of the 95% CI under the T-SNCC 

design is approximately half of the one under the T-NCC design.

7. Discussion

This work is, to the best of our knowledge, the first to consider the simultaneous analysis of 

multiple outcomes based on data from an NCC study. While the proposed framework 

provides researchers with a valid approach to estimation and inference for the illness-death 

model, there are many opportunities for further work. For example, motivated by the 

potential for efficiency gains, some authors have proposed to truncate the weights used in 

IPW estimators at the expense of slight bias.26 This may serve as a strategy for improving 

the stability of estimation when selected controls with high weights are present, particularly 

for the NT-NCC design. A second direction could be the development of more efficient 

estimation through survey sampling techniques, such as calibration, that permit the use of 

data available on the whole cohort.27 Third, while time-varying covariates cannot be used in 

this scheme unless investigators have access to their complete trajectories, since IPW breaks 

the matching within risk sets that typically occurs in an NCC study,15 an extension 

permitting time-varying covariates would be valuable. Finally, it would be of interest to 

explore strategies for the optimal choice of Kg and κ when using B-splines.

Although the results regarding relative uncertainty in Tables 1 to 4 speak to the inherent loss 

of information when one only has complete data on a sub-sample, a thorough evaluation of 

statistical power/efficiency will help researchers tailor designs to their own goals. Indeed, 

many interesting design considerations could be explored. For example, our results 

demonstrate that supplementation of a standard NCC design yields numerous meaningful 

benefits, particularly when the index event is the non-terminal event. As such, it seems clear 
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that supplementation should be undertaken when possible. Additional design considerations 

include the relative impact on the statistical power/efficiency of matching schemes in the 

original NCC design as well as the potential interplay between matching and subsequent 

supplementation.

Furthermore, the NCC design is typically employed for settings where the outcome of 

interest is rare, such that all index cases are “selected.” When the outcome is neither rare nor 

common (as in the aGVHD data) or when resources are severely limited, researchers may be 

interested in only selecting a sub-sample of the index and non-index cases. To the best of our 

knowledge, this has not even been considered for NCC designs in the usual univariate time-

to-event setting. Finally, while this study focuses on the re-use of an NCC study for a semi-

competing risks analysis, one important extension to our work is the design of NCC studies 

in which the pre-specified objective is a semi-competing risks analysis. Aside from 

designating only one of the two events as the index event, other options are available—for 

instance, defining the index event as the composite endpoint formed by aGVHD and death.

The illness-death model specified in equations (1) to (3) involves a shared patient-specific 

frailty that is assumed to arise from some distribution with mean 1.0 and variance θ. 

Although, as previously indicated, analysts are free to choose any such distribution, we have 

focused on a Gamma(θ−1, θ−1) distribution in part because this is consistent with much of 

the literature and because it simplifies calculation of the marginal likelihood. Despite this 

practical benefit, the appropriateness of any given choice needs to be queried. Towards this, 

although it is beyond the scope of this study, future work should consider the extent to which 

misspecification of the distribution may result in bias, possibly following in the steps of the 

rich literature on the choice of random effects distributions in GLMMs.28,29 Furthermore, 

there are likely opportunities to develop graphical and numerical techniques to assess the 

adequacy of a given choice by building on existing work for standard multivariate failure 

time settings.30

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimates of the baseline survivor functions under simulation Scenario 1 with θ = 1, based 

on 10,000 simulated data sets, fitting the spline-based model. The true Weibull baseline 

survival function (red) and the average spline-based estimate (blue) are overlaid with results 

from the first 50 runs of the simulation (gray). (a) Baseline survival 1, (b) Baseline survival 

2, and (c) Baseline survival 3.
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Figure 2. 
Estimates of the baseline survivor functions from the weighted illness-death model fits for 

the four NCC/SNCC studies based on the CIBMTR data as well as the cohort data. In each 

case, the underlying log-baseline hazard function was specified via a B-spline with Kg = 6. 

NCC: nested case-control; SNCC: supplemental NCC; NT: non-terminal; T: terminal. (a) 

Baseline survival 1, (b) Baseline survival 2, and (c) Baseline survival 3.
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Table 1.

Results for βA1, βA2, βA3, and θ under simulation Scenario 1 with θ = 1 and Weibull specifications for the 

baseline hazard functions, based on 10,000 simulated data sets.

m = 1 m = 3

Parameter/
design

Percentage 
bias

Standard error Coverage
Rel 
Unc

Percentage 
bias

Standard error Coverage
Rel 
UncEmp CS PR CS PR Emp CS PR CS PR

βA1

 NT 
unsupp.

1.7 0.092 0.085 0.092 0.92 0.96 1.69 1.3 0.069 0.065 0.070 0.93 0.95 1.27

 NT supp. 0.1 0.070 0.070 0.070 0.95 0.95 1.30 0.1 0.059 0.058 0.059 0.95 0.95 1.08

 T unsupp. −0.2 0.088 0.087 0.087 0.95 0.95 1.63 0.1 0.065 0.064 0.063 0.95 0.94 1.20

 T supp. 0.1 0.071 0.071 0.072 0.95 0.95 1.32 0.1 0.059 0.059 0.060 0.95 0.94 1.09

βA2

 NT 
unsupp.

5.4 0.470 0.408 0.396 0.93 0.91 4.66
1.6

0.303
0.268

0.253 0.93 0.93 3.01

 NT supp. 0.6 0.111 0.110 0.110 0.95 0.95 1.10 0.5 0.103 0.103 0.103 0.95 0.96 1.02

 T unsupp. 0.8 0.114 0.113 0.113 0.95 0.95 1.13 0.6 0.104 0.104 0.104 0.95 0.95 1.03

 T supp 0.5 0.111 0.111 0.111 0.95 0.95 1.10 0.5 0.104 0.103 0.104 0.95 0.95 1.03

βA3

 NT 
unsupp.

−2.7 0.084
0.086

0.087 0.95 0.95
1.10

−1.7 0.079
0.080

0.081 0.95 0.96 1.04

 NT supp. −0.2 0.076 0.077 0.077 0.95 0.95 1.00 −0.2 0.076 0.077 0.077 0.95 0.96 1.00

 T unsupp. −0.4 0.119 0.118 0.115 0.95 0.94 1.57 −0.3 0.089 0.089 0.085 0.95 0.93 1.18

 T supp. −0.2 0.076 0.077 0.077 0.95 0.95 1.00 −0.2 0.076 0.077 0.077 0.95 0.96 1.00

θ

 NT 
unsupp. 23.6 0.482 0.289 0.530 0.65 0.88 2.51 16.3 0.344 0.239 0.321 0.73 0.87 1.79

 NT supp. 0.3 0.199 0.211 0.214 0.94 0.96 1.04 0.8 0.194 0.203 0.208 0.94 0.96 1.01

 T unsupp. −3.9 0.295 0.290 0.303 0.93 0.92 1.54 0.2 0.212 0.224 0.221 0.94 0.94 1.11

 T supp. 0.2 0.200 0.213 0.214 0.95 0.95 1.04 0.8 0.194 0.203 0.210 0.94 0.96 1.01

Note: Percentage bias, empirical standard errors (Emp), standard error estimates, and coverage for Wald-based 95% confidence intervals (CS: 
conservative sandwich estimator; PR: perturbation resampling estimator) are shown, for four designs that vary by the index event (NT: non-
terminal; T: terminal) and whether the supplementation of non-index cases was used. Relative uncertainty is also shown, defined as the ratio of the 
(empirical) standard error for estimates based on a given NCC design to that of the estimates from an analysis of the full cohort.
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Table 2.

Results for βA1, βA2, βA3, and θ under simulation Scenario 1 with θ = 1 and B-spline specifications for the 

log-baseline hazard functions (with Kg = 6), based on 10,000 simulated data sets.

m = 1 m = 3

Parameter/design Percentage bias

Standard error Cov

Rel Unc Percentage bias

Standard error Cov

Rel UncEmp CS CS Emp CS CS

βA1

 NT unsupp. 0.9 0.092 0.090 0.94 1.61 0.8 0.068 0.068 0.95 1.20

 NT supp. 0.2 0.071 0.071 0.95 1.25 0.2 0.061 0.060 0.95 1.07

 T unsupp. −0.2 0.087 0.087 0.95 1.54 0.1 0.066 0.066 0.95 1.16

 T supp. 0.2 0.073 0.073 0.95 1.29 0.2 0.061 0.061 0.94 1.07

βA2

 NT unsupp. 7.2 0.463 0.413 0.93 4.56 2.8 0.295 0.267 0.93 2.90

 NT supp. 0.5 0.111 0.111 0.95 1.09 0.4 0.104 0.104 0.95 1.02

 T unsupp. 1.0 0.115 0.115 0.95 1.13 0.5 0.105 0.105 0.95 1.03

 T supp. 0.5 0.112 0.112 0.95 1.11 0.4 0.104 0.104 0.95 1.02

βA3

 NT unsupp. −1.9 0.082 0.087 0.95 1.08 −0.9 0.078 0.080 0.96 1.02

 NT supp. −0.5 0.077 0.077 0.95 1.00 −0.5 0.077 0.077 0.95 1.00

 T unsupp. −0.8 0.119 0.118 0.95 1.56 −0.8 0.090 0.090 0.95 1.17

 T supp. −0.5 0.077 0.077 0.95 1.00 −0.5 0.077 0.077 0.95 1.00

θ

 NT unsupp. 10.1 0.528 0.440 0.86 1.91 7.2 0.369 0.353 0.89 1.34

 NT supp. 0.1 0.298 0.307 0.92 1.08 1.1 0.282 0.291 0.92 1.02

 T unsupp. −6.3 0.403 0.551 0.91 1.46 −0.2 0.315 0.348 0.92 1.14

 T supp. 0.0 0.298 0.310 0.92 1.08 0.9 0.285 0.293 0.92 1.03

Note: Percentage bias, empirical standard errors (Emp), standard error estimates, and coverage for Wald-based 95% confidence intervals using the 
conservative sandwich estimator (CS) are shown, for four designs that vary by the index event (NT: non-terminal; T: terminal) and whether the 
supplementation of non-index cases was used. Relative uncertainty is also shown, defined as the ratio of the (empirical) standard error for estimates 
based on a given NCC design to that of the estimates from an analysis of the full cohort.
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Table 3.

Results for βA1, βA2, βA3, and θ under simulation Scenario 2 with θ = 1 and Weibull specifications for the 

baseline hazard functions, based on 10,000 simulated data sets.

m = 1 m = 3

Parameter/design Percentage bias

Standard error Cov

Rel Unc Percentage bias

Standard error Cov

Rel UncEmp CS CS Emp CS CS

βA1

 NT unsupp. 2.6 0.135 0.132 0.94 1.87 1.9 0.097 0.095 0.95 1.34

 NT supp. 0.2 0.100 0.099 0.95 1.38 0.2 0.081 0.081 0.95 1.12

 T unsupp. −0.5 0.146 0.145 0.95 2.03 −0.2 0.100 0.100 0.95 1.38

 T supp. 0.4 0.103 0.099 0.94 1.41 0.3 0.081 0.081 0.95 1.12

βA2

 NT unsupp. 15.2 0.836 0.740 0.95 6.10 7.2 0.530 0.460 0.93 3.85

 NT supp. 0.7 0.153 0.154 0.95 1.11 0.5 0.143 0.142 0.95 1.04

 T unsupp. 1.4 0.155 0.156 0.95 1.13 0.9 0.143 0.143 0.95 1.04

 T supp. 0.7 0.156 0.154 0.95 1.12 0.6 0.143 0.143 0.95 1.03

βA3

 NT unsupp. −5.0 0.128 0.130 0.94 1.19 −3.2 0.115 0.116 0.94 1.07

 NT supp. −1.4 0.108 0.107 0.95 1.00 −1.2 0.108 0.107 0.95 1.00

 T unsupp. −3.5 0.211 0.201 0.93 1.96 −2.0 0.147 0.145 0.94 1.36

 T supp. −1.4 0.110 0.107 0.94 1.00 −1.5 0.109 0.107 0.94 1.00

θ

 NT unsupp. 73.8 1.419 1.400 0.56 2.98 45.7 0.968 0.581 0.64 2.04

 NT supp. −0.6 0.491 0.470 0.89 1.03 0.7 0.484 0.516 0.88 1.02

 T unsupp. −19.5 0.698 0.506 0.85 1.47 −6.8 0.575 0.701 0.88 1.21

 T supp. 0.6 0.496 0.470 0.88 1.04 0.7 0.489 0.462 0.89 1.02

Note: Percentage bias, empirical standard errors (Emp), standard error estimates, and coverage for Wald-based 95% confidence intervals using the 
conservative sandwich estimator (CS) are shown, for four designs that vary by the index event (NT: non-terminal; T: terminal) and whether the 
supplementation of non-index cases was used. Relative uncertainty is also shown, defined as the ratio of the (empirical) standard error for estimates 
based on a given NCC design to that of the estimates from an analysis of the full cohort.
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Table 4.

Results for βA1, βA2, βA3, and θ for an unsupplemented NCC design with the non-terminal event as the index 

event, under Scenarios 1 to 4 with m = 1, θ = 1, and based on 10,000 simulated data sets.

Parameter/simulation scenario Percentage bias

Standard error Cov

Rel UncEmp CS CS

βA1

 1: Original 1.7 0.092 0.085 0.92 1.69

 2: Lower event rates 2.6 0.135 0.132 0.94 1.87

 3: Higher event rates 1.0 0.069 0.063 0.94 1.61

 4: Later event times 0.6 0.078 0.073 0.92 1.47

βA2

 1: Original 5.4 0.470 0.408 0.93 4.66

 2: Lower event rates 15.2 0.836 0.740 0.95 6.10

 3: Higher event rates 0.8 0.276 0.236 0.93 3.81

 4: Later event times 3.7 0.357 0.329 0.94 3.32

βA3

 1: Original −2.7 0.084 0.086 0.95 1.10

 2: Lower event rates −5.0 0.128 0.130 0.94 1.19

 3: Higher event rates −0.9 0.064 0.063 0.95 1.14

 4: Later event times −1.2 0.077 0.077 0.95 1.02

θ = 1

 1: Original 23.6 0.482 0.289 0.65 2.51

 2: Lower event rates 73.8 1.419 1.400 0.56 2.98

 3: Higher event rates 8.4 0.131 0.100 0.69 2.10

 4: Later event times 5.5 0.369 0.347 0.81 1.92

Note: Percentage bias, empirical standard errors (Emp), standard error estimates, and coverage for Wald-based 95% confidence intervals based on 
the conservative sandwich estimator (CS) are shown. Relative uncertainty is also shown, defined as the ratio of the (empirical) standard error for 
estimates based on a given NCC design to that of the estimates from an analysis of the full cohort.
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Table 5.

HR estimates of the association between aGVHD prophylaxis and risk of aGVHD, based on fitting the illness-

death model to the full CIBMTR data as well as four unmatched nested case-control designs.

Tac/MTX Tac CsA/MTX CsA Ex vivo TCD

Full cohort (N = 8838)

 HR 1.00 1.31 1.08 1.69 0.64

 95% CI (1.13, 1.52) (0.93, 1.25) (1.37, 2.09) (0.47, 0.87)

NCC based on aGVHD

Unsupplemented (NT-NCC) (N = 2840)

 HR 1.00 1.20 1.17 1.66 0.59

 CS 95% CI (0.94, 1.55) (0.88, 1.57) (1.14, 2.41) (0.36, 0.96)

 PR 95% CI (0.95, 1.52) (0.91, 1.52) (1.17, 2.36) (0.38, 0.92)

Supplemented (NT-SNCC) (N = 3598)

 HR 1.00 1.21 1.08 1.76 0.63

 CS 95% CI (0.98, 1.49) (0.89, 1.32) (1.32, 2.34) (0.43, 0.94)

 PR 95% CI (0.99, 1.48) (0.88, 1.32) (1.34, 2.31) (0.43, 0.93)

NCC based on death

Unsupplemented (T-NCC) (N = 2427)

 HR 1.00 1.32 1.29 1.56 0.49

 CS 95% CI (0.91, 1.92) (0.90, 1.85) (0.98, 2.50) (0.23, 1.01)

 PR 95% CI (0.93, 1.88) (0.92, 1.79) (0.99, 2.45) (0.23, 1.01)

Supplemented (T-SNCC) (N = 3391)

 HR 1.00 1.30 1.04 1.74 0.52

 CS 95% CI (1.04, 1.61) (0.83, 1.29) (1.28, 2.37) (0.34, 0.79)

 PR 95% CI (1.04, 1.61) (0.84, 1.28) (1.28, 2.37) (0.35, 0.76)

Note: 95% CIs based on the CS estimate of the standard error and the PR-based estimator are also shown. HR: hazard ratio; CI: confidence interval; 
CS: conservative sandwich; PR: perturbation resampling; NCC: nested case-control; SNCC: supplemental NCC; NT: non-terminal; T: terminal; 
aGVHD: acute graft-versus-host disease; MTX: methotrexate; TCD: T-cell depletion; Tac: tacrolimus; CsA: cyclosporin A.
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