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Abstract

Various forms of cell death have been identified over the last
decades with each relying on a different subset of proteins for
the activation and execution of their respective pathway(s). In
addition to the three best characterized pathways—apoptosis,
necroptosis, and pyroptosis—other forms of regulated cell death
including autophagy-dependent cell death (ADCD), mitochondrial
permeability transition pore (MPTP)-mediated necrosis, partha-
natos, NETosis and ferroptosis, and their relevance for organismal
homeostasis are becoming better understood. Importantly, it is
increasingly clear that none of these pathways operate alone.
Instead, a more complex picture is emerging with many path-
ways sharing components and signaling principles. Finally, a
number of cell death regulators are implicated in human diseases
and represent attractive therapeutic targets. Therefore, better
understanding of physiological and mechanistic aspects of cell
death signaling should yield improved reagents for addressing
unmet medical needs.
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Introduction

Cell death plays a central role in all aspects of life. It is involved in

the development of multicellular organisms and tissue homeostasis

where cell death depletes dispensable cells. Moreover, it is critical

for fighting off infections and is associated with multiple diseases

that are caused by deregulated or dysfunctional cell death signaling.

Consequentially, there is a growing interest in modulating cell death

to treat diseases. Various forms of cell death have been described so

far, with apoptosis, necroptosis, and pyroptosis being the best

understood. In recent years, a more complex picture of cell death

modalities has been established as crosstalk and backup mecha-

nisms between different pathways were identified. This review will

focus on different forms of cell death, their interconnectivity, and

validated targets for treating diseases.

Apoptosis

Apoptosis is the first described form of programmed cell death (Kerr

et al, 1972), and it plays a critical role in tissue homeostasis. It

contributes to cell turnover, the proper functioning of the immune

system, and embryonic development (Voss & Strasser, 2020). There

are several key characteristics of apoptosis. Cells undergo morpho-

logical changes which lead to cellular, organelle, and DNA fragmen-

tation as well as the formation of apoptotic bodies (Kerr et al, 1972;

Zakeri et al, 1993). This is an active, energy consuming process

executed by a subset of cellular proteins. Even though, in general,

this process is immunological silent, apoptosis has been shown to

be involved in inflammatory pathologies as well (Rickard et al,

2014; Yang et al, 2015; Singh et al, 2019).

There are two major pathways that mediate apoptosis: intrinsic

and extrinsic pathways. Intrinsic apoptosis is controlled by the equi-

librium of the different Bcl-2 (B-cell lymphoma 2) family members

which can be disrupted by various stimuli leading to cell death.

During extrinsic apoptosis, members of the TNF (tumor necrosis

factor) superfamily (TNFSF) can induce cell death by binding to

their cell surface receptors and activating a deathly signaling

cascade causing extrinsic apoptosis. The third modality of apoptosis

induction is cell-based. Cytotoxic T cells can engage cells that

present non-self-antigens leading to cell death induction by

proteases called granzymes. All apoptotic pathways converge on the

central proteases of this pathway: caspases, which are either playing

a role in transmitting cell death stimulus (initiator caspases) or in

the execution (effector caspases).

Intrinsic apoptosis

Intrinsic apoptosis is engaged by cells that are obsolete, deprived

from growth factors or damaged (e.g., UV) (Fig 1). These diverse

stimuli can tip the balance between different groups of the Bcl-2 (B-

cell lymphoma 2) proteins leading to the activation of cell death

(Kale et al, 2018) The Bcl-2 superfamily can be divided into three

subfamilies: the anti-apoptotic Bcl-2 proteins, the pro-apoptotic

BH3-only (BH: Bcl-2 homology) proteins, and the death effectors

Bax (Bcl-2-associated X protein), Bak (Bcl-2 homologous antago-

nist/killer), and Bok (Bcl-2-related ovarian killer). Normally, the

cells keep Bax and Bak in check by the expression of anti-apoptotic
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Bcl-2 family members (Bcl-2, Bcl-XL, Mcl-1, A1, Bcl-w) which

inhibit Bax and Bak pore forming ability (Kale et al, 2018). The

BH3-only family members can inhibit the anti-apoptotic Bcl-2

proteins or in some cases also directly engage Bax and Bak (for

example Bim) (Kim et al, 2006; Czabotar et al, 2014). Some BH3-

only proteins are regulated by transcriptional regulation (PUMA

regulated by p53, DNA damage) (Nakano & Vousden, 2001) or by

post-translational modifications (BIM, BID) (Li et al, 1998; Lei &

Davis, 2003). Tipping the equilibrium in favor of pro-apoptotic Bcl-

2 proteins leads to activation of Bax and Bak and results in the

MOMP (mitochondrial outer membrane permeabilization) (Wei

et al, 2001). Bok, which can induce MOMP in a constitutively fash-

ion, is regulated differently—by proteasomal degradation pathways

(Llambi et al, 2016; Ke et al, 2018). MOMP causes the release of the

key mediators of intrinsic apoptosis, cytochrome c (Stein & Hansen,

1999), and endogenous IAP (inhibitor of apoptosis) antagonist,

SMAC/ Diablo (second mitochondria derived activator of caspases/

direct IAP binding protein with low pI) (Du et al, 2000; Verhagen

et al, 2000). Cytochrome c-bound Apaf1 (apoptotic protease activat-

ing factor 1) (Zou et al, 1997) recruits initiator caspase caspase-9 to

form the apoptosome, a platform for the activation of the execu-

tioner caspases caspase-3 and -7 (Li et al, 1997). Caspases-3, -7,

and -9 can be blocked by the major endogenous caspase inhibitor,

XIAP (X chromosome-linked IAP). SMAC can antagonize XIAP and

other IAPs thus allowing full caspase activation and apoptosis

execution (Du et al, 2000). Caspases cleave a wide variety of cellu-

lar proteins to induce characteristic changes of apoptotic death (cel-

lular and nuclear fragmentation, DNA laddering, etc.). For example,

ICAD (inhibitor of caspase-activated DNase) cleavage leads to the

activation of CAD (caspase-activated DNase) that induces genome

fragmentation (Enari et al, 1998; Sakahira et al, 1998), whereas

cleavage of ROCK-I (Rho associated protein kinase) induces the

contraction and blebbing of cells (Coleman et al, 2001; Sebbagh

et al, 2001). A specific form of intrinsic apoptosis is anoikis, which

is induced by the loss of pro-survival signals via integrin binding to

the ECM (extracellular matrix) (Frisch & Francis, 1994). Integrins

can signal via different pathways (PI3K or FAK), which modulate

the Bcl-2 or BH3-only family members (Gilmore, 2005). In this fash-

ion, anoikis ensures that cells can only survive in the appropriate

compartments/organs within the body. Overcoming this checkpoint

plays a major role in metastasis/ invasiveness of cancer (Paoli et al,

2013).

Extrinsic apoptosis

Extrinsic apoptosis is triggered by TNF family ligand-receptor inter-

actions, most prominently by TNF family ligands: TNF, FasL,

TRAIL, and TL1A. The receptor complexes either recruit FADD (Fas-

associated protein with death domain) or TRADD (TNFRSF1A-asso-

ciated via death domain) to the oligomerized complex (Wilson et al,

2009). FasL-mediated signaling will be used to describe extrinsic

apoptotic signaling (Fig 1), and TNF signaling will be described for

necroptotic signaling. FasL binds to its transmembrane receptor Fas,

which recruits FADD (Fas-associated death domain protein) via

death domain (DD) interactions (Chinnaiyan et al, 1995; Boldin

et al, 1996). FADD contains a DD and also a death effector domain

(DED), which allows the recruitment of caspase-8 via homotopic

domain interaction, forming the death inducing signaling complex—

DISC (Boldin et al, 1996; Muzio et al, 1996; Medema et al, 1997).

The proximity of multiple caspase-8 molecules induces the transacti-

vation by proteolytic cleavage (Muzio et al, 1998; Yang et al, 1998).

Cleavage results in the p18 and p10 fragments which activate

caspase-3 and caspase-7 (type I apoptosis) (Stennicke et al, 1998).

Insufficient activation of caspase-3 leads to type II apoptosis in

which caspase-8 cleaves the BH3-only protein BID (BH3 interacting

domain death agonist) to generate its activated form: truncated BID

(tBID) (Li et al, 1998). tBID stimulates intrinsic apoptotic pathway

by binding directly binding to Bax/Bak inducing MOMP (type II

apoptosis) (Desagher et al, 1999; Wei et al, 2000). The two path-

ways are cell line dependent, and their activation is differentially

regulated by XIAP expression (Jost et al, 2009; Varfolomeev et al,

2009).

Granzyme-mediated apoptosis

Cytotoxic lymphoid cells (predominantly NK cells and cytotoxic T

cells) can induce cell death via death receptor ligands (see above) or

the granzyme/perforin system (Pardo et al, 2008; Martinez-Lostao

et al, 2015). After recognition of transformed or infected cells, cyto-

toxic cells release secretory granules that contain perforin and gran-

zyme B (Fig 1). These secreted factors are taken up by endocytosis

and released to the cytosol by the perforin-dependent or -indepen-

dent pathways (Voskoboinik et al, 2015). Once released to the

cytosol, granzyme B cleaves caspases and Bid activating apoptotic

pathways described above (Boivin et al, 2009). However, human

granzyme B can also directly cleave ICAD, a known caspase-3

target, to induce DNA fragmentation, thereby circumventing the

need of caspases (Thomas et al, 2000).

Necroptosis

Necroptosis is a regulated, pro-inflammatory, and caspase-indepen-

dent form of necrotic cell death. Death receptors (DRs), toll-like

receptors (TLRs), and nucleic acid sensing protein ZBP1 (Z-DNA

binding protein 1) are prototypic inducer of necroptosis whose stim-

ulation converges on the activation of RIP3 (receptor-interacting

protein 3) (Newton & Manning, 2016). Following autophosphoryla-

tion, RIP3 engages the pseudokinase MLKL (mixed lineage kinase

like) and phosphorylates it (Sun et al, 2012; Murphy et al, 2013).

Activated MLKL oligomerizes and is transported to the cytoplasmic

membrane, where it induces membrane permeabilization and cell

death (Cai et al, 2014; Chen et al, 2014; Dondelinger et al, 2014;

Samson et al, 2020). It is important to note that activation of MLKL

is not the point of no return as several mechanisms have been found

that can modulate necroptosis after MLKL activation, which are

reviewed by Murphy (Murphy, 2020).

The key mediators for necroptosis contain a signature RHIM

domain (RIP homotypic interaction motif): RIP1 is key for death

receptor signaling (Sun et al, 2002), TRIF (TIR-domain-containing

adapter inducing interferon-b) for toll-like receptors (Kaiser & Offer-

mann, 2005), ZBP1 for virally encoded nucleic acid induced necrop-

tosis (Kaiser et al, 2008), and RIP3 (Sun et al, 2002) as activator of

MLKL.
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Necroptosis has been studied extensively based on the TNF

receptor-mediated signaling (Fig 2). TNF binding to TNFR1 triggers

the recruitment of RIP1, TRADD, TRAF2 (TNF receptor-associated

factor 2), and c-IAP1/2 to the receptor-associated complex (com-

plex I) (Newton, 2020). c-IAPs then ubiquitinate several proteins,

including RIP1 and themselves, in complex I with K11- and K63-

linked ubiquitin chains (Bertrand et al, 2008; Mahoney et al, 2008;

Varfolomeev et al, 2008; Dynek et al, 2010; Moulin et al, 2012),

resulting in LUBAC (linear ubiquitin chain assembly complex)

recruitment, and addition of linear ubiquitin chains (Haas et al,

2009). The different ubiquitin chains serve as a platform for

recruitment of the kinase complexes IKK and TAK1/TAB2/3 lead-

ing to the NF-jB (nuclear factor j-light-chain-enhancer of activated

B cells) and MAPK (mitogen-activated protein kinase) pathway

activation (Hayden & Ghosh, 2014). These signaling events induce

the expression of pro-survival and pro-inflammatory genes. Coun-

tering these effects are ubiquitin hydrolases, deubiquitinases,

which restrict signaling by removing the different ubiquitin chains

from the protein (Lork et al, 2017).

Once deubiquitinated, RIP1 is released into the cytosol, where it

can be auto-activated by autophosphorylation. Interestingly, in

mouse cells TNF-mediated activation of necroptosis can stimulate

RIP1 autophosphorylation already in the TNFR1 complex (Newton

et al, 2016b). Nevertheless, a protein complex composed of FADD,

caspase-8, and c-FLIP (cellular FLICE-inhibitory protein) can bind

RIP1 and regulate RIP1 necroptotic and apoptotic potential by
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Figure 1. Intrinsic and extrinsic apoptosis.
Intrinsic apoptosis can be induced by various stimuli (e.g., GF (growth factor) withdrawal) by shifting the equilibrium of pro-survival Bcl-2 and BH3-only proteins.
Sequestering of pro-survival Bcl-2 proteins or directed binding of BH3-only proteins to Bax and Bak induces oligomerization of Bax and Bak leading to MOMP and
cytochrome c and Smac release. Bok can lead to MOMP independent of Bcl-2 family members. Released cytochrome c binds Apaf-1 and induces apoptosome formation
which recruits caspase-9. Activated caspase-9 induces caspase-3/7 cleavage and activation (cCasp3/7) leading to apoptosis. Extrinsic apoptosis can be induced by binding
of select group of TNF family ligands to, their receptors leading to DISC formation by recruitment of adapter FADD/TRADD and caspase-8. Caspase-8 autoprocesses itself
(cCasp8—cleaved/activated caspase-8) and can directly activate caspase-3 or cleave Bid to generated tBid and triggers intrinsic apoptosis. Caspase-3/7/9 activity can be
inhibited by XIAP, which itself can be antagonized by Smac. Lastly, apoptosis can also be induced by granzyme B and Perforin released form immune cells. Once taken
up by the target cell, granzyme B can induces cell death by caspase-3 or by directly activating apoptosis effectors (e.g., CAD).
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caspase-8-mediated cleavage of RIP1 at D324 (Lin et al, 1999; Zhang

et al, 2019; Newton et al, 2019a; Lalaoui et al, 2020). Stoichiometry

of caspase-8 and c-FLIP isoforms determine if cells will survive or

undergo apoptosis or necroptosis (discussed in more detail in

another section). Only when caspase-8 is inhibited, depleted, or

insufficiently activated, necroptotic signaling can proceed, leading

to RIP1 binding to RIP3 and subsequent RIP3 autophosphorylation

(Cho et al, 2009; He et al, 2009). RIP1 auto-activation and cell death

induction can be restricted by inhibitory phosphorylation (e.g., on

S321 of RIP1) (reviewed in (Delanghe et al, 2020).

The second key mediator for necroptosis induction is TRIF

(Fig 2). Upon sensing of viral RNA (TLR3) or LPS (TLR4), TRIF can

be recruited to activated TLR3/4 complexes via its TIR (Toll/inter-

leukin-1 receptor) domain. TRIF can then induce NF-jB signaling

via TRAF2/6-RIP1 axis, which leads to TNF expression (Kawasaki &

Kawai, 2014). However, TRIF can also trigger apoptosis by engaging

RIP1 and caspase-8 (McAllister et al, 2013) or necroptosis by

directly activating RIP3 (Kaiser et al, 2013).

The fourth RHIM domain containing protein is ZBP1 or DAI

(Fig 2). ZBP1 is activated by binding to viral Z-DNA or Z-RNA, a

left-handed fold of DNA/RNA, to mediate immune response against

certain viruses (reviewed by (Kuriakose & Kanneganti, 2018)). ZBP1

can directly bind RIP3 to induce necroptosis, while RIP1 inhibits

necroptotic signaling by RHIM-RHIM domain interactions (Lin et al,

2016; Newton et al, 2016b). Most recently, ZBP1 activation has been

linked to sensing endogenous Z-double-strand RNA and induction

of necroptosis in the context of RIP1 RHIM mutation, epithelial cell-

specific knockout of RIP1 (Ripk1E-KO), or intestinal epithelial cell

knockout of FADD (FaddIEC-KO) deficiency (Jiao et al, 2020).

Pyroptosis

Pyroptosis is a Gasdermin-dependent form of pro-inflammatory

necrotic cell death. Stimulation of caspase-1/4/5/11 (caspase-4/5

are the human homologs to murine caspase-11) by different
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Figure 2. Necroptosis.
Necroptosis can be induced by different stimuli. Upon binding to its receptor, TNF induces complex formation leading to NF-jB and MAPK activation. Prolonged
signaling and inhibition of caspases leads to RIP1 translocation to the cytosol forming complex II. RIP1 autophosphorylates recruiting RIP3. RIP3 phosphorylates itself as
well as MLKL leading to MLKL oligomerization which induces membrane perturbation and cell lysis. LPS or Poly(I:C)-induced TLR3/4 signaling also can stimulate
necroptosis through adaptor TRIF, which engages RIP1 or RIP3. Sensing of Z-DNA by ZBP1 leads to binding to RIP3 and cell death, which can be inhibited by RIP1.
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inflammasome pathways lead to their activation by autoprocessing.

Active caspases can then cleave Gasdermin-D (GSDMD) into its N-

terminal and C-terminal domains, GSDMD-N and GSDMD-C (He

et al, 2015; Kayagaki et al, 2015; Shi et al, 2015). GSDMD-C is the

auto-inhibitory domain that inhibits the cell lytic properties of

GSDMD-N (Kayagaki et al, 2015; Shi et al, 2015; Kuang et al, 2017).

Once the two domains are separated by cleavage, GSDMD-N translo-

cates to the membrane by binding to phosphatidylinositol phos-

phates and phosphatidylserine and oligomerizes inducing a lytic cell

death by forming multi subunit pores (Aglietti et al, 2016; Ding

et al, 2016; Liu et al, 2016; Sborgi et al, 2016). Besides targeting

GSDMD, caspase-1 also processes the pro-inflammatory cytokines

pro-IL-1b (interleukin 1b) and pro-IL-18 (interleukin 18) to their

mature forms (Thornberry et al, 1992; Ghayur et al, 1997; Gu et al,

1997). Neither IL-1b nor IL-18 have a secretion sequence, so they

are leaking through GSDMD pores (Evavold et al, 2018; Heilig et al,

2018).

Signal for GSDMD cleavage by caspases 1/4/5/11 is propagated

from different inflammasomes and mediated by the canonical or the

non-canonical inflammasome pathways (Fig 3). Generally, canonical

inflammasomes consist of a sensor for DAMP (damage-associated

molecular pattern) or PAMP (pathogen-associated molecular pattern)

detection (AIM2, NLRP1, NLRP3, NLRC4, and Pyrin), which interact

via Pyrin domains (PYD) with the bridging molecule ASC (apoptosis-

associated speck-like protein containing a CARD). ASC then interacts

with caspase-1 via CARD (caspase activation and recruitment

domains) and oligomerizes caspase-1 to induce its activation (Marti-

non et al, 2002; Srinivasula et al, 2002; Chauhan et al, 2020).

Inflammasome activation is a two-step process. In a priming

step, TLRs recognize PAMPs and induce a NF-jB and IFN type I (in-

terferon type I)-dependent gene expression (Rathinam et al, 2012).

This leads to upregulation of NLRP3 and caspase-11. The second

step in the activation of non-canonical inflammasome signaling is

triggered by intracellular LPS which binds murine caspase-11 or

human caspase-4/5 leading to their activation (Kayagaki et al, 2011;

Shi et al, 2014). Activated caspase-11 cleaves GSDMD to trigger

pyroptosis (Kayagaki et al, 2015). The process of inflammasome

activation is reviewed in more detail elsewhere (Kelley et al, 2019).

Besides GSDMD, other Gasdermins also have reported roles in

cell death. For example, Gasdermin E (GSDME) has been shown to

be cleaved by caspase-3 as well as granzyme B (Rogers et al, 2017;

Wang et al, 2017; Lee et al, 2018). The interconnectivity of various

cell death modalities will be discussed in more detail in following

sections.
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Figure 3. Pyroptosis.
Pyroptotic cell death can be induced by various stimuli that activate inflammasome. The activation of NLRP3 prompts its binding to ASC and caspase-1 forming the
inflammasome. Caspase-1 processes pro-IL-1b and pro-IL-18 to their active forms. In parallel, caspase-1 cleaves GSDMD separating the inhibitory C- and active N-
terminal domains. GSDMD-N then translocates to the membrane inducing cell lysis and cytokine release. Non-canonical inflammasome activation consists of priming
which induces expression of several pathway genes (caspase-11). Intracellular LPS can be sensed by caspase-11 leading to its activation and processing of GSDMD and
caspase-1. Cell lysis can then also activate canonical inflammasome signaling. Green arrows indicate upregulation by gene expression, while black arrows indicate
interactions/cleavage events or inhibition.
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Other forms of regulated cell death

Other forms of cell death have been identified in the recent years.

While some signaling components and pathways are already well

understood, others still need further research. The key characteristics

of each cell death pathway described below are summarized in Fig 4.

Autophagy-dependent cell death (ADCD)

Autophagy defines the degradation of cellular components by the

lysosomal pathway. This can include organelles, like mitochondria

and ER, as well as other cytoplasmic content. Autophagy is a critical

process for cellular homeostasis and knockout of autophagy media-

tors often results in perinatal lethality (Kuma et al, 2017). The

process of autophagy can be divided into several steps which are

regulated by individual protein complexes. The most common way

for autophagy activation is starvation, which initiates autophagy by

a kinase complex consisting of Ulk1-ATG13/101 and FIP200

(Zachari & Ganley, 2017). After initiation of autophagy, nucleation,

elongation, and phagophore formation are regulated by different

protein complexes. The phagophore is labeled with LC3 to eventu-

ally mature to the autophagosome. Upon fusion of those vesicles

with lysosomes, the autolysosome is formed and the content is

degraded. A detailed description of the process can be found in the

following review (Dikic & Elazar, 2018). Interestingly, most of the

pathway components seem to have additional non-autophagic func-

tions (reviewed in (Galluzzi & Green, 2019)). Autophagy-dependent

cell death (ADCD) has been defined as a form of cell death that

relies exclusively on the autophagic pathway components, which is

an important distinction given that autophagy can also coincide

with other forms of cell death (Galluzzi et al, 2018). ADCD can

proceed by two different pathways. The first pathway is induced by

extensive degradation of organelles which is dependent on the
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Figure 4. Key features of different forms of regulated cell death.
Overview of regulated cell death pathways highlighting the stimuli, key features as well as positive and negative regulators of the pathways. Gray boxes indicate cell
death pathway, green boxes show negative regulators/inhibitors, while red boxes indicate activators.
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autophagic flux (Dasari et al, 2017). The second form, referred to as

Autosis, does not depend on the fusion of autophagosomes and

lysosomes (Liu et al, 2013). In both cases, vacuole formation in the

cytoplasm can be detected (Bialik et al, 2018). Treatment of cancer

cells with resveratrol triggers the autophagic flux-dependent ADCD,

without activating apoptosis or necroptosis (Dasari et al, 2017). The

massive degradation by lysosome fusion leads to a breakdown of

the cytoplasmic organization with loss of organelles such as endo-

plasmic reticulum or mitochondria. Autosis can be induced by treat-

ment with TAT-Beclin-1 peptides, starvation or hypoxia, which

leads to cell swelling and eventually rupture of the plasma

membrane. These conditions result in cell death mediated by Na+/

K+-ATPase and can be inhibited by cardiac glycosides (Liu et al,

2013). Autotic cells were also identified in samples of patients with

severe anorexia nervosa (Kheloufi et al, 2015). In general, ADCD

has been shown in association with physiological process as well as

various pathologies including reperfusion injuries and various forms

of cancer (Bialik et al, 2018; Denton & Kumar, 2019).

Mitochondrial permeability transition pore (MPTP)-
mediated necrosis

The mitochondrial permeability transition pore can mediate necrosis

based on changes in the intracellular microenvironment. Two

factors that can induce opening of the pores are oxidative stress and

cytosolic/ mitochondrial Ca2+ accumulation. The pores allow the

flux of molecules up to 1.5 kDa in size leading to breakdown of the

H+ gradient and subsequently halting the ATP synthesis (Lemasters

et al, 2009; Izzo et al, 2016). The pore opening has been shown to

be reversible and meant to regulate mitochondrial Ca2+ levels while

prolonged opening induces cell death (Baines et al, 2005; Korge

et al, 2011). Cyclophilin D (CypD) so far is the only protein that has

been shown to be critical for MPTP in vivo and in vitro. Accordingly,

Ppif�/� mice (gene coding for CypD) showed reduced infarct size

after ischemia/reperfusion injury of heart or brain (Baines et al,

2005; Nakagawa et al, 2005; Schinzel et al, 2005). In addition, mito-

chondria isolated from Ppif�/� showed a reduced swelling upon

treatment with Ca2+. Cyclosporin A, a MPTP inhibitor, did not show

an additional effect in knockout mitochondria indicating CypD as

the target (Basso et al, 2005; Nakagawa et al, 2005; Schinzel et al,

2005). Yet, another study detected pore opening in mitochondria

lacking CypD with increasing Ca2+ concentration, which indicates

that blocking CypD might not be sufficient (Basso et al, 2005). So

far, the structure and components of the pore are still not comple-

tely known (Nesci, 2020), but the F1F0 ATP synthase has been

shown to be part of it (Bonora et al, 2013; Giorgio et al, 2013).

These findings also suggest the F1F0 ATP synthase may be a poten-

tial drug target for various pathologies, such as myocardial infarct,

reperfusion injuries, and neurodegenerative diseases (Sileikyte &

Forte, 2019).

Parthanatos

Parthanatos is a form of regulated cell death dependent on poly

(ADP) ribose polymerase 1 (PARP1) (Andrabi et al, 2008). PARP1 is

part of the DNA repair machinery which binds DNA single breaks

and PARylates itself and other proteins to recruit other components

of the machinery (reviewed in (Ray Chaudhuri & Nussenzweig,

2017)). Severe DNA damage by prolonged generation of reactive

oxygen species or reactive nitrogen species (RNS) induces recruit-

ment and activation of PARP1 to the DNA (Zhang et al, 1994) lead-

ing to the formation of PAR polymers and depletion of NAD+ and

ATP, which might be fatal for the cell (Robinson et al, 2019).

However, extensive generation of PAR polymers can promote AIF

(apoptosis inducing factor mitochondria associated 1) -MIF (macro-

phage migration inhibitory factor) interaction to facilitate MIF cata-

lyzed DNA fragmentation (Yu et al, 2002; Wang et al, 2016).

Nevertheless, a PARP-dependent cell death driving retinal degrada-

tion in vivo can be AIF-independent (Jang et al, 2017). RNS associ-

ated with parthanatos have been show to play a role in neural

pathologies (Virag & Szabo, 2002; Fatokun et al, 2014).

NETosis

Neutrophils are part of the innate immune system, and their main

task is to neutralize pathogens by phagocytosis or degranulation

(Segal, 2005). Another form of host defense is the formation of NET

(neutrophil extracellular traps). NETosis describes the process of

neutrophil DNA release into the extracellular space (Brinkmann

et al, 2004). The release of neutrophil DNA containing different

proteins with anti-pathogenic activity can be associated with cell

death, but can be independent of it as well (Yipp & Kubes, 2013;

Yousefi et al, 2019). For both processes, NADPH oxidase and ROS,

including mitochondrial ROS, have been reported to be critical for

actin depolarization and NET release (Papayannopoulos et al, 2010;

Douda et al, 2015; Stojkov et al, 2017). Elevated ROS leads to

myeloperoxidase activation, which leads to activation of neutrophil

elastase (NE) (Papayannopoulos et al, 2010). NE associates with

actin and processes it thus leading to depolarization and loss of

actin dynamics (Metzler et al, 2014). Subsequently, NE can translo-

cate to the nucleus, cleaves histones, and nuclear envelope proteins

(Papayannopoulos et al, 2010). In combination with histone

processing, histones are also citrullinated by PAD4 (protein arginine

deiminase 4), which leads to chromatin decondensation and eventu-

ally NET release (Wang et al, 2009; Thiam et al, 2020). A detailed

discussion of the pathway can be found in this review (Papayanno-

poulos, 2018). Further research is needed to understand the molecu-

lar details of non-lytic and lytic forms of NET formation. The role of

other forms of cell death and autophagy in the context of NETosis

will be discussed below.

Ferroptosis

Ferroptosis is a form of regulated cell death that depends on iron

(Fe2+)-mediated lipid peroxidation induced by ROS (Yang & Stock-

well, 2008; Dixon et al, 2012). Reactive oxygen species are

constantly generated by different physiological processes. In combi-

nation with cellular labile iron, this can lead to ferroptosis (Snezhk-

ina et al, 2019). Fe2+ can act as a catalyst to convert H2O2 to OH•

radicals (Fenton reaction) which react with polyunsaturated fatty

acids. Further, Fe2+ is a cofactor for lipoxygenases which catalyze

the generation of lipid hydroperoxides (Yang et al, 2016;
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Stoyanovsky et al, 2019). To protect cells from ROS, hydroperoxides

are neutralized stepwise by different enzyme families, namely

superoxide dismutases, glutathione peroxidases, catalases, and

peroxiredoxins. Ferroptotic cell death can be induced by either

increased ROS generation or dysregulation of ROS neutralization (Li

et al, 2020). Ferroptosis can be negatively regulated by glutathione

and GPX4 (glutathione peroxidase 4). Cystine uptake is critical for

glutathione synthesis, and interference with its transporter (Xc
�

Cys/Glu anti-porter) induces ferroptosis by indirectly reducing GPX4

activity (Dixon et al, 2012). Loss of GPX4 resulted in sensitization to

ferroptosis in vitro and in vivo (Friedmann Angeli et al, 2014; Yang

et al, 2014). Besides a glutathione dependent system, ferroptosis

suppressor protein 1 (FSP1) was identified to protect cells from

ferroptosis by reducing coenzyme Q10, which acts as a radical

scavenger (Bersuker et al, 2019; Doll et al, 2019). Ferroptosis has

been associated with several pathologies as reviewed elsewhere

(Bebber et al, 2020; Belavgeni et al, 2020; Li et al, 2020).

The interplay of cell death pathways

Caspase-8: Between cell survival, apoptosis, and necroptosis
Caspase-8 was initially identified as a component of extrinsic apop-

totic signaling platform DISC (death inducing signaling complex)

(Boldin, 1996; Muzio et al, 1996) and later as part of the cytosolic

TNF-induced complex II (Micheau & Tschopp, 2003). Soon, it became

obvious that caspase-8 has a more complex role, especially in the

regulation of other cell death pathways (Degterev et al, 2005) (Fig 5).
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Figure 5. Crosstalk between different forms of cell death.
A more complex network between the different cell death pathways has been established over the years. Arrows indicate established interconnectivity between
apoptosis, necroptosis, and pyroptosis. For details, please refer to the main text. Black arrows indicate crosstalk events, while red arrows indicate inhibition.
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Caspase-8 lethality can be rescued by deletion of RIP3 or MLKL

(Kaiser et al, 2011; Oberst et al, 2011), which indicated that caspase-8

restricts necroptotic signaling. The enzymatic activity of caspase-8

determines if cells survive or die via apoptosis or necroptosis. One

way of regulating catalytic activity of caspase-8 in complex II is

achieved by its catalytically inactive paralog c-FLIP (Goltsev et al,

1997; Han et al, 1997; Hu et al, 1997; Inohara et al, 1997; Irmler et al,

1997; Shu et al, 1997; Srinivasula et al, 1997; Rasper et al, 1998).

Low levels of c-FLIPL lead to the formation of caspase-8 homodimers

resulting in self-processing and apoptosis (Hughes et al, 2016). Phar-

macological inhibition of caspase-8 (e.g., by zVAD-FMK or Emric-

asan) or inhibition by FLIP(S/R) leads to necroptosis and RIP1

activation (Fricker et al, 2010). Besides the cellular isoforms of FLIP,

some viruses carry their own versions of FLIP (viral FLIP—vFLIP),

which can inhibit caspase-8 (Thome et al, 1997). Overexpression of

vFLIP MC159 in combination with IAP antagonist induces necroptosis

(Feoktistova et al, 2012). Heterodimers of c-FLIP and caspase-8

partially activate caspase-8 and restrict necroptosis by cleaving RIP1

(at Asp324 human or at Asp325 mouse RIP1) (Oberst et al, 2011; Pop

et al, 2011). Cleavage of RIP1 is critical for cell homeostasis, and

several patients have been identified with heterozygous mutation at

the caspase-8 cleavage site resulting in a disease called cleavage-resis-

tant RIP1-induced auto-inflammatory (CRIA) syndrome (Lalaoui et al,

2020; Tao et al, 2020). CRIA patients suffer periodic fever with

elevated cytokine and chemokine levels (Lalaoui et al, 2020; Tao

et al, 2020). Analogous mutation in mice drew a similar picture, with

Ripk1D325A/D325A animals being embryonic lethal (Zhang et al, 2019;

Newton et al, 2019a; Lalaoui et al, 2020) and heterozygous animals

being sensitive in TNF-induced systemic inflammatory response

syndrome (SIRS) (Newton et al, 2019a).

Interestingly, RIP1 also restricts caspase-8-mediated cell death

as loss of RIP1 sensitized to TNF-induced apoptosis (Dillon et al,

2014; Rickard et al, 2014). In addition, RIP1 restricts ZBP1-medi-

ated necroptosis by interfering with RHIM-mediated interaction of

ZBP1 and RIP3 (Lin et al, 2016; Newton et al, 2016b). The inter-

play of apoptosis and necroptosis is apparent in many inflamma-

tory in vivo models where they are frequently concomitantly

activated (Webster & Vucic, 2020). This is not surprising given

that majority of signaling proteins are common to both pathways,

and the balance of expression or activation of critical factors

(RIP3, caspase-8) can tip the balance in favor of apoptosis or

necroptosis.

The addition of pyroptosis to the crosstalk
Caspases are involved in apoptotic, necroptotic, and pyroptotic

signaling, and in recent years, a more complex interconnectivity has

been revealed. As mentioned before, caspase-3 can cleave GSDME,

and there are conflicting reports of GSDME playing a role during

secondary necrosis of apoptotic macrophages (Rogers et al, 2017;

Lee et al, 2018). GSDME has also been implicated in mitochondrial

pore formation and enhancement of apoptotic signaling (Rogers

et al, 2019). GSDMD forms pores at the mitochondrial membranes

preceding plasma membrane rupture (de Vasconcelos et al, 2019).

Caspase-3 can inactivate GSDMD by cleavage at Asp84 though the

physiological meaning remains unknown (Rogers et al, 2017;

Taabazuing et al, 2017). On the other hand, caspase-1 has been

reported to induce apoptosis by cleaving caspase-3 in Gsdmd�/�

cells (Tsuchiya et al, 2019).

Apart from mediating the activation of apoptotic cell death and

regulation of necroptosis, caspase-8 was found to be important for

pyroptotic signaling. Several studies provided evidence that

caspase-8 plays a central role inducing cell death, inflammasome

activation, and IL-1b/ IL-18 processing in Yersinia infection models

(Weng et al, 2014; Orning et al, 2018; Sarhan et al, 2018). Caspase-8

has been shown to activate GSDMD by cleavage, which resulted in

K+-efflux inducing NLRP3 inflammasome activation (Orning et al,

2018; Sarhan et al, 2018). In this setting, Asc�/� or Casp1�/�

Casp11�/� cells showed reduced IL-1b release without altering cell

death. On the other hand, caspase-8 can be recruited to the

inflammasome. Cytosolic DNA and nigericin were able to induce

caspase-8 activation and apoptosis in an ASC-dependent fashion

(Sagulenko et al, 2013). Further studies from Sagulenko et al

showed that caspase-1/11 can process caspase-3 during DNA trans-

fection when caspase-8 is deleted (Sagulenko et al, 2018). IAP

antagonism or deletion of XIAP, cIAP1, and cIAP2 led to release of

IL-1b in LPS primed cells in a process that was also dependent on

caspase-1, caspase-8, and RIP3 (Vince et al, 2012). The interaction

of caspase-8 and ASC is mediated by DED1 and DED2 of caspase-8

and PYD of ASC, as was shown with recombinant proteins as well

as overexpression studies (Vajjhala et al, 2015). This heterotypic

interaction also has been shown to be critical for NLRC4-induced

apoptotic signaling when cells do not express caspase-1 (Lee et al,

2018).

Besides caspase-8, RIP1 inactivation (Ripk1KD/KD—RIP1 kinase-

dead bone marrow derived macrophages (BMDM)) can reduce cell

death induced by Yersinia infection or LPS + TAK1 inhibitor (Peter-

son et al, 2017; Sarhan et al, 2018). Reduced GSDMD cleavage

comparable to Casp8�/� Ripk3�/� BMDMs was also detected by

Orning et al in Ripk1KD/KD BMDMs (Orning et al, 2018). This indi-

cates that not only caspase-8 but probably RIP1 also plays an impor-

tant role in mediating pyroptosis. This is underlined by another

publication that implicated FADD in the regulation of inflamma-

some activation. C. rodentium infection of Fadd�/� Ripk3�/�

BMDMs lead to reduced processing of caspase-1/8, IL-1b secretion,

and cell death compared to WT or Ripk3�/� BMDMs (Gurung et al,

2014). Necroptotic cell death also leads to NLRP3 activation by K+

efflux mediated by MLKL in cell intrinsic manner (Conos et al,

2017). In vivo, reduced IL-1b was detected in Fadd�/� Ripk3�/�

mice compared to WT or Ripk3�/� animals when treated with LPS,

but increased bacterial load when infected with C. rodentium

(Gurung et al, 2014). Similar findings were made for Fadd�/�

Mlkl�/� BMDMs and mice. Treatment with LPS + ATP resulted in

reduced caspase-1 cleavage and IL-1b secretion. In vivo challenge

with LPS resulted in decreased IL-1b serum levels in Fadd�/�

Mlkl�/� mice (Zhang et al, 2016). However, bacterial infection of

Casp8�/� Ripk3�/� mice resulted in higher morbidity compared to

WT mice. These DKO mice showed reduced cytokine levels, but

increased bacterial load indicating that a proper clearance was not

achieved (Weng et al, 2014). The same finding was made in

Ripk1KD/KD mice when they were infected with Yersinia by oral

gavage (Peterson et al, 2017). During LPS-induced shock, Casp11�/�

and Casp8�/� Ripk3�/� mice showed reduced morbidity compared

to WT mice, due to the involvement of TNF-mediated signaling in

LPS-mediated shock (Mandal et al, 2018). The described findings

could be explained by the fact that bacterial infection is a long-term

challenge, which becomes worse with a defective clearance. For the
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LPS challenge, reduced cytokines result in healthier animals as they

do not have to fight an infection.

Further understanding of caspase-8 in the context of pyroptosis

was gained by analysis of various transgenic mouse models (Fritsch

et al, 2019; Newton et al, 2019b; Schwarzer et al, 2020; Tummers

et al, 2020) (Fig 5, Table 1). Mice expressing catalytic-dead caspase-

8, Casp8C362A/C362A (Newton et al, 2019a) and Casp8C362S/C362S

(Fritsch et al, 2019), are embryonic lethal at E11.5, just like Casp8�/-

� mice (Varfolomeev et al, 1998). While Casp8�/� mice can be

rescued by loss of RIP3 or MLKL, Mlkl�/� only delayed lethality of

Casp8C362A/C362A to birth and Ripk3�/� in some of the animals to

after weaning. Interestingly, processing of caspase-3, caspase-7, and

cleavage of RIP1 and RIP3 was detectable in caspase-1-dependent

manner in intestines of Casp8C362A/C362A Mlkl�/� E18.5 embryos

(Newton et al, 2019b). This might draw a link to papers reporting

caspase-1-mediated apoptosis in Gsdmd�/� (Tsuchiya et al, 2019).

Fritsch et al and Newton et al showed ASC specks in the intestine of

E18.5 Casp8C362A/C362A Mlkl�/� Casp1�/� Casp11�/� embryos or 5-

week-old Casp8C362S/C362S Mlkl�/� Casp1�/� mice suggesting that

caspase-8 can induce ASC-dependent inflammasome activation

(Fritsch et al, 2019; Newton et al, 2019b). Deletion of ASC in

Casp8C362A/C362A Mlkl�/�/Casp8C362S/C362S Mlkl�/� mice lead to

survival beyond weaning comparable to Casp8C362A/C362A Mlkl�/�

Casp1�/�/Casp8C362S/C362S Mlkl�/� Casp1�/� (Fritsch et al, 2019;

Newton et al, 2019b). Combined loss of caspase-1/11 in Casp8C362A/

C362A Mlkl�/� mice had an additional protective effect suggesting an

interplay of the different cell death signaling pathways. Most mice

survived when RIP3 and caspase-1/11 were deleted in Casp8C362A/

C362A (Newton et al, 2019b).

Caspase-8 autoprocessing is key for it is full activation but

mutagenesis of the cleavage site D387 to alanine, which separates

the small and large catalytic subunit, did not cause a develop-

mental phenotype (Philip et al, 2016; Newton et al, 2019a;

Tummers et al, 2020). However, a reduced morbidity was

observed in in vivo challenge with CD95. Crossing of Casp8D378A/

D378A (from now on Casp8DA/DA) to Mlkl�/� mice resulted in

inflammation and splenomegaly as well as hypersensitivity to LPS

injection (Tummers et al, 2020). The inflammatory phenotype of

Casp8DA/DA Mlkl�/� mice was rescued by deletion of one allele of

FADD, RIP1, or FASL (Tummers et al, 2020). Interestingly,

Casp8DA/DA Mlkl�/� Fadd�/� died within 14 days after birth indi-

cating that FADD has a bivalent role in this model. Lethality of

Casp8DA/DA Mlkl�/� Fadd�/� mice was rescued by crossing to

Casp1�/� or to Ripk1�/� mice but ASC specks were again

revealed in ileal tissue (Tummers et al, 2020). Another study

focused on ileitis and colitis driven by deletion of either FADD or

caspase-8 in the intestinal epithelial cells (IEC) (Schwarzer et al,

2020). Caspase-8-induced pathologies were rescued by deletion of

Mlkl�/�; however, MLKL ablation was not significantly protective

in FaddIEC-KO mice (Schwarzer et al, 2020). Interestingly, FaddIEC-

KO ileitis was milder in Ripk3IEC-KO or in RIP1 kinase-dead knock-

in mice (Schwarzer et al, 2020) and completely inhibited by

whole body RIP3 ablation (Welz et al, 2011). But only the dele-

tion of GSDMD, not of ASC, resulted in loss of the inflammatory

phenotype in FaddIEC-KO Mlkl�/� (Schwarzer et al, 2020).

In all caspase-8 knock-in models or FaddIEC-KO, RIP1 deletion or

kinase inhibition resulted in attenuated phenotypes arguing that

RIP1 plays important role in caspase-8-associated pathologies.

Nevertheless, a large body of published work shows a complex role

of caspase-8 in regulation of apoptosis, necroptosis, and pyroptosis.

Thus, incompletely activated (either enzymatic dead or cleavage-

resistant) caspase-8 in the context of Mlkl�/� can provide a scaffold

for ASC binding and induce ASC-dependent inflammasome forma-

tion. In FaddIEC-KO Mlkl�/� mice, it seems more likely that caspase-8

cleaves GSDMD to induce pyroptosis. These findings exemplify the

complexity in the signaling crosstalk between different cell death

pathways and raise additional questions concerning other pathway

components and their role. For example, what is the role of apopto-

sis induced by caspase-3 in those pathologies? What are the proteins

or pathways regulated by RIP3? Clearly, future studies are needed to

answer these questions.

Table 1. Genotypes and phenotypes of cell death mediator mutations

Genotype Phenotype

Casp8C362A/C362A Embryonic lethal (E12.5)

Casp8C362A/C362A Mlkl�/� Perinatal lethal

Casp8C362A/C362A Ripk3�/� 75% of animals survive past weaning

Casp8C362A/C362A Mlkl�/� Ripk1�/� Lethal before weaning

Casp8C362A/C362A Mlkl�/� Asc�/� 65% of animals survive past weaning

Casp8C362A/C362A Mlkl�/� Casp1�/� 40% of animals survive past
weaning

Casp8C362A/C362A Mlkl�/� Casp1�/�

Casp11�/�
75% of animals survive past weaning

Casp8C362A/C362A Ripk3�/� Casp1�/�

Casp11�/�
Survival past weaning, best survival

Casp8C362S/C362S Embryonic lethal (E12.5)

Casp8C362S/C362S Mlkl�/� Perinatal lethal

Casp8C362S/C362S Mlkl�/� Casp1�/� Survival beyond parturition

Casp8C362S/C362S Mlkl�/� Asc�/� Survival beyond parturition

Casp8D387A/D387A No overt phenotype

Casp8D387A/D387A Mlkl�/� Inflammatory phenotype

Casp8D387A/D387A Mlkl�/� Fasl+/� Rescues phenotype

Casp8D387A/D387A Mlkl�/� Ripk1+/� Rescues phenotype

Casp8D387A/D387A Mlkl�/� Fadd+/� Rescues phenotype

Casp8D387A/D387A Mlkl�/� Fadd�/� Lethal before weaning

Casp8D387A/D387A Mlkl�/� Fadd�/�

Ripk1�/�
Survival past weaning

Casp8D387A/D387A Mlkl�/� Fadd�/�

Casp1�/�
Survival past weaning

Casp8IEC-KO Ileitis

Casp8IEC-KO Mlkl�/� Rescues phenotype

FaddIEC-KO Colitis and ileitis

FaddIEC-KO Ripk3�/� Rescues phenotype

FaddIEC-KO Ripk3IEC-KO Rescues phenotype

FaddIEC-KO Mlkl�/� Casp8-driven pathology

FaddIEC-KO Mlkl�/� ASC�/� Casp8-driven pathology

FaddIEC-KO Mlkl�/� Gsdmd�/� Rescues phenotype

Summary of genotypes and main associated phenotypes discussed in the
context of crosstalk between different cell death pathways. Please refer to
the original publications for a complete list of crosses and their respective
phenotypes. References for listed genotypes are indicated throughout the
text.
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Autophagy during other forms of cell death
ADCD is defined as a form of cell death that does not share features

with other forms of cell death. However, autophagy has been shown

to coincide various forms of cell death. In the following, the role of

autophagy-related genes in the context of other forms of cell death

will be discussed.

Apoptotic and autophagic pathways can intercross at various

levels. Most Bax�/� Bak�/�mice die perinatally and show interdigi-

tal skin and increased white blood cells besides other phenotypes

(Lindsten et al, 2000). Similarly, genetic deletion of autophagy regu-

lator ATG5 also leads to perinatal lethality (Kuma et al, 2004).

However, Atg5 ablation in a Bax�/� Bak�/� mice causes a more

severe phenotype with enhanced brain exencephaly and even more

delayed reduction of interdigital webbing (Arakawa et al, 2017),

compared to Atg5�/� (Kuma et al, 2004) or Bax�/� Bak�/�. This
suggests that autophagy serves as a partial backup mechanism for

apoptosis during development.

In addition to Atg5, deletion of other critical mediators of autop-

hagy Atg16l1 or Atg12 also results in perinatal lethality (Kuma et al,

2004; Saitoh et al, 2008; Malhotra et al, 2015). Several autophagy

regulators are implicated in human pathologies, such as Atg16l1

polymorphism, which is associated with Crohn’s disease (Hampe

et al, 2007). The most common ATG16L1 variant, T300A, is linked

with a loss of Paneth cells in humans as well as mice (Cadwell et al,

2008). ATG16L1 T316A mutation (in mouse) introduces a new

caspase-3 cleavage site, and mice harboring this mutation show

reduced autophagy and pathogen clearance (Lassen et al, 2014;

Murthy et al, 2014). Bacterial infections of these mice lead to

increased cytokines levels, especially IL-1b, indicating a defective

clearance of bacteria that results in more severe inflammation

(Lassen et al, 2014; Murthy et al, 2014). Similar results have been

reported for ATG16L1 conditional knockout mice. Mice with

myeloid-specific deletion of ATG16L1 (Atgl16l1DLyz2) succumbed

faster than WT mice after LPS injection (Samie et al, 2018; Lim

et al, 2019). Similarly, chimeric mice with transplanted Atg16l1�/�

fetal liver cells treated with DSS (dextran sodium sulfate) and

infected with MNV (murine norovirus) develop a lethal colitis while

WT mice survived, indicating that ATG16L1 is necessary to restrict

inflammatory signaling (Saitoh et al, 2008). Interestingly, mice with

an intestinal-specific ATG16L1 knockout (Atgl16l1IEC-KO) were also

more sensitive in a DSS-induced colitis model (Matsuzawa-Ishimoto

et al, 2017). Comparison of conditional knockout of ATG16L1 in

intestinal epithelial cells or mononuclear cells showed that both

have increased cytokine secretion; however, Atgl16l1IEC-KO show a

more drastic increase compared to myeloid-specific KO (Conway

et al, 2013). In DSS/MNV-induced colitis, TNF-blocking antibodies

or RIP1 inhibitors had protective effects, which is in line with their

finding that TNF-treated Atg16l1�/� organoids are more sensitive to

TNF-induced and RIP1-mediated death compared to WT organoids

(Matsuzawa-Ishimoto et al, 2017; Matsuzawa-Ishimoto et al, 2020).

Similar findings were made in a different infection model.

Atg16l1IEC-KO mice were more susceptible to Helicobacter hepati-

cus + aIL-10R-induced colitis compared to WT or myeloid-specific

Atg16l1�/� mice. Epithelial cell-specific KO mice disease was

preventable by administration of TNF (Pott et al, 2018), confirming

a TNF-mediated pathology. Furthermore, mice with intestinal dele-

tion of ATG16L1 were exquisitely sensitive to TNF-induced

hypothermia and lethality in RIP1-dependent fashion (Patel et al,

2020). Similar results were obtained when Atg5, Atg16l1, Fip200, or

Becn1 were deleted in the myeloid cell compartment by LysM-Cre

(Orvedahl et al, 2019). All 4 genotypes were more sensitive to TNF

injections compared to their WT littermates. In the case of

Atg5DLysM, the RIP1 kinase inhibitor Nec-1 protected the mice from

death (Orvedahl et al, 2019). In Atg16l1�/� BMDMs, TRIF degrada-

tion by autophagy was shown to be critical for regulation of

inflammatory signaling (Samie et al, 2018). In addition, ATG16L1

can restrict necroptotic signaling by regulating the turnover of

RHIM-containing proteins, especially ZBP1 (Lim et al, 2019).

ATG16L1 has been shown to play a critical role in the modulation of

TNF-mediated cell death signal in various in vitro and in vivo

systems. Several models proved that loss of ATG16L1 either in

intestinal epithelial cells or myeloid cells leads contributes to a more

severe phenotype. For this reason, further investigation of the path-

ways is critical to understand the differences and similarities of

interplay between autophagy and TNF-mediated cell death signaling

in different cell types.

Besides ATG16L1, other autophagy pathway components were

also implicated in TNF and TRAIL-mediated apoptosis and necropto-

sis. Several studies suggested a scaffolding function of autophagy

genes and autophagic structures, which will be discussed in more

detail below. In Tak1-deficient cells, TRAIL-induced necroptotic cell

death is dependent on p62, indicating that the autophagosome

formation plays a critical role in complex formation (Goodall et al,

2016). The interplay of autophagy and cell death also has been

implicated in HIV-infected T cells (HIV-TCM) treated with IAP

antagonists (also referred to as SMAC mimetics). IAP antagonists

induce cell death of HIV-TCMs in a caspase, RIP1, and autophago-

some formation-dependent manner, while p62 knockdown

protected from induced cell death (Campbell et al, 2018). Similarly,

necroptosis in L929 cells could be inhibited by autophagy inhibitors

wortmannin and pepstatin A or by the knockdown of RIP1 (Yu et al,

2006). In all studies described above, inhibition of autophagosome

formation by wortmannin reduced cell death suggesting that

autophagosome can directly affect cellular viability. The importance

of autophagy as inducer of other forms of cell death was also shown

for the clinically tested Bcl-2 antagonist GX15-070/obatoclax, which

was shown to induce necroptotic cell death in different cancer cell

lines depending on ATG5, ATG7, RIP1, and RIP3 (Bonapace et al,

2010; Basit et al, 2013). These studies provide a link between regu-

lated cell death and autophagy and implicate dysfunctional autop-

hagy in cell death activation in physiological settings linked to

diseases.

NETosis in the context of inflammatory cell death
NET formation can also be associated with the activation different

cell death pathways. Necroptosis has been shown in several studies

to by critical for NETosis. Loss of the necroptotic effectors RIP3 or

MLKL or the pharmacological inhibition of RIP1, RIP3, or MLKL let

to reduced cell death and NET formation when cells were treated

with LPS, PMA (Desai et al, 2016), RSV (respiratory syncytial virus)

(Muraro et al, 2018), or various crystalline substances (Desai et al,

2017) for an extended period. NET formation was independent of

RIP3 or MLKL when neutrophils were treated for shorter periods

(Amini et al, 2016). These findings might be linked to the dif-

ferences of lytic versus non-lytic NET formation. Injection of mono-

sodium urate (MSU) crystals in air pouches has been shown to
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promote NET formation and sterile inflammation in vivo (Schauer

et al, 2014). In this model, Ripk3�/�, Mlkl�/� mice, and Necro-

statin-1-treated mice showed reduced tophus like NET aggregations

(Desai et al, 2016; Desai et al, 2017). Similar findings were made

using a murine AAV (anti-neutrophil cytoplasmic antibody (ANCA)-

associated vasculitis) disease model. Ripk3�/� and Mlkl�/� mice

were protected against necrotizing crescentic glomerulonephritis

detected in WT mice (Schreiber et al, 2017). Besides necroptosis,

several studies showed that GSDMD plays a critical role during

neutrophil cell death and NET formation (Chen et al, 2018; Kambara

et al, 2018; Sollberger et al, 2018). Chen et al showed that non-

canonical inflammasome activation can lead to GSDMD processing

by caspase-11 leading to cell death resembling NETosis, which was

independent of MPO, NE, and PAD4 (Chen et al, 2018). The other

two publication that identified GSDMD as a target of the neutrophil

elastase during PMA induced NET formation (Sollberger et al, 2018)

or E. coli infection (Kambara et al, 2018). Infection with a cytosolic

Salmonella strain (DsifA) lead to a more severe infection in

Gsdmd�/� or Casp11�/� mice compared to WT mice. Interestingly,

DNAse I treatment resulted in aggravation of the bacterial load only

in WT mice (Chen et al, 2018), indicating potential defects of NET

formation in Gsdmd�/� and Casp11�/� mice. A second study,

however, reported that Gsdmd�/� lead to better bacterial clearance

due to increased neutrophil numbers because of an increased lifes-

pan (Kambara et al, 2018).

For a better understanding of necrotic and pyroptotic cell death

in the context of NET formation, it would be interesting to perform

infection or disease models in tissue specific knockouts. Addition-

ally, it would be interesting to understand and clarify in which phys-

iological contexts distinct cell death forms play a dominant role.

Ferroptosis and necroptosis
Ferroptosis and necroptosis have been implicated in kidney patholo-

gies (Belavgeni et al, 2020), and inhibitors of ferroptosis and necrop-

tosis showed protection in various disease models in mice. However,

it is still not completely understood how both different mechanisms

work together. Deletion of Ripk3 or Mlkl has been shown to be

protective in kidney reperfusion injury models (Linkermann et al,

2013; Newton et al, 2016a; Muller et al, 2017; von Massenhausen

et al, 2018). Ripk1KD/KD mice (Newton et al, 2016a) or pharmacologi-

cal inhibition of RIP1 showed protective effects in IRI (ischemia–

reperfusion injury) as well (Linkermann et al, 2012). However, in

AKI (acute kidney injury) induced by folic acid ferroptosis has been

shown to be the driving form of inflammatory cell death (Martin-

Sanchez et al, 2017). Further analysis of this model leads to better

understanding of the interplay of ferroptosis and necroptosis. During

later stages of disease, deletion of TWEAK receptor (Fn14) as well as

treatment of Necrostatin-1 reduced the severity of the disease

(Martin-Sanchez et al, 2018). As discussed by Martin-Sanchez et al,

this leads to a model in which ferroptosis in critical for during the

initial phase of AKI and necroptosis is taking over at the later stages

leading to amplification of tubular cell death. Besides ferroptosis and

necroptosis, MPTP and necroptosis have been shown to be critical

mediators during IRI, as either genetic ablation of RIP3 and CypD

showed complete rescue of lethality (Linkermann et al, 2013).

Clearly, ferroptosis and necroptosis can be triggered by shared

stimuli (e.g., ROS) and are both involved in ischemia–reperfusion-

driven pathologies. Consequently, further experimental validation

of inhibitors or biomarkers selective for these pathways is needed

for better understanding of ferroptosis/necroptosis biology and

physiological importance.

Cell death pathways components as therapeutic targets
Cell death pathways play a pivotal role in homeostasis of the body,

and their dysregulation can lead to many diseases ranging from auto-

immune disease to neurodegeneration and cancer. As such, these

pathways are attractive targets for therapeutic intervention. The initial

validation of the relevance of cell death for human diseases came

from identification of Bcl-2 from the genomic region with frequent

chromosomal translocations t(14;18) in follicular lymphomas (Tsuji-

moto et al, 1984). Furthermore, expression of Bcl-2 protected cells

from death and enabled lymphocyte accumulation often leading to

cancer (Vaux et al, 1988; McDonnell et al, 1989; Strasser et al, 1991).

Soon afterward, the importance of Bcl-xL, Mcl-1, and other Bcl-2

family members was recognized and development of antagonists of

anti-apoptotic Bcl-2 proteins was started (Czabotar et al, 2014). These

compounds are referred to as BH3 mimetics given that they emulate

cell death promoting function of BH3 domains.

The first successful BH3 mimetic was ABT-737, a compound with

partial selectivity for Bcl-2, Bcl-xL, and Bcl-w over Mcl-1 and A1 that

efficiently inhibited tumor growth in numerous animal cancer

models and validated this targeting approach (Oltersdorf et al,

2005). ABT-737 was followed by a related orally available BH3

mimetic ABT-263 or navitoclax (Tse et al, 2008). Navitoclax showed

great promise in patients with chronic lymphocytic leukemia. In

addition to its single-agent activity, navitoclax had a great potential

for combination therapies, especially those that downregulated Mcl-

1, Bcl-2 protein not affected by ABT-263 (Cragg et al, 2009).

However, navitoclax clinical path was hindered because it stimu-

lated precipitous loss of platelets (Roberts et al, 2012). Drop in

platelet number was caused by Bcl-xL inhibition, which steered

ongoing drug discovery efforts away from this important pro-

survival protein (Czabotar et al, 2014). Thus, emerged Bcl-2 selec-

tive inhibitor ABT-199 or venetoclax, the first BH3 mimetic and the

first cell death regulating small molecule to be approved by the FDA

for the treatment of chronic lymphocytic leukemia or small lympho-

cytic lymphoma (Souers et al, 2013). Venetoclax is undergoing

investigation in a number of clinical trials that aim to expand the

number of malignancies where it can be beneficial (Strasser & Vaux,

2020). However, there is also increasing awareness that Mcl-1 is a

major resistance factor for Bcl-2 targeting (Gong et al, 2016). To

address this therapeutic need, several Mcl-1 selective inhibitors

have been generated and some have been enrolled in clinical trials

(Kotschy et al, 2016; Caenepeel et al, 2018; Tron et al, 2018), (Clini-

calTrials.gov). Having selective antagonist to various pro-survival

Bcl-2 protein would give oncologists a great set of tools to treat

patients’ tumors with potent and tolerable anti-cancer agents.

The favorite strategy for targeting IAP proteins involves SMAC-

mimicking small-molecule IAP antagonists (Fulda & Vucic, 2012).

IAP antagonists were meant to block caspase inhibition by XIAP

(Sun et al, 2007). However, the key to single-agent pro-apoptotic

activity of IAP antagonists results from c-IAP1/2 antagonism and

TNF-dependent cell death (Gaither et al, 2007; Petersen et al, 2007;

Varfolomeev et al, 2007; Vince et al, 2007). The monovalent IAP

antagonists emulate one SMAC AVPI motif, while the bivalent

antagonists comprise two AVPI-like motif mimetics connected by a
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chemical linker (Sun et al, 2007; Varfolomeev et al, 2007). Binding

of IAP antagonists triggers a conformational change that opens the

c-IAP1 structure and enables c-IAP RING domain dimerization, a

prerequisite feature of their E3 activation (Dueber et al, 2011;

Feltham et al, 2011). This prompt activation of c-IAP1/2 E3 activity

causes their K48-linked auto-ubiquitination, subsequent proteaso-

mal degradation (Dueber et al, 2011; Feltham et al, 2011) and acti-

vation of canonical NF-jB signaling (Varfolomeev et al, 2007; Vince

et al, 2007). Proteasomal degradation of c-IAPs leads to NIK stabi-

lization and activation of the non-canonical NF-jB pathway (Var-

folomeev et al, 2007; Vince et al, 2007). The stimulation of NF-jB as

well as MAPK pathways induces TNF production and activation of

TNFR1 signaling (Varfolomeev et al, 2007; Vince et al, 2007).

However, with c-IAP1/2 degraded, RIP1 cannot be ubiquitinated

during TNF-induced signaling and the canonical NF-jB pathway is

poorly activated. Instead, RIP1 will complex with FADD/caspase-8

and provoke apoptosis, and if caspase-8 is inhibited or insufficiently

activated, RIP3 and MLKL-dependent necroptotic cell death (Ber-

trand et al, 2008; He et al, 2009). TNF-blocking reagents efficiently

inhibit IAP antagonist stimulated cell death further demonstrating

its’ TNF dependence (Petersen et al, 2007; Varfolomeev et al, 2007;

Vince et al, 2007).

Several IAP antagonists such as GDC-0152, TL3271, and SM-

164 have demonstrated tumor-inhibiting activity in in vivo cancer

models without showing any significant toxicity or weight loss in

mice (Lu et al, 2008; Flygare & Fairbrother, 2010; Flygare et al,

2012; Fulda & Vucic, 2012; Morrish et al, 2020a). Based on the

positive results from preclinical studies, a number of IAP antago-

nists have entered phase I/II clinical trials for people with a vari-

ety of malignancies (Fulda & Vucic, 2012; Jensen et al, 2020b).

Clinical trials with GDC-0152, LCL161, HGS1029, and TL32711

reported target antagonism, dose proportional pharmacokinetics,

and no dose-limiting toxicity (Morrish et al, 2020a). However,

none of these trials reported significant anti-tumor activity of IAP

antagonists and were not pursued further (Morrish et al, 2020a).

Nevertheless, the ability of IAP antagonists to activate non-canon-

ical NF-jB signaling is prompting an interest in combining them

with checkpoint inhibitors (e.g., anti-PD1 antibody) and anti-

retroviral therapy (Chesi et al, 2016; Nixon et al, 2020; Morrish

et al, 2020a). IAP antagonists have also shown a great potential

in treating liver pathologies caused by HBV and Plasmodium

infections (Ebert et al, 2020; Morrish et al, 2020b). These and

other ongoing and future clinical trials will examine the safety

and the efficacy of IAP antagonists for the treatment of human

malignancies and infections in hopes of bringing new therapies to

patients who need them.

Bcl-2 and IAP antagonists were developed to promote cell

death in hematological and solid tumors. However, excessive cell

death can be detrimental for healthy organism and cause tissue

damage and neurodegeneration. For this reason, RIP1 has been

proposed as a safe modality to treat inflammatory and neurode-

generative diseases with no known risk of immunosuppression

(Yuan et al, 2019; Mifflin et al, 2020). While RIP3 kinase could

also be considered an attractive target, genetic studies and RIP3

targeting efforts have demonstrated toxicity which precludes safe

inhibition of RIP3 (Mandal et al, 2014; Newton et al, 2014).

Contrarily, genetic inactivation or chemical inhibition of RIP1

kinase activity is well tolerated and pose no known risks (Berger

et al, 2014; Newton et al, 2014; Polykratis et al, 2014; Patel et al,

2020; Webster et al, 2020).

Inhibiting RIP1 kinase activity is beneficial in joint and skin

inflammation, ileocolitis as well as in the TNF-induced systemic

inflammatory response syndrome (SIRS) model (Berger et al, 2014;

Vlantis et al, 2016; Newton et al, 2016a; Patel et al, 2020; Webster

et al, 2020). Similarly, the role of RIP1 kinase activity is also evident

in the number of neurodegenerative and neuroinflammatory

diseases (Yuan et al, 2019; Mifflin et al, 2020). In pancreatic

cancers, lung metastases, pancreatitis, and certain viral infections

however, the therapeutic effects of RIP1 inhibition have been

disputed recently (Newton et al, 2016a; Patel et al, 2020; Webster

et al, 2020). Clearly, more studies are needed to delineate the suit-

able diseases for RIP1 inhibition, with confirmation coming from

testing RIP1 inhibitors in clinical trials.

So far, RIP1 inhibitors developed by GlaxoSmithKline (GSK) and

Denali have been tested in clinical settings with initial reports indi-

cating that GSK2982772 and DNL104 were generally well tolerated

in people (Harris et al, 2017; Weisel et al, 2017b; Grievink et al,

2020; Jensen et al, 2020; Mifflin et al, 2020). Phase I trials with

GSK2982772 showed no serious adverse events (AEs) and no

suggestion of a safety concern (Weisel et al, 2017), which enabled

GSK to initiate several small phase 2 clinical trials for psoriasis,

rheumatoid arthritis, and ulcerative colitis. To date, GSK2982772

has not shown significant therapeutic benefit in psoriasis or

rheumatoid arthritis, while the data from the ulcerative colitis trial

are not yet available (ClinicaTrials.gov). In addition to inflammatory

diseases, GSK tested RIP1 inhibitor, GSK3145095, in clinical trial

intended to test RIP1 inhibition in pancreatic and other solid tumors

(Harris et al, 2019), but was terminated during patient recruitment.

DNL104, Denali’s brain-penetrant RIP1 inhibitor, did not trigger any

adverse effects in central nervous system, although they observed

abnormal liver function in some healthy subjects (Grievink et al,

2020). Denali has abandoned clinical trials of DNL104 and entered

into collaboration with Sanofi to examine another RIP1 inhibitor,

DNL747, in clinical trials for Alzheimer’s disease, amylotrophic

lateral sclerosis, and multiple sclerosis (Martens et al, 2020). Over-

all, targeting RIP1 represents an attractive opportunity for therapeu-

tic intervention in inflammatory diseases, and future preclinical and

especially clinical studies should further define the optimal indica-

tion and patient populations,

An alternative way of targeting inflammatory diseases is to block

inflammasome assembly and inflammatory cell death mediated by

NLRP3 and GSDMD. GSDMD is a key component of pyroptotic cell

death and targeting GSDMD cleavage, membrane association, and/

or the ability to form membrane pores is attractive strategy for

several devastating diseases such as sepsis or ARDS (acute respira-

tory distress syndrome) (Chauhan et al, 2020). As GSDMD is a rela-

tively novel target with no known enzymatic activity, GSDMD

targeting efforts are still nascent (Shi et al, 2017). Consequently,

none of the GSDMD blocking reagents have advanced to clinical

trials yet. However, several more established inflammasome regula-

tors have been a focus of drug discovery for a long time. The best

example of NLRP3 inflammasome has been implicated in a number

of inflammatory, neurodegenerative, and metabolic diseases (Voet

et al, 2019). Early verification of the feasibility of NLRP3 therapeutic

targeting came from demonstration that chemical compound called

glyburide effectively blocked IL-1b secretion and pyroptotic cell
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death (Lamkanfi et al, 2009). Another agent, MCC950/CRID3,

targets the NACHT domain of NLRP3 and has a higher potency and

selectivity for NLRP3 (Coll et al, 2019; Tapia-Abellan et al, 2019).

MCC950/CRID3 has shown efficacy in a number of animal disease

models including myocardial infarction, atherosclerosis, dermal and

pulmonary inflammation, and multiple sclerosis (Primiano et al,

2016; van der Heijden et al, 2017; van Hout et al, 2017; Perera et al,

2018; Voet et al, 2019). Currently, two MCC950/CRID3-related

compounds (IZD334 and Inzomelid) are undergoing clinical trials to

evaluate their safety and tolerability (Clinicaltrials.gov). These and

future trials could pave the way for efficacious and safe NLRP3

targeting in patients with CAPS (cryopyrin-associated periodic

syndromes) and other inflammatory diseases.

Caspases play a central role in various cell death pathways and

therefore were/are an interesting target for drug development.

Several pan-caspase inhibitors mimicking peptide substrates have

been developed with few reaching clinical trials. Emricasan is an

irreversible caspase inhibitor which accumulates in the liver, likely

because of the first pass effect (Hoglen et al, 2004). In several mouse

models (a-Fas models, D-Gln/LPS), Emricasan showed protective

capacity and was also used in intervention animal studies (Hoglen

et al, 2004). Combination therapy of Emricasan and IAP antagonist

Birinapant promoted necroptosis in AML cells in vivo and prolonged

survival in mouse models (Brumatti et al, 2016). Clinical trials of

Emricasan did not raise any safety concerns and showed reduction

of serum level transaminases in patients with prior diagnosis of mild

hepatic impairment (Valentino et al, 2003). In several other liver

pathologies, Emricasan showed promising results. During liver

transplantation, Emricasan was tested in two different patients with

non-alcoholic fatty liver acid disease and it showed reduced levels

of ALT (alanine aminotransferase) compared to the placebo group

(Shiffman et al, 2019). Similar findings were made for patients with

hepatitis C virus infection where Emricasan reduced transaminase

blood levels without affecting virus titers (Shiffman et al, 2010).

However, Emricasan did not have a beneficial effect on portal

hypertension in liver cirrhosis patients (Garcia-Tsao et al, 2020).

Lastly, the inhibitor was tested during liver transplantation as cell

death driven by reperfusion is a major concern. Treatment showed

some therapeutic effect by reducing apoptosis (Baskin-Bey et al,

2007). As mentioned by the authors, more studies would need to be

conducted to confirm these observations. Another caspase inhibitor,

GS-9450, reduced ALT levels in patients suffering from non-alco-

holic steatohepatitis (Ratziu et al, 2012). Therefore, although

caspase inhibitors showed some potential in the treatment of vari-

ous hepatic disease, more studies are needed to evaluate their thera-

peutic potential.

As described earlier, PARP1 plays a critical role in DNA damage

repair pathways. PARP1 inhibitors induce cytotoxicity, especially in

BRCA1/2 mutated (homologous recombination-deficient (HDR))

cancers cells (Bryant et al, 2005; Farmer et al, 2005). This is

explained by synthetic lethal interaction between BRCA1/2 and

PARP1 during DNA repair (Lord & Ashworth, 2017). PARP inhibi-

tors “trap” PARP1 at the DNA inducing blockage of replication forks

leading to cell death in HDR tumors (Murai et al, 2012). Several

PARP inhibitors are approved in BRCA1/2 mutated ovarian cancer

as well as BRCA mutated HER negative breast cancer with ongoing

trials for other forms of cancer (Hoy, 2018; Jiang et al, 2019; Murthy

& Muggia, 2019).

Ferroptosis has been implicated in several experimental models

of reperfusion injury. In addition, chelation of iron by M30 or a-
lipoic acid showed improvement in neurodegenerative disease

models (Kupershmidt et al, 2012; Zhang et al, 2018; Han et al, 2020)

suggesting a possible benefit in the clinical setting. In a clinical

trials, iron chelator DFO (desferrioxamine mesylate) slowed the

progression of dementia in Alzheimer’s patients over the placebo

group (McLachlan & Dalton, 1991). While inhibition of ferroptosis

may be a promising strategy for neurodegenerative diseases, ferrop-

tosis inducers showed a potential benefit for cancer. In mouse

models, induction of ferroptosis reduced the tumor growth/size

significantly compared to the controls (Kim et al, 2016). This

process was reversible by cotreatment of DFO (Kim et al, 2016).

There are several potential strategies targeting ferroptosis in cancer

reviewed by (Dixon & Stockwell, 2019). Several agents which can

potentially induce ferroptosis by interference with the GSH synthesis

or GPX4 have been investigated in clinical trials. The GSH synthesis

inhibitor (Buthionine sulfoximine-BSO) reduced GSH levels in

tumor cells and was tolerated in patients in phase I clinical trials

(Bailey et al, 1997). The Xc
� inhibitor Sulfasalazine (SAS) reduced

targeted cancer stem cell populations in a phase I trial (Shitara et al,

2017). Interestingly, the approved cancer drug altretamine, which

was originally classified as a alkylating agent, was identified as a

potential GPX4 inhibitor (Woo et al, 2015). These examples show

the perspective of targeting ferroptosis for various diseases but,

clearly, further research is needed to understand its full potential.

In summary, various cell death pathways are implicated in

numerous seminal physiological processes. Therefore, they repre-

sent attractive targets for therapeutic intervention with the hope of

addressing unmet medical needs and helping patients suffering from

cancers, neurodegenerative, inflammatory, and other diseases.
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