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Activation of the medial preoptic area (MPOA)
ameliorates loss of maternal behavior in a
Shank2 mouse model for autism
Stefanie Grabrucker1,2, Jessica Pagano3,4, Johanna Schweizer1 , Carolina Urrutia-Ruiz1,

Michael Sch€on1, Kevin Thome1, G€unter Ehret5, Andreas M Grabrucker2,6,7, Rong Zhang8,9,10,

Bastian Hengerer11, J€urgen Bockmann1, Chiara Verpelli3, Carlo Sala3 & Tobias M Boeckers1,12,*

Abstract

Impairments in social relationships and awareness are features
observed in autism spectrum disorders (ASDs). However, the under-
lying mechanisms remain poorly understood. Shank2 is a high-confi-
dence ASD candidate gene and localizes primarily to postsynaptic
densities (PSDs) of excitatory synapses in the central nervous system
(CNS). We show here that loss of Shank2 in mice leads to a lack of
social attachment and bonding behavior towards pubs independent
of hormonal, cognitive, or sensitive deficits. Shank2�/� mice display
functional changes in nuclei of the social attachment circuit that
were most prominent in the medial preoptic area (MPOA) of the
hypothalamus. Selective enhancement of MPOA activity by DREADD
technology re-established social bonding behavior in Shank2�/�

mice, providing evidence that the identified circuit might be crucial
for explaining how social deficits in ASD can arise.

Keywords autism spectrum disorders; bonding; SHANK3; social behavior;

synapse

Subject Category Neuroscience

DOI 10.15252/embj.2019104267 | Received 15 December 2019 | Revised 9

December 2020 | Accepted 16 December 2020 | Published online 25 January 2021

The EMBO Journal (2021) 40: e104267

Introduction

The capacity to establish and maintain social bonds is a primary

component of social behavior in mammals (Carter, 1998). Social bonds

in mammals may form between a parent and infant, or between two

adults, or between individual members of social groups (Broad et al,

2006; Mogi et al, 2011; Lieberwirth & Wang, 2014; Johnson & Young,

2015). The first bond which is formed in the life of social mammals is

the bond between a mother and an infant, and it is thought to provide

the neuronal template for later forms of pro-sociality or social relation-

ships (Rilling & Young, 2014; Numan & Young, 2016).

Autism spectrum disorders (ASD) are neurodevelopmental disor-

ders characterized by a chronic impairment in the formation of

social relationships (Barak & Feng, 2016). Unraveling the cause of

the deficits in establishing affective bonds to other people, resulting

in a profoundly disturbed pattern of social development, may be

critical to understanding ASD. However, so far, the underlying

neuronal mechanism that might account for the inability to form

social relationships in ASD remain poorly understood.

Social bonds are the most highly motivated forms of social behav-

ior and are mediated by an evolutionary conserved neurocircuitry

(Insel, 2003; Broad et al, 2006). The major components of the circuit

have been identified and involve the amygdala (AMY), the medial

preoptic area (MPOA) of the hypothalamus, and the dopaminergic

neurons in the ventral tegmental area (VTA) which project toward

the nucleus accumbens (NAcc) to form a social engaged reward

system (Numan & Insel, 2003). Previous studies indicate that the

MPOA plays a central role in the control of social bonding behavior.

Bilateral lesions or temporary inactivation of the MPOA region

disrupt all components of social attachment behavior, whereas the

stimulation of the MPOA facilitates its full expression (Numan, 2007;

Wu et al, 2014; Kohl et al, 2018). Recently, it has also been demon-

strated that activation of neurotensin (Nts)-expressing neurons in the
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MPOA promotes social attraction during adult social interactions,

suggesting that the MPOA is a central node in the neuronal network

that regulates social behavior by connecting social information to the

reward system (McHenry et al, 2017).

In this study, we use an ASD mouse model, generated through

the deletion of Shank2 (SH3 and multiple ankyrin repeat domains

protein 2) (Schmeisser et al, 2012), to investigate impairments in

social bond formation on a behavioral level, and to identify the

underlying pathology on cellular and circuit level focusing on the

aforementioned circuit regulating social bond formation.

SHANK2 (ProSAP1) is one of the major scaffold proteins of excita-

tory synapses reported to play a key role in the structural assembly

and integrity of the postsynaptic density (PSD), navigating proper

synaptic function by organizing an impressive excitatory signaling

machinery within the glutamatergic spine (Lim et al, 1999; Naisbitt

et al, 1999; Boeckers et al, 2002; Grabrucker et al, 2011; Sala et al,

2015). Several genetic variations of the human SHANK2 gene have

been identified in patients with ASD, schizophrenia, and develop-

mental delay and intellectual disability (Wischmeijer et al, 2011;

Sanders et al, 2012; Rauch et al, 2012; Prasad et al, 2012; Chilian

et al, 2013; Schluth-Bolard et al, 2013; Leblond et al, 2014; Costas,

2015; Peykov et al, 2015a,b; Homann et al, 2016). Heterozygous loss-

of-function mutations in the human SHANK2 gene are significantly

associated with ASD, and dysfunctional social relationships are key

symptoms and core characteristics of these loss-of-function mutations

in humans (Berkel et al, 2010, 2012; Pinto et al, 2010; Leblond et al,

2012; Guilmatre et al, 2014). Previous studies have also demonstrated

that Shank2 deletion in mice results in prominent autism-like social

deficits (Schmeisser et al, 2012; Won et al, 2012; Pappas et al, 2017;

Kim et al, 2018; Eltokhi et al, 2018). Although the underlying mecha-

nisms are still mostly unknown, it has been suggested that impaired

NMDA receptor function might contribute to the development of

social interaction deficits in Shank2�/� mice (Won et al, 2012).

Here, in a series of behavioral experiments specifically designed to

evaluate social attachment behavior, we demonstrate that in mice the

genetic depletion of Shank2 selectively leads to profound incapability

to initiate social bonding. Our data provide the first evidence that this

incapability is based on a disrupted neuronal circuit coding for social

attachment behavior and cannot be just attributed to a dysfunction of

hormones regulating social behavior as previously proposed for ASD

patients. Furthermore, our study links the function of SHANK2 to the

MPOA, the evolutionary conserved node, and “hot spot” of the social

behavioral network, which ties social behavior to the reward system.

Notably, chemogenetic activation of MPOA neurons improved social

bonding in Shank2�/� mice, confirming the sufficiency of MPOA

activity to restore disrupted social attachment behavior in Shank2�/�

mice. Collectively, our findings highlight a possible new mechanism,

how social deficits in ASD might arise, namely through the inability

to establish social attachment and bonding behavior.

Results

Shank2�/� mice are not capable of initiating social
bonding behavior

Social attachment behavior in Shank2�/� mice was assessed by

several read-outs for maternal behavior. Intriguingly, breeding of

female Shank2�/� mice with Shank2+/+ males resulted in a dramatic

decrease in pup survival (Fig 1A). Although Shank2�/� mice did

not display a significant difference in litter-size and delivered on

term (Appendix Fig S1A and B), all pups born from Shank2�/�

mothers died within 24 h after delivery (Appendix Fig S1C). Pups

were found scattered within the bedding material, ignored, and

neglected by the mother (Fig 1B(a–f) and C). Of particular note was

that Shank2�/� mice displayed impaired placentophagia, a distinc-

tive mammalian behavior, and most litters of Shank2�/� dams

contained at least one pup with its placenta or umbilical cord left

intact. Furthermore, some pups of Shank2�/� mice were still found

enclosed in fetal tissue (Fig 1D and E). In addition to being aban-

doned, pups of Shank2�/� dams displayed injuries, predominantly

in the facial region (Fig 1B(g,h) and F). Shank2�/� mothers exhib-

ited a similar phenotype in subsequent pregnancies, with pups scat-

tered after birth in the bedding and high pup lethality during the

first postnatal days. A comparison of the survival rate of pups from

the first and second litter yielded no significant difference

(Appendix Fig S2A and B), indicating that the observed phenotype

in Shank2�/� mice cannot be overcome by social experience with

the pups.

The social bonding defect is caused by the phenotype of
Shank2�/� mice and cannot be attributed to general cognitive
and olfactory deficits

The absence of milk in the stomach of Shank2+/� pups (Fig 2A, left

panel arrowheads) and the reduction of body weight within the first

postnatal days indicate that Shank2�/� mothers fail to nurse their

pups. However, an inspection of the mammary glands revealed that

Shank2�/� mice displayed morphologically normal mammary

glands that can undergo the transition to the secretory state, charac-

terized by differentiation of the alveolar lobules (Fig EV1A and B).

Milk transport and milk secretion from the alveoli in the mammary

gland ducts can be induced by myoepithelial contraction triggered

through oxytocin treatment (Plante et al, 2011). Upon exposure to

oxytocin, the mammary glands of Shank2�/� mice were able to

secrete milk, indicating that Shank2�/� mothers were in principle

able to lactate, and therefore, are physiologically capable of nurtur-

ing their pups (Fig EV1B). Since breeding of Shank2�/� mothers

with wild-type males gives rise to heterozygous pups only, we

investigated, whether the decreased survival rate was a conse-

quence of this genotype. To that end, cross-fostering experiments

were performed. Shank2+/� pups were given to Shank2+/+ mothers

and Shank2+/+ pups to Shank2�/� mothers (Fig 2B and C). The

results demonstrate that Shank2+/� pups developed normally upon

weaning from Shank2+/+ mothers, whereas Shank2�/� mothers

failed to raise Shank2+/+ pups. These results strongly suggest that

the high pup mortality was caused by behavioral deficits of

Shank2�/� mothers (Fig 2B and C).

Social attachment in mice depends on the detection of phero-

mones or odorants from the pups (Gandelman et al, 1972; Ehret &

Buckenmaier, 1994). In a next step, we performed an olfactory

habituation/dishabituation test with a sequential presentation of

pup odor, to determine whether Shank2�/� mice display a prefer-

ence for the volatile odors of the pups (Fig 2D). We could not detect

significant abnormalities in the olfaction of pup odors in Shank2�/�

mice compared to Shank2+/+ mice (Fig 2E and F). These results are
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also in line with previous studies (Schmeisser et al, 2012; Won et al,

2012) reporting that Shank2�/� mice displayed normal olfactory

abilities. Although the function of SHANK2 could be very specific to

the neuronal circuit regulating social bonding, the data so far do not

exclude a global cognitive defect, which might explain the deficits

observed in social attachment in Shank2�/� mice. To address this

question, a novel object recognition test for short-term memory

(Fig 2G), as well as a Y maze task, was performed. Our data demon-

strate that Shank2�/� mice display no impairments in the novel

object recognition test for short-term memory (Fig 2H) and no defi-

cits in spontaneous alternation behavior of the Y maze task (Fig 2I)

as previously reported (Schmeisser et al, 2012). In addition, it has

been demonstrated in a recent study that Shank2�/� mice display

no significant alterations in social recognition, indicating that social

memory impairments cannot account for the inability to initiate

social bonding behavior in Shank2�/� mice (Ey et al, 2018).

Shank2�/� mice fail to display social attachment behavior, but
exhibit no gross abnormalities in hormones as well as hormonal
receptor expression

We next assessed the immediate social response of Shank2�/� dams

directed toward pups in a pup retrieval assay (Fig 3A–H). In

comparison with Shank2+/+ dams, which built well-defined nests,

the nest quality of Shank2�/� mothers was significantly reduced

(Fig 3C and F). After 1 h, wild-type pups were placed in three

corners of the home cage, except the corner where the nest was

located (Fig 3A). The number of pups retrieved into the nest over a

time period of 30 min was measured on postpartum day 1 and 2. In

contrast to Shank2+/+ dams, which displayed immediate social

attachment behavior, retrieving pups in a short time frame, crouch-

ing over them for nursing, and keeping them warm, the majority of

Shank2�/� mothers displayed profound impairments in all major

components of social bonding behavior. Shank2�/� dams rarely

retrieved pups (Fig 3B) and did not spent time grooming, crouching

or interacting with the pups at all, (Fig 3D–G), both after the first

and second exposure. Interestingly, Shank2�/� mothers approached

and investigated the pups provided. No significant difference was

detected in the latency to approach the first pup in comparison with

Shank2+/+ dams (Fig 3H), indicating that Shank2�/� dams can

locate and detect the pups. However, they are incapable of inducing

the appropriate social attachment response.

Previous studies have demonstrated that hormones such as

oxytocin (OT), progesterone, prolactin, and sex steroids are

involved in the induction and perinatal facilitation of social bonding

behavior (Ehret & Koch, 1989; Bridges et al, 1990; Insel, 1997).

Furthermore, plasma OT levels have been reported to be reduced in

autistic patients (Modahl et al, 1998). To test for an altered

hormonal status, we first evaluated the OT concentration in

Shank2�/� mice. Interestingly, we did not detect significant changes

in peripheral OT plasma concentration, nor could we find significant

alterations in OT concentrations extracted from neuronal brain

tissue of the hypothalamus and pituitary gland in Shank2�/� mice

(Fig 3I). These results were further confirmed by detailed electron

microscopic analysis of the axon swellings of the posterior pituitary

gland. The amount of dense-core vesicles harboring oxytocin and

vasopressin was indistinguishable in both genotypes (Fig 3J). Addi-

tionally, our study revealed no significant change in the plasma

A B C D

E F

Figure 1. Shank2�/� mice ignore and abandon their pups after delivery.

A In contrast to the immediate care of Shank2+/+ dams shortly after delivery, Shank2�/� dams neglect the offspring. No proper nest building is observed, and pups are
lying randomly scattered within the bedding. Right diagram: Average percentage of pups surviving until weaning per pregnancy. None of the litters of Shank2�/�

mice survived after delivery, Mann–Whitney test, ***P < 0.001, Shank2+/+ n = 12, Shank2�/� n = 9.
B–F (B, a–h) Series of pictures displaying the neglected appearance of pups delivered by Shank2�/� dams: (B,a, C), the percentage of pups gathered in the nest location

is significantly reduced in Shank2�/� mice. Mann–Whitney test, ***P < 0.001. (B,d, D) Shank2�/� mothers fail to remove extra-embryonical tissue after delivery,
Mann–Whitney test, *P = 0.036. (B,e,f, E) Shank2�/� dams showed impaired placentophagia (arrowheads), Mann–Whitney test, ***P < 0.001. (B,g,h, F) Shank2�/�

dams attack their pups inducing injury in the head and body region (arrowheads), Mann–Whitney test, *P = 0.013, Shank2+/+, n = 12, Shank2�/� n = 9.

Data information: All data are presented as mean � SEM.
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A B C

D E F

G H I

Figure 2. The social bonding defect is caused by the phenotype of Shank2�/� mice and cannot be attributed to general cognitive and olfactory deficits.

A Shank2�/� dams failed to nurture their pups. Pups nurtured by Shank2+/+ mice display milk in their stomach (arrowheads, upper left panel), while milk was absent
in the stomach of Shank2�/� pups (arrowhead, lower left panel). Pups of Shank2+/+ mice gradually gained weight (black circles) whereas no weight gain was
observed in pups delivered by Shank2�/� mothers (blue circles), two-way mixed ANOVA, effect of genotype: ***P < 0.001, effect of day: P = 0.962, day × genotype
interaction: ***P < 0.001, Shank2+/+ n = 12, Shank2�/� n = 9.

B, C Pups of Shank2�/� mice (genotype Shank2+/�) were cross-fostered by a Shank2+/+ female, while pups of the wild-type mouse (genotype Shank2+/+) were given to a
Shank2�/� mothers. In contrast to pups (+/�) given to WT mothers (black circles), +/+ pups gradually lost weight if cross-fostered by Shank2�/� mothers (blue
circles). Two-way mixed ANOVA effect of genotype: *P = 0.041, effect of day: P = 0.134, day × genotype interaction: ***P < 0.001, Shank2+/+ n = 5, Shank2�/�

n = 6.
D Olfactory habituation/dishabituation ability was evaluated in female and male Shank2+/+ and Shank2�/� by the cumulative time spent sniffing a sequential series

of nonsocial odors (water, almond, banana) and social odors (unfamiliar pup urine; unfamiliar male or female urine) delivered on cotton swabs.
E Shank2�/� female mice showed a clear preference (dishabituation: banana #3 vs. pup odor #1) for pup odor in comparison to Shank2+/+ mice, two-way mixed

ANOVA, effect of trial: ***P < 0.001, effect of genotype: P = 0.923, trial × genotype interaction: P = 0.892. Additionally, Shank2�/� female mice displayed normal
habituation response (pup odor #1–3) toward pup odor, two-way mixed ANOVA, effect of trial: **P < 0.006, effect of genotype: P = 0.742, trial × genotype
interaction: P = 0.907. Shank2+/+ n = 8, Shank2�/� n = 10.

F Shank2�/� male mice showed a clear preference (dishabituation: banana #3 vs. pup odor #1) for pup odor in comparison with Shank2+/+ mice, two-way mixed
ANOVA, effect of trial: ***P < 0.001, effect of genotype: P = 0.787, trial × genotype interaction: P = 0.769. Additionally, Shank2�/� male mice displayed normal
habituation response (pup odor #1–3) toward pup odor, two-way mixed ANOVA, effect of trial: ***P < 0.001, effect of genotype: P = 0.553, trial × genotype
interaction: P = 0.813, Shank2+/+ n = 10, Shank2�/� n = 10.

G Schematic illustration of the novel object recognition test. After a 30 min habituation phase, Shank2+/+ and Shank2�/� mice were allowed to investigate two
identical objects in the open field arena (training session). 10 min later, one of the objects was replaced with a novel object (test session). Lower panels show a
representative tracking path for a mouse in each test session.

H Shank2+/+ and Shank2�/� mice displayed a significant preference for the novel object vs. the familiar one in the test session, two-way mixed ANOVA, effect of
object: ***P < 0.001, effect of genotype: P = 0.167, object × genotype interaction: P = 0.667, Shank2+/+ n = 9, Shank2�/� n = 9.

I Additionally, no significant difference between Shank2+/+ and Shank2�/� was evident in the spontaneous alternation behavior during a Y Maze task, unpaired, two-
tailed Student’s t-test, P = 0.146. Shank2+/+ n = 10, Shank2�/� n = 10.

Data information: All graphs are presented as mean � SEM, NS: not significant.
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levels of estradiol, progesterone, and prolactin in Shank2�/� dams,

which are essential hormones involved in the regulation of social

bonding behavior (Fig 3K–M).

Furthermore, we did not find significant alterations in dominant

hormonal gene and receptor expression known to be involved in

the regulation of social bonding behavior within the hypothalamus

A

C

I J K L M

D E F G H

B

Figure 3. Shank2�/� mice exhibit impaired pup retrieval and social attachment behavior but unaltered hormone levels.

A Experimental setup of the pup retrieval paradigm. After 1-h pup deprivation, pups were placed in three corners of the home cage that did not contain the nest.
The mother retrieved the pups and crouches over them, engaging in maternal care responses (pup grooming, crouching, and nest building).

B Shank2�/� mice showed significantly less pup retrieval both on postnatal day 1 and 2, two-way mixed ANOVA, effect of genotype: ***P < 0.001, effect of day:
P = 0.258, day × genotype interaction: P = 0.258, Shank2+/+ n = 12, Shank2�/� n = 9.

C Tracking path of a Shank2+/+ mother and a Shank2�/� mother during the pup retrieval assay. Left panel: Shank2+/+ mothers immediately retrieved the pups and
started crouching over them in the nest location. Right panel: Shank2�/� mothers rarely retrieved the provided pups and failed to crouch over them in the nest
location. In addition, Shank2�/� mothers showed no or impaired nest building.

D–G Behavioral analysis of Shank2+/+ and Shank2�/� dams demonstrated a significant reduction in all major components of maternal behavior: (D) pup grooming,
unpaired, two-tailed Student’s t-test, ***P < 0.001 (E) crouching, Mann–Whitney test, ***P < 0.001 (F) nest building, Mann–Whitney test, ***P < 0.001 and (G)
Maternal interaction, unpaired, two-tailed Student’s t-test, ***P < 0.001. Shank2+/+ n = 12, Shank2�/� n = 9.

H Left panel: Example of a tracking trajectory of a Shank2�/� dams during the pup retrieval test. Shank2�/� dams investigated the provided pups (upper panel),
which was further evident in the nose-tracking path of a Shank2�/� dam (lower panel). No significant difference was detected in the latency to approach the
provided pups between Shank2+/+ and Shank2�/� mothers, Mann–Whitney test, P = 0.943. Shank2+/+ n = 12, Shank2�/� n = 9.

I Levels of Oxytocin plasma and tissue concentration in Shank2+/+ and Shank2�/� mice. Left panel: No significant difference was detected between Oxytocin plasma
concentration comparing Shank2+/+ with Shank2�/� mice, unpaired, two-tailed Student’s t-test, P = 0.276, Shank2+/+ n = 5, Shank2�/� n = 5. Right panel:
Additionally, Shank2�/� mice displayed no significant differences in hypothalamic or pituitary Oxytocin concentrations, unpaired, two-tailed Student’s t-test,
P = 0.536, Shank2+/+ n = 6, Shank2�/� n = 5; two-tailed Student’s t-test, P = 0.585, Shank2+/+ n = 5, Shank2�/� n = 5.

J Left panel: Electron micrographs of the posterior pituitary gland from Shank2+/+ and Shank2�/� mice in lower (left panel) and higher magnification. Scale bar
(500 nm). Right diagram: No significant difference was detected in the number of vesicles in the posterior pituitary gland between Shank2+/+ and Shank2�/� mice,
Mann–Whitney test, P = 0.507, Shank2+/+ n = 3, Shank2�/� n = 3.

K–M Additionally, Shank2�/� mice display no significant difference in: (K) Estradiol-, Mann–Whitney test, P = 0.475, Shank2+/+ n = 6, Shank2�/� n = 7, (L) Progesterone,
unpaired, two-tailed Student’s t-test, P = 0.570, Shank2+/+ n = 5, Shank2�/� n = 5 or (M) Prolactin-plasma concentrations, unpaired, two-tailed Student’s t-test,
P = 0.980; Shank2+/+ n = 3, Shank2�/� n = 3.

Data information: All data are presented as mean � SEM, NS: not significant. E, endothelium; CL, capillary lumen; M, mitochondria; NG, neurosecretory granule; AE,
axonal endings, HYP, Hypothalamus; PIT, Pituitary gland.
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and pituitary gland of Shank2�/� mice (Fig 4A–G). No significant

difference in oxytocin gene and oxytocin receptor mRNA expres-

sion before and after parturition was detected within the hypothala-

mus of Shank2�/� mice (Fig 4A and D). Thus, our results suggest

that both oxytocin synthesis and oxytocin target systems seem to

be unaffected in Shank2�/� mice. Together, these data implicate

that deregulation of hormone/receptor expression is not responsi-

ble for the disruption of social attachment behavior observed in

Shank2�/� mice.

The impaired social bonding in Shank2�/� mice can be attributed
to the neuronal circuit regulating social attachment behavior

Social attachment toward pups can be initiated via two mecha-

nisms in rodents: (i) hormonal priming during pregnancy or (ii)

repeated sensory exposure toward pups. Both components require

the same brain regions, harboring the same circuit, although the

social response in pup-inexperienced mice is less immediate

(Rosenblatt, 1967; Ehret & Buckenmaier, 1994). To determine,

whether the genetic deletion of Shank2 affects social attachment

behavior outside the context of pregnancy (and hormonal alter-

ations), we examined the response of naive females (and males)

after continuous pup presentation (Fig 5A). Social exposure of WT

female mice to pups over five consecutive days significantly

improved retrieval of all pups (Fig 5C). In contrast, although

Shank2�/� females approached the pups (Fig 5B), they were not

able to initiate social attachment behavior as evident by a failure

to induce pup grooming, crouching, and nest-building behavior

(Fig 5D–H). Former studies have shown that Shank2�/� mice

exhibit anxiety-like behaviors and hyperactivity as co-morbid ASD

features (Schmeisser et al, 2012; Won et al, 2012). In order to test

whether pups induce social anxiety in Shank2�/� mice, we also

examined the cumulative time (Fig EV2A and B) and average dura-

tion (Fig EV2C) that Shank2+/+ and Shank2�/� mice spent in pup

interaction zones during the first 2 min of social exposure of the

pups (trial 1). However, we did not detect significant differences

between genotypes. Further, we detected no significant differences

in the time spent freezing (Fig EV2D), implicating that social

A B C

D E F G

Figure 4. Shank2�/� mice display no gross abnormalities in hormonal gene and receptor expression.

A–G qRT–PCR analysis of mRNA expression levels of hormonal genes and hormonal receptors normalized to house-keeping gene HMBS of 9- to 10-week-old naive and
postnatal day 1 Shank2+/+ and Shank2�/� mice: (A) Oxytocin gene expression did not differ between Shank2+/+ and Shank2�/� mice, one-way ANOVA, P = 0.335. (B)
Vasopressin gene expression did not differ between Shank2+/+ and Shank2�/� mice, one-way ANOVA, P = 0.945. (C) Prolactin gene expression did not differ between
Shank2+/+ and Shank2�/� mice, one-way ANOVA, P = 0.202. Additionally, no significant difference was evident in (D) oxytocin receptor, one-way ANOVA, P = 0.675,
(E) prolactin receptor, one-way ANOVA, P = 0.912, (F) vasopressin receptor, one-way ANOVA, P = 0.418 and (G) estrogen receptor alpha expression, one-way ANOVA,
P = 0.890 in comparison with Shank2+/+ mice. All data are presented as mean � SEM, NS: not significant. Pituitary gland, (n = 3 pituitary glands pooled per value,
n = 3 hypothalamus (Oxytocin, Vasopressin, Oxytocin receptor, Vasopressin receptor, estrogen alpha) n = 2–3 hypothalamus (Prolactin receptor)). HYP,
hypothalamus; PIT, pituitary gland.
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anxiety is not a substantial factor in eliminating this form of social

behavior. We also measured average movement velocity during

the pup retrieval test, when Shank2+/+ and Shank2�/� mice did

not engage in maternal behavior. We did not find a significant

alteration between both genotypes (Fig EV2F). The failure to

induce social bonding behavior was not specific to female mice.

Also, Shank2�/� male mice could not be induced to act paternal

after continuous pup presentation (Fig EV3A–H). The results of

these behavioral experiments support our previous finding that the

impaired social bonding behavior observed in Shank2�/� mice was

independent of hormonal changes associated with parturition and

suggest that the genetic deletion of Shank2 impaired the functional

properties of the neuronal circuit regulating social attachment

behavior (Fig 5I).

To assess the functional specificity of SHANK2 within the circuit

regulating social bonding, we used in situ hybridization to map the

individual expression pattern of Shank2 within core regions of the

circuit. We found that Shank2 mRNAs were only moderately

expressed throughout the major nuclei of this neuronal pathway

(Fig EV4A and B). Since neuroanatomical abnormalities have been

reported in autistic patients, we also thoroughly analyzed the

neuronal cytoarchitecture of Nissl-stained coronal sections from

A

C

I

K L

J

D E F G H

B

Figure 5.
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adult Shank2+/+ and Shank2�/� mice and found no apparent alter-

ations of the respective brain regions (Fig EV5A and B).

Next, we analyzed the functional properties of the circuit regu-

lating social bonding (Fig 5I). We used c-FOS immunocytochem-

istry as a quantitative tool to map the neuronal activation pattern.

To that end, naive Shank2+/+ and Shank2�/� mice were socially

exposed to pup stimuli or no pup stimuli, and the expression of c-

FOS proteins was analyzed (Fig 5I and J). Notably, the results of

these experiments revealed that the genetic ablation of Shank2 in

mice profoundly impaired the neuronal activation pattern of the

circuit regulating social bonding behavior (Fig 5J). c-FOS expres-

sion was nearly absent in the MPOA and the associated down-

stream VTA-NA axis, a central and evolutionary conserved key

node and sensory relay station of social behavioral networks in

vertebrates (Fig 5K).

To further elucidate, how the absence of SHANK2 might affect

the biochemical synaptic profile of the hypothalamus, we prepared

PSD-enriched fractions of the hypothalamus from Shank2+/+ and

Shank2�/� mice and performed semi-quantitative analyses using

Western blotting for several scaffold proteins and glutamate receptor

subunits (Fig 5L; Appendix Fig S3A–C). Interestingly, we found no

significant alterations in the levels of PSD-95 and Homer1b in PSD-

enriched fractions of the hypothalamus. However, we detected a

trend toward an increase in mGluR5 levels in Shank2�/� mice,

suggesting impaired mGluR5-mediated signaling in the hypothala-

mus of Shank2�/� mice (Fig 5L).

Targeted activation of MPOA neurons in the hypothalamus
reinforces social bonding behavior in Shank2�/� mice

Based on our finding that pup exposure in Shank2�/� mice induced

no neuronal activation in the MPOA-associated reward pathway

(VTA-NAcc) of the circuit, we followed first the idea that a systemic

manipulation of the dopaminergic system might be able to restore

social bonding behavior in Shank2�/� mice. However, chronic treat-

ment with the dopaminergic agonist apomorphine was unable to

rescue social bonding behavior in Shank2�/� mice. Next, we asked

whether a direct chemogenetic stimulation of the pathway regulat-

ing social attachment behavior might alter the impairments of social

bonding in Shank2�/� mice. Since the MPOA is thought to be one of

the critical nodes of the circuit, and Shank2�/� mice displayed a

profound reduction in c-FOS expression within this area after pup

exposure, we decided to target MPOA neurons of the circuit using

the Cre-dependent DREADD (Designer Receptors Exclusively Acti-

vated by Designer Drugs) technology (Fig 6A). To this end, naive

Shank2+/+ and Shank2�/� mice were co-infected by stereotactic

injection of Cre-inducible DREADD receptors (DREADD(Gq)-

mCherry) and AAV.hSyn.HI.eGFP-Cre in the MPOA region. This

strategy resulted in selective Gq-DREADD expression within the

MPOA, as shown by double labeling for the Gq-DREADD reporter

mCherry and the GFP-Cre expression (Fig 6B) allowing us to acti-

vate neurons in the MPOA. After 4 weeks, Clozapine-N-oxide (CNO,

5 mg/kg) was administered subcutaneously to activate hm3Dq in

◀ Figure 5. Repeated pup presentation does not induce maternal behavior in Shank2�/� mice that display a circuit-specific disruption of social
attachment behavior.

A Maternal behavior can be induced in female mice, which have never been exposed to pups (naive females) by repeated social exposure to pups (trial 1–5). Virgin
female mice start to retrieve pups and engage in maternal care responses (pup grooming, crouching, nest building), thereby becoming attached to the nest
location as indicated by the tracking path.

B No significant difference was detected for latency to approach the provided pups between Shank2+/+ and Shank2�/� naive females, unpaired, two-tailed Student’s
t-test, P = 0.677. Shank2+/+ n = 9, Shank2�/� n = 9.

C Shank2�/� naive females fail to become maternal after repeated pup exposure, as demonstrated by the significant reduction of pup retrieval during trial 1–4 and
the test session on day 5 compared to Shank2+/+-induced females, two-way mixed ANOVA, effect of genotype: ***P < 0.001, effect of trial: P = 0.282,
trial × genotype interaction: P = 0.168, Shank2+/+ n = 9, Shank2�/� n = 9.

D Upper Panel: Tracking path of Shank2+/+ and Shank2�/� mice during social exposure to pups in the 20-min test session (trial 5). Shank2+/+ female mice become
attracted to the nest location engaging in maternal care responses, Shank2�/� mice, however, display no preference for the pups, or participate in nest building
(lower panel).

E–H Repeated pup exposure does not induce major components of social attachment behavior in Shank2�/� females: (E) pup grooming, unpaired, two-tailed Student’s
t-test, ***P < 0.001 (F) crouching, Mann–Whitney test, ***P < 0.001 and (G) nest building, Mann–Whitney test, ***P < 0.001, (H) maternal interaction, unpaired,
two-tailed Student’s t-test, ***P < 0.001 (trial 5), Shank2+/+ n = 9, Shank2�/� n = 9.

I, J Examination of the neuronal activation pattern after pup presentation in Shank2+/+ and Shank2�/� mice using c-FOS immunocytochemistry. Schematic map of the
neuronal pathway regulating social attachment behavior in mice. Activation of the circuit starts via olfactory input (OB-AON-Amygdala) or tactile input from the
pups to the MPOA of the hypothalamus and proceeds via the VTA-NA-VP axis to the output region of the circuit inducing attraction toward infants. After non-
exposure to pups and social exposure to pups (6 h), coronal sections (40 lm) of Shank2+/+ and Shank2�/� mice were prepared and the number of c-FOS-positive
cells in this neuronal pathway analyzed. Shank2�/� mice displayed major impairment in the neuronal activation pattern of the circuit regulating social attachment
behavior in comparison with Shank2+/+ mice. AON, two-way ANOVA, effect of genotype: P = 0.118, effect of pup exposure: **P = 0.003, pup exposure × genotype
interaction: P = 0.561, AMY, two-way ANOVA, effect of genotype: P = 0.227, effect of pup exposure: ***P < 0.001, genotype × pup exposure interaction: P = 0.073,
LS, two-way ANOVA, effect of genotype: ***P < 0.001, effect of pup exposure: ***P < 0.001, genotype × pup exposure interaction: ***P < 0.001, BNST, two-way
ANOVA, effect of genotype: P = 0.201, effect of pup exposure: ***P < 0.001, genotype × pup exposure interaction: P = 0.205, MPOA, two-way ANOVA, effect of
genotype: *P = 0.013, effect of pup exposure: **P = 0.003, genotype × pup exposure interaction: *P = 0.01. VTA, two-way ANOVA, effect of genotype: **P = 0.008,
effect of pup exposure: **P = 0.002, genotype × pup exposure interaction: **P = 0.007. NAcc, two-way ANOVA, effect of genotype: **P = 0.003, effect of pup
exposure: **P = 0.002, pup exposure × genotype interaction: **P = 0.014. Shank2+/+ and Shank2�/� without pup contact n = 3, Shank2+/+ and Shank2�/� with pup
contact n = 5.

K Representative coronal brain section (left panel) and example of c-FOS immunoreactivity in the MPOA (right panel) of Shank2+/+ and Shank2�/� pup-exposed
females (scale bar: 200 µm). The dotted line outlines the third ventricle (3V). Arrowheads indicate c-FOS-positive cells.

L Levels of synaptic proteins in the crude synaptosomes fraction (P2) from the hypothalamus of Shank2+/+ and Shank2�/� mice. Shank2+/+ n = 5 (black bars),
Shank2�/� n = 5 (blue bars). Unpaired, two-tailed Student’s t-test.

Data information: All data are presented as mean � SEM, NS: not significant.
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the MPOA during pup exposure in naive Shank2+/+ and Shank2�/�

mice. Remarkably, Shank2�/� mice treated with CNO showed substan-

tial recoveries in major components of social attachment behavior such

as maternal interaction and pup grooming behavior (Fig 6C–G). These

social responses remained impaired in vehicle-treated Shank2�/� mice.

These results demonstrate that the chemogenetic activation of MPOA

neurons alone is sufficient to restore components of social attachment

behavior in Shank2�/� mice (Fig 7).

Discussion

Deficits in reciprocal social interactions and affiliation are one of the

most prominent core manifestations of ASD (Barak & Feng, 2016).

Social impairments are present from very early infancy, and it has

been postulated that social capacities involving sharing of emotions,

appropriate use of social imitation, the ability to form social bonds,

as well as social responsiveness are in particular impaired in human

subjects with ASD (Bauminger et al, 2003). However, given that

social behavior is uniquely complex and that circuits regulating

social behavior are modulated by social experience, internal state

and require multi-sensory integration (Burke et al, 2017) little is

known about the underlying mechanisms and the etiology how

these social deficits in ASD arise. Neuroimaging studies in human

ASD patients provide evidence for hypo-activation and reduced

functional connectivity in brain regions involved in the processing

of social information (Hadjikhani et al, 2007; Pinkham et al, 2008;

Kron et al, 2012; Sato et al, 2012; Lloyd-Fox et al, 2013; von dem

A

D E F G

B C

Figure 6. DREADD-based activation of MPOA neurons ameliorates social bonding in Shank2�/� mice.

A Shank2+/+ and Shank2�/� mice were bilaterally injected with a Cre-dependent DREADD virus (pAAV-hSyn-DIO-hM3D (Gq)-mCherry) and (pENN.AAV.hSyn.HI.eGFP-
Cre)) into the MPOA region. After 4 weeks, a pup exposure assay was performed once a day for 5 days after intraperitoneal injection of vehicle or 5 mg/kg CNO
(30 min before pup exposure). Maternal behavior was analyzed at the final 20 min of pup exposure on day 5 (test day).

B Confocal images showing the location and expression of the stereotaxically injected viral constructs in the MPOA region. (a) Merge of GFP(CRE) and mCherry
(DREAAD) (scale bar: 500 µm) (b–d) Magnified views of the MPOA region (scale bar: 20 µm), (b) GFP and mCherry merge, (c) GFP, (d) mCherry. The dotted lines
outline the MPOA and the third ventricle (middle line).

C A significant genotype × treatment interaction was detected for pup retrieval, two-way ANOVA, effect of genotype: P = 0.187, effect of treatment: P = 0.759,
genotype × treatment interaction: *P = 0.031. Shank2+/+ vehicle injected n = 6, Shank2�/� vehicle injected n = 6, Shank2+/+ CNO injected n = 6, Shank2�/� CNO
injected n = 7.

D–G DREADD activation by CNO injection selectively rescues major components of social attachment behavior in Shank2�/� mice: (D) grooming, two-way ANOVA, effect
of genotype: *P = 0.018, effect of treatment: **P = 0.002, genotype × treatment interaction: ***P = 0.001. (E) Crouching, two-way ANOVA, effect of genotype:
P = 0.091, effect of treatment: P = 0.869, genotype × treatment interaction: P = 0.663, (F) nest building, two-way ANOVA, effect of genotype: P = 0.415, effect of
treatment: P = 0.341 genotype × treatment interaction: P = 0.093, (G) Maternal interaction, two-way ANOVA, effect of genotype: *P = 0.034, effect of treatment:
P = 0.149, genotype × treatment interaction: *P = 0.045. Shank2+/+ vehicle injected n = 6, Shank2�/� vehicle injected n = 6, Shank2+/+ CNO injected n = 6,
Shank2�/� CNO injected n = 7.

Data information: All data are presented as mean � SEM, NS: not significant. AC, anterior commissure and MPOA, medial preoptic area.
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Hagen et al, 2013). In particular, it has been suggested that deficits

of the oxytocin system or a dysfunction of the mesolimbic reward

pathway underlie the social interaction impairments in ASD

(Neuhaus et al, 2010; Scott-Van Zeeland et al, 2010; Kohls et al,

2013; D€olen, 2015).

Here, we demonstrate that in the Shank2�/� ASD mouse model,

social attachment, and social bonding are indeed non-existent.

Furthermore, we provide compelling evidence that the chemoge-

netic activation of MPOA neurons in the hypothalamus is sufficient

to restore the expression of social attachment behavior in

Shank2�/� mice. These results underline the importance and over-

arching control of this brain region in the regulation of social

attachment behavior that has also been demonstrated in further

recent studies (Wu et al, 2014; Kohl et al, 2018). Based on the find-

ings of our study, we propose that the primary defect in the circuit

processing social attachment behavior might arise in brain areas

activating MPOA neurons or directly in the MPOA, a subcortical

relay station of the hypothalamus, where relevant sensory inputs

are interconnected to higher-order centers of the brain (Numan,

2007; Kohl et al, 2017). MPOA neurons receive social information

from virtually every sensory modality and coordinate these sensory

inputs to distinct areas of the social network, including the VTA-

associated reward pathway (VTA-Nacc) (Numan, 2007; Kohl et al,

2018). Therefore, an intervention targeting this area may be a

promising therapeutic strategy to modify social deficits of individu-

als with ASD.

Importantly, as it has been reported for the postpartum situation,

a mostly hormone-independent induction of maternal behavior by

repeated pup exposure also shows strong c-FOS expression in the

MPOA region (Flemming et al, 1994; Stack & Numan, 2000). A

significant portion of these scattered c-FOS expressing neurons

contains galanin (GAL) and controls parenteral behavior when acti-

vated (Wu et al, 2014). In the present study, we could show that

pup-induced c-Fos expression was strongly reduced in the MPOA

region of Shank2�/� mice. These findings implicate that synaptic

SHANK2 signaling-complexes are indeed directly or indirectly active

in GAL and c-FOS positive neurons of the MPOA, and their intact

function is necessary to trigger social attachment behavior. The

current finding is also supported by evidence that GAL-positive

neurons within the MPOA are innervated by glutamatergic synaptic

Figure 7. Chemogenetic activation of MPOA neurons in the hypothalamus restores impaired social attachment behavior in Shank2�/� mice.

Activation of hM3D (Gq) DREADD receptors expressed within the MPOA by CNO rescues main aspects of maternal behavior in Shank2�/� mice. in the MPOA by CNO
rescues main aspects of maternal behavior in Shank2�/� mice.
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terminals coming from the posterior intralaminar complex of the

thalamus (Cserven�ak et al, 2017). Further, since apomorphine, a

purely dopaminergic agonist, was not able to rescue social bonding

in Shank2�/� mice, we validate a significant contribution of the

glutamatergic system to the observed phenotype.

The notion that activity of MPOA neurons has direct social

behavioral relevance is further supported by current studies that

have directly or indirectly manipulated MPOA activity, leading to

respective changes in social attraction or parenteral care in mice

(Geissler et al, 2013; Wu et al, 2014; McHenry et al, 2017; Kohl

et al, 2018; Fang et al, 2018). An open question is, how exactly the

genetic disruption of Shank2 impairs the neuronal activation of c-

FOS-positive neurons within the MPOA. Absence of SHANK2 might

reduce synapse number or impair the signaling machinery of

synapses in GAL-positive neurons (connectivity defect), or the dele-

tion of SHANK2 might reduce the activation-capability of neurons

impinging on GAL-positive neurons within the MPOA (Cserven�ak

et al, 2017). Interestingly, GAL-positive neurons have been identi-

fied to constitute a primarily GABAergic neuronal population within

the MPOA region of the hypothalamus (Wu et al, 2014; Kohl et al,

2018). Selectively activating GABAergic neurons within the MPOA

could provide further insights into the control of the circuit activity

in future. In this respect, it is worth mentioning that SHANK2

expression has recently been shown in GAD-67-positive GABAergic

neurons supporting the idea that SHANK2 may also have a particu-

lar function in these inhibitory neurons (Lee et al, 2018).

However, so far, the capability to form social attachment was not

explicitly investigated in detail in mouse models with a neuron-

specific Shank2 deletion (Kim et al, 2018; Lee et al, 2018). Our

experiments do not entirely rule out the possibility that social attach-

ment deficits might arise secondarily from other ASD-related co-

morbidities in Shank2�/� mice that have not been studied well so

far. It should also be noted that humans with SHANK2 haploinsuffi-

ciency are often diagnosed with autistic disorders in combination

with mild to moderate ID, but also poor communication skills and

eye contact, and anxious features are frequently observed within the

phenotypic spectrum of the condition (Caumes et al, 2020).

The specific role of attachment in the etiology of social impair-

ments in ASD remains poorly understood (Vivanti & Nuske, 2017).

For a long time, the inability to form social attachment or relation-

ships has been seen as a primary characteristic of ASD (Kanner,

1968). However, studies have shown that social attachment can

form in individuals with ASD (Kahane & El-Tahir, 2015), although

reported data are conflicting (Rutgers et al, 2004; van Ijzendoorn

et al, 2007). It has been suggested that attachment may not be as

prevalent as in typically developing children (Kahane & El-Tahir,

2015). Similarly, recent studies have demonstrated that only a

minority of adults or children with high functioning autism develops

secure attachment behavior (Rutgers et al, 2007; Taylor et al, 2008)

or demonstrate avoidant attachment patterns (Lamport & Turner,

2014; Gallitto & Leth-Steensen, 2015). Supporting the model that

impaired attachment behavior is a common feature of ASD behavior,

the disruption of the infant to mother attachment has recently also been

reported in the Nbea+/� ASD mouse model (Stroobants et al, 2020).

In conclusion, our study suggests that the formation of attach-

ment is impaired in Shank2�/� mice and can be restored by activa-

tion of neurons in the MPOA. Given that abnormal social

attachment and bonding may be a critical factor in the development

of social impairments in ASD, further investigation of the identified

circuit can provide valuable insights into the pathomechanisms of

social alterations in ASD.

Materials and Methods

Animals

The generation of Shank2�/� mice has been reported previously

(Schmeisser et al, 2012). All mice were backcrossed to a C57BL/6J

background for more than ten generations. Mice were generated by

cross-breeding of Shank2+/� mice to produce littermate pairs of

Shank2+/+ and Shank2�/�. Pups were kept with the dam until wean-

ing at postnatal day 21. After weaning, all mice were housed in

mixed-genotype groups of 3–4 per cage and randomly selected for

behavioral or biochemical experiments. All mice were bred and

housed according to standard laboratory conditions and provided

with food and water available ad libitum. The housing room was

maintained at 22°C, with lights automatically turned on/off in a 12 h

rhythm (lights on at 7 am). All animal experiments were performed

in compliance with the guidelines for the welfare of experimental

animals issued by the Federal Government of Germany and the local

ethics committee (Ulm University; ID Number: O.103 -7 and 1163).

Primary antibodies

Primary antibodies used for immunocytochemistry were purchased

from commercial suppliers: anti-c-FOS (4): sc-52 (dilution: 1:200,

Santa Cruz, #F0215) and anti-c-FOS (dilution: 1:1,000, Abcam,

#ab208942). For Western blotting, the following primary antibodies

were purchased from commercial suppliers: anti-PSD95 (dilution

1:4,000, Synaptic Systems, #124011), anti-Homer1 (dilution 1:10,000,

Synaptic Systems, #160022), anti-mGluR5 (dilution 1:1,000, Milli-

pore, #2757164), and anti-Beta III Tubulin (dilution 1:250,000,

Covance, #PRB-435P).

Secondary antibodies

Secondary antibodies used for immunocytochemistry were all

coupled to Alexa Fluor� 488 (dilution: 1:500, Life Technologies).

Secondary antibodies used for Western blotting were HRP-conju-

gated antibodies anti-rabbit HRP (dilution 1:1,000, Dako, Hamburg,

Germany, #P0448, LOT #20042622) and anti-mouse HRP (dilution:

1:3,000, Dako, Hamburg, Germany, #P0260, LOT #20030273).

Biochemistry and quantitative immunoblot analyses

Subcellular fractionation of mouse brain tissue isolated from 9- to

12-week-old Shank2+/+ and Shank2�/� mice was performed as

described previously with minor modifications (Distler et al,

2014). The brain regions were dissected, and tissue was homoge-

nized with the Teflon douncer in buffer 1 (10 mM HEPES pH 7.4,

2 mM EDTA, 5 mM sodium orthovanadate, 30 mM sodium fluo-

ride, 20 mM b-glycerolphosphate, protease inhibitor cocktail

(Roche)) with 12 strokes at 900 rpm. The homogenates were

centrifuged at 500 × g for 5 min at 4°C to remove nuclei, extra-

cellular matrix, and cell debris (all included in pellet P1) from
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the further procedure. Supernatant S1 was collected and centri-

fuged at 10,000 × g for 15 min at 4°C to separate the crude

membrane fraction (P2) and the cytosol (S2). Pellet P2 was resus-

pended in 500 µl buffer 2 (50 mM HEPES pH 7.4, 2 mM EDTA,

2 mM EGTA, 5 mM sodium orthovanadate, 30 mM sodium fluo-

ride, 20 mM b-glycerolphosphate, 1% Triton X-100, protease inhi-

bitor cocktail (Roche)) and centrifuged at 20,000 × g for 80 min

at 4°C to obtain pellet P3 (Triton X-100 insoluble PSD fraction)

and supernatant S3 (Triton X-100 soluble synaptic cytosol). Pellet

P3 was resuspended in 50 µl buffer 3 (50 mM Tris pH 9, 5 mM

sodium orthovanadate, 30 mM sodium fluoride, 20 mM b-glyc-
erolphosphate, 1% NaDOC, protease inhibitor cocktail (Roche))

and frozen in liquid nitrogen to be stored at �80°C. Bradford

analysis was performed to measure protein concentrations. 3 lg
of total protein was loaded in 4× SDS sample buffer on an SDS–

PAGE and subsequently blotted on nitrocellulose membranes.

After incubation with the primary antibodies and an HRP-conju-

gated secondary antibody, signals were visualized with the Pierce

ECL Western blotting substrate and further detected with the

MicroChemi 4.2 machine. For quantitative analysis, the gray

value of each band was analyzed with GelAnalyzer software.

Immunocytochemistry

Free-floating immunostaining
Mice were deeply anesthetized by intraperitoneal injection of keta-

mine 100 mg/kg and xylazine 16 mg/kg, solubilized in a NaCl solu-

tion, and then transcardially perfused with 25 ml cooled PBS and

50 ml paraformaldehyde 4%. Mice were then decapitated, and the

brains were post-fixed overnight in 4% paraformaldehyde and

submerged in 30% sucrose in 0.1 M PBS (pH 7.4). Finally, brains

were frozen in OCT compound and stored at �80°C until the day

before cryostat sectioning. One day before sectioning, brains were

put at �20°C to adapt to the cutting temperature (�22°C). 40 lm
coronal brain sections were cut on a cryostat (Leica CM3050 S). The

free-floating sections were then transferred to PBS without calcium

and magnesium (PBS�/�) and blocked (3% BSA + 0.1% Triton X-

100, diluted in PBS�/�) for 2 h at RT on a horizontal shaker.

Coronal sections were then incubated for a period of 48 h at 4°C

with primary antibodies and subsequently washed 3× in PBS�/� for

15 min at RT. After washing, sections were incubated for a period

of 2 h at RT with fluorophore-conjugated secondary antibodies

coupled to Alexa Fluor� 488 (Life Technologies, dilution 1:500).

The sections were rewashed 3× in PBS�/� for 15 min at RT and

mounted with Moviol containing diluted 4,6-diamidino-2-phenylin-

dole DAPI (dilution 1:50,000).

DAB immunostaining
Coronal sections (40 lm) were cut on a cryostat (Leica CM3050 S)

and fixed for 1 h in 4% PFA. Subsequently, slides were washed

3× in 0.1 M phosphate buffer (pH 7.4) and incubated for 45 min

in 0.2% Triton X-100 and 0.1 M phosphate buffer. Slides were

rewashed 3× using 0.1 M phosphate buffer (pH 7.4) and incubated

for 20 min in 1% hydrogen peroxide. After 20 min, sections were

rewashed three times in 0.1 M phosphate buffer (pH 7.4) and

blocked for 30 min in 2% goat serum diluted in 0.1 M phosphate

buffer (pH 7.4). After blocking, sections were incubated overnight

at RT with the primary c-FOS antibody (c-FOS (4): sc-52, Santa

Cruz Biotechnology, diluted 1:500 in 2% goat serum). Next morn-

ing, slices were washed 3× using 0.1 M phosphate buffer (pH 7.4)

and incubated for 1 h with horseradish peroxidase-conjugated

secondary antibody (goat-anti-rabbit IgG/HRP PO 448, Dako,

Germany, diluted in 0.1 M phosphate buffer, 1:200, or goat-anti-

mouse IgG/HRP ab205719). After rewashing the slices for 3× in

0.1 M phosphate buffer, peroxidase reaction was performed using

diaminobenzidine (DAB) and hydrogen peroxide (H2O2) and inten-

sified by nickel chloride (8%). After 7 min incubation, slices were

rewashed 3× in 0.1 M phosphate buffer and dehydrated for 5 min

in a series of ethanol baths (70, 90, 2 × 100% ethanol), following

three xylene incubations (5 min each). Finally, sections were

embedded in Entellan.

Microscopic analysis
Brain areas were selected according to the mouse brain atlas of

Paxinos and Franklin (Paxinos & Franklin, 2004) from each of the

following brain regions and analyzed as described (Matsushita

et al, 2015) (AON, LS, BNST, AMY, MPOA, NAcc at the following

bregma coordinates: anterior olfactory nucleus (AON; 2.1 mm,

plate: 13), lateral septum (LS; 0.62 and 0.38 mm, plate: 26,28), bed

nucleus of the stria terminalis (BNST; 0.62 and 0.38 mm, plate:

26,28), cortical and medial amygdala (cAMY: anterior cortical

amygdaloid area, posterolateral cortical amygdaloid area; mAMY:

medial amygdaloid nucleus, posterodorsal part, medial amygdaloid

nucleus, posteroventral part, �1.34 and �1.58 mm, plate: 42,44),

medial preoptic area (MPOA; 0.14 mm, 0.02 mm, �0.1 mm, plate:

30,31,32), ventral tegmental area (VTA; �3.16 and �3.28 mm,

plate: 57,58) nucleus accumbens (NAcc: NAcc core, NAcc shell);

1.34 and 1.18 mm, plate: 20,21). Images were obtained with an

upright Axioscope microscope equipped with a Zeiss CCD camera

(16 bits; 1,280 × 1,024 ppi) using Axiovision software (Zeiss). c-

FOS-positive cells were counted in the bilateral areas of each

section using ImageJ 1.50i. The same threshold was applied for

corresponding sections. Across the two sections of each brain

region, the average was calculated for each subject.

Nissl staining

Nissl staining was performed on paraffin sections (16 µm thickness)

of 8- to 9-week-old Shank2+/+ and Shank2�/� mice. For Nissl stain-

ings, the sections were hydrated in 0.5% w/v cresyl violet (Merck

Millipore) for 3 min. After rinsing, sections were dehydrated and

mounted with Entellan mounting medium. Images were taken with

a Mirax scanner (Carl Zeiss, Germany).

Mammary gland whole-mount preparation

Mammary glands were dissected from 8- to 10-week-old naive and

pregnant (1 day before delivery) Shank2+/+ and Shank2�/� female

mice as previously described (Plante et al, 2011). The No. 4 (in-

guinal) glands were stretched on a glass slide and subsequently

fixed at 4°C overnight, by Carnoy’s fixative (100% ethanol, chloro-

form, glacial acetic acid, 6:3:1). On the next day, mammary glands

were washed with 70% ethanol for a period of 15 min. Subse-

quently, mammary glands were rehydrated gradually using water

baths for incubation of 5 min each in the sequence 70-, 35-, 15%-

ethanol, and finally ddH2O. Glass slides were then placed in carmine
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alum staining solution overnight at room temperature. On the next

day, carmine alum stained mammary glands were gradually dehy-

drated for a period of 5 min by a series of ethanol baths in the

following sequence (50, 70, 95, 100%) flowed by 5-min xylene incu-

bation. Glass slides were then put in methyl salicylate solution,

which was placed under the fume hood overnight. The next day,

mammary glands were embedded in Entellan. Images were taken

with a Leica M80 microscope.

Oxytocin-induced milk ejection

Milk ejection of mammary glands was induced as previously

described (Plante et al, 2011). Briefly, mice were sacrificed and

the thoracic mammary glands (No. 2–3) of Shank2+/+ and

Shank2�/� dams were incubated with oxytocin solution (1 mg/

ml, Sigma-Aldrich). After 1 min, the oxytocin solution was care-

fully removed with a transfer pipette and the milk entry into the

ducts monitored.

Electron microscopy

Pituitary glands were removed from the brain of 10- to 12-week-old

Shank2+/+ and Shank2�/� mice and incubated in immersion fixation

[2% paraformaldehyde, 2.5% glutaraldehyde, 1% saccharose,

diluted in 0.1 M cacodylate buffer (pH 7.4)] overnight. The next day,

samples were washed in 0.1 M cacodylate buffer (pH 7.4) for 1 h.

The samples were dehydrated and stained with 2% uranyl acetate

and embedded in epoxy resin. Ultrathin sections were cut in the facil-

ity for electron microscopy (EM), University of Ulm and analyzed by

transmission electron microscope LEO912 Omega (Zeiss) at 120 kV.

For quantitative analysis of the vesicle number in the pituitary gland,

we analyzed three independent Shank2+/+ and Shank2�/� littermates

(per animal n = 50 pictures) using ImageJ 1.50i.

Quantitative Real-time PCR

Isolation of total RNA from Shank2+/+ and Shank2�/� mice was

performed using the RNeasy� kit (Qiagen, Germany) as described

by the manufacturer. Isolated RNA was stored in RNase-free water

at �80°C. Quantitative real-time reverse transcription PCR (qRT–

PCR) was carried out in a one-step, single-tube format using the

Rotor-GeneTM SYBR�-Green RT–PCR FAST Kit (Qiagen) as previ-

ously described (Grabrucker et al, 2014). Data were analyzed

using the hydroxymethylbilane synthase (HMBS) gene to normal-

ize transcript levels. Cycle threshold (ct) values were calculated by

the Rotor- Gene-Q Software (version 2.0.2, Qiagen). All reactions

were run in technical triplicates, and mean ct values for each reac-

tion were taken into account for data analysis. To ascertain primer

specificity, a melting curve was obtained for the amplicon prod-

ucts to determine their melting temperatures. For all genes

analyzed, commercially available QuantiTect primers from Qiagen

were used.

In situ hybridization

In situ hybridization was performed as described previously (Boeck-

ers et al, 2005). Briefly, reactions were performed with 16 µm

cryosections from freshly frozen 8 weeks old Shank2+/+ brain

mouse sections which were cut on a cryostat (Leica CM3050 S). Tran-

scripts encoding Shank2_Ex7 were detected with an S35 labeled

cDNA antisense oligonucleotide (50-GCA GGG CTG GAA ATG CTG

GCG TGG GTG TGA ATT CCT CAA T-30) purchased from Eurofins

MWG Operon (Ebersberg, Germany).

Enzyme-Linked Immunosorbent Assay

Plasma oxytocin peptide-level measurements
Blood was collected via cardiac puncture from 8- to 10-week-old

naive Shank2+/+ and Shank2�/� mice in tubes containing EDTA

(2 mg/ml) as an anticoagulant and aprotinin (0.6 trypsin inhibitory

units (TIU)/ml of blood) was added to inhibit the activity of protei-

nases. Blood was immediately centrifuged at 1,600 × g for 15 min

at 4°C. The resulting supernatant (plasma) was collected. Oxytocin

peptide was extracted from plasma according to the manufacturer’s

instructions. Briefly, plasma was acidified by adding 500 ll of

buffer A, mixed, and subsequently centrifuged at 12,000 × g for

20 min at 4°C. Acidified plasma was loaded on equilibrated SEP-

Columns containing 200 mg of C18. Columns were washed twice

with 3 ml of buffer A and eluted with 3 ml of buffer B. The eluent

was collected in polystyrene tubes and evaporated to dryness using

a centrifugal concentrator (SpeedVac). The dried extract was recon-

stituted with 1× assay buffer. Oxytocin concentration was

measured using an Enzyme-Linked Immunosorbent Assay (ELISA)

kit (Enzo Life Science, ADI-901-153), according to the manufac-

turer’s instructions.

Brain tissue oxytocin peptide-level measurements
Mice were sacrificed between the age of 8–10 weeks using CO2,

followed by decapitation. The hypothalamus and pituitary gland

were immediately dissected from the brain and snap-frozen in

liquid nitrogen and stored at �80°C. Oxytocin peptide was extracted

from neuronal tissue, according to the manufacturer’s instructions.

Briefly, tissue was weighted and subsequently homogenized in

three parts of 50% acetic acid containing protease inhibitor using a

pulse sonicator. The total protein concentration was measured

using a NanoDrop. After homogenization, the tissue was boiled for

10 min at 100°C. Cell debris was removed by centrifugation of the

tissue homogenate at 11,000 g for 30 min at 4°C. The supernatant

was carefully removed and combined with the same amount of

buffer A to acidify the sample. Subsequently, the tissue homogenate

was centrifuged for 20 min at 12,000 × rpm. The resulting super-

natant was collected and loaded on an equilibrated SEP-Column

containing 200 mg of C18. Columns were washed slowly with 3 ml

of buffer A, and finally, the peptide was eluted with 3 ml of buffer

B. Eluant was evaporated to dryness using a centrifugal concentra-

tor (SpeedVac). The dried extract was kept at �20°C as pellet over-

night until reconstitution. The concentration of oxytocin of the

tissue was determined using an enzyme-linked immunoassay kit

(Phoenix Pharmaceuticals, EK-051-01), according to the manufac-

turer’s instructions.

Plasma progesterone level measurements
Blood was collected via cardiac puncture from 8- to 10-week-old

Shank2+/+ and Shank2�/� dams (postnatal day 0) in tubes

containing EDTA (2 mg/ml) as an anticoagulant and aprotinin

(0.6 trypsin inhibitory units TIU/ml of blood) was added in order
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to inhibit the activity of proteinases. Blood was immediately

centrifuged at 1,600 × g for 15 min at 4°C. The resulting super-

natant (plasma) was collected. Progesterone concentration of the

plasma was determined using an enzyme-linked immunoassay kit

(Enzo Life Science, ADI-900-011), according to the manufac-

turer’s instructions.

Plasma prolactin level measurements
Blood was collected via cardiac puncture from 8- to 10-week-old

Shank2+/+ and Shank2�/� dams (postnatal day 0) in tubes contain-

ing EDTA (2 mg/ml) as an anticoagulant and aprotinin (0.6 trypsin

inhibitory units TIU/ml of blood) was added in order to inhibit the

activity of proteinases. Blood was immediately centrifuged at

1,600 × g for 15 min at 4°C. The resulting supernatant (plasma)

was collected. Prolactin concentration of the plasma was determined

using an enzyme-linked immunoassay kit (Abcam, ab100736),

according to the manufacturer’s instructions.

Plasma estradiol level measurements
Blood was collected via cardiac puncture from 8- to 10-week-old

Shank2+/+ and Shank2�/� dams (postnatal day 0) in tubes contain-

ing EDTA (2 mg/ml) as an anticoagulant and aprotinin (0.6

trypsin inhibitory units TIU/ml of blood) was added in order to

inhibit the activity of proteinases. Blood was immediately centri-

fuged at 1,600 × g for 15 min at 4°C. The resulting supernatant

(plasma) was collected. To assure the measurement of 17-beta-

estradiol in each mouse, the plasma was concentrated to times

(2×) with amicon filters with a molecular cutoff of 10 kDa. The

levels of estradiol were assessed using an enzyme-linked

immunoassay kit (Abcam, ab108667), according to the manufac-

turer’s instructions.

Behavioral studies

Breeding for behavioral experiments
Shank2�/� and Shank2+/+ females were mated with wild-type males

at the age of 7–8 weeks. Upon pregnancy, Shank2+/+ and Shank2�/�

were housed separately with a cotton nestlet (5 × 5 cm) available

for nest building. The morning after birth, the number of pups born,

and pup weight was assessed. Additionally, each neonatal pup was

inspected for the following parameters: (i) removal or attachment of

placenta, (ii) removal of extra-embryonic tissue, and (iii) the

number of pups which were scattered in the home cage (pups sepa-

rated from each other > 5 cm) and compared to number of pups

gathered in the nest area.

Cross-fostering experiments
Age-matched pups were placed into the nest of the recipient female

the morning after delivery. Bodyweight of the pups was assessed for

1–7 postnatal days.

Retrieval experiments in postpartum females
Maternal behavior in postpartum females was assessed on postnatal

day 1 and postnatal day 2 after delivery. Observation and recordings

were made in a soundproof anechoic room. A video camera (Conrad

CCD camera S/W) was mounted above the cage to allow observa-

tion and tracking of maternal behavior. Tracking was performed by

the EthoVision XT (Noldus, Wageningen, Netherlands). One hour

before the test, the own pups of the mother were removed from the

home cage and kept warm. At the beginning of the test, the mother

was briefly removed from the home cage and three not related 1–3

old naive C57BL/6J pups were placed in each corner of the cage that

did not contain the nest. The mother was returned to the corner of

the nest facing the wall. During the next 30 min, the behavior of the

mother was recorded. Maternal behavior was assessed after a

method described previously (Calamandrei & Keverne, 1994; Brown

et al, 1996; Wu et al, 2014). Retrieval of the pups was defined as the

mother picking up the pup from the corner and transporting it to the

nest. Retrieval was only scored if the mother placed the pup entirely

into the nest. If the mother dropped the pup on the route to the nest,

retrieval was not counted.

Additionally, the following behavioral responses were scored:

latency to approach the pup (first nose contact with the a pup

(< 1 cm), grooming (sniffing and licking of the pups), crouching

(mother laying in a nursing posture on top of the pups, at least two

collected pups under the ventral side of the body), nest building

(mother engages in nest building, collects, or arranges nest mate-

rial), and maternal interaction (calculated as the cumulative time

spent grooming, crouching, and nest building). For postpartum

females, a second identical session of pup—retrieval was performed

1 day later (48 h after delivery). If a subject mouse displayed any

signs of pup directed aggression, the assay was immediately ended.

Maternal behavior of virgin female mice
Maternal behavior of virgin females was assessed during five

consecutive days with 20-min exposure to pups each day before

testing on day 5. Virgin female mice were housed in a group of 2–3

female littermates until they reached adulthood at the age of

8 weeks. Female mice that had never been exposed to pups before

were housed individually for 2 days in standard plastic cages and

were provided with nesting material and food and water available

ad libitum. During the 5 days exposure to pups, the home cage

was not cleaned and nesting material was not removed to mini-

mize disturbance of the female. On days 1–5, females were

exposed to 1- to 3-day-old C57BL/6J pups, which were placed in

the recipient female’s home cage as described above. The pups

were removed after 20 min, and behavior was analyzed and scored

as described above. Average velocity was determined during the

20-min test session when Shank2+/+ and Shank2�/� mice did not

engage in maternal behavior (retrieving, grooming, crouching, or

nest building) using EthoVision XT software (Noldus, Wageningen,

Netherlands).

Social anxiety of virgin female mice
To determine whether the pups induce social anxiety in

Shank2+/+ and Shank2�/� mice, recorded videos of the first trial

of the pup retrieval test (day 1) were center-point tracked during

the first 2 min of social exposure toward the pups using EthoVi-

sion XT software (Noldus, Wageningen, Netherlands). During this

period, Shank2+/+ and Shank2�/� mice did not start to retrieve

the pups and socially investigated the provided pups. The area of

the home cage was divided into three pup interaction zones

(corners containing pups, 6 cm × 6 cm) and corner zone (corner

containing no pups, 6 cm × 6 cm). The total amount of time and

average time Shank2+/+ and Shank2�/� mice spent in the pup

interaction zone and corner zone were measured using

14 of 19 The EMBO Journal 40: e104267 | 2021 ª 2021 The Authors

The EMBO Journal Stefanie Grabrucker et al



EthoVision XT software. An entry was defined as the center point

of each mouse was in one of the pup interaction zones or corner

zone. We also quantified manually time spent freezing with a

stopwatch during the social investigation of the pups. Freezing

was defined as the cessation of all body movements, except respi-

ratory movements.

Parental behavior in male mice
Male mice were housed in groups of 2–3 male littermates. At the

age of 7 weeks, they were individually housed for 2 days, provided

with nesting material as well as food and water available ad libitum.

The test paradigm was identical to virgin female mice. Male mice

that displayed any signs of pup directed aggression were immedi-

ately removed and excluded from the test.

Olfactory habituation/dishabituation test
Mice were tested in the habituation/dishabituation test to assess

their ability to detect and differentiate nonsocial and social odors

after a method previously described (Yang & Crawley, 2009). Behav-

ior was recorded in a soundproof chamber under a dim red light (15

lux). To avoid object neophobia, mice were habituated for 30 min

to the test cage, containing a sterile dry cotton swab. After the habit-

uation period, nonsocial odors, as well as social odors, were

presented on cotton applicators inserted in sequential series in the

cover-lid for 2 min (inter-trial interval 1 min). 50 ll of social and
nonsocial odors were presented in the following order: water, water,

water, almond, almond, almond, (1:100 dilution, almond extract,

Ostmann, Germany), banana, banana, banana (1:100 dilution,

Uncle Roys natural banana essence, Scotland) pup urine, pup urine,

pup urine (1:5 dilution), male/female urine, male/female urine,

male/female urine (1:5 dilution). Pup urine was collected from four

different wild-type litters (18 female/male pups, at the age of 5–

6 days). Urine was pooled and stored at �20°C upon usage. Addi-

tionally, female or male urine was collected from five (8–10 weeks

old) females or males (C57BL/6), pooled and stored at �20°C upon

usage. All nonsocial odors were presented after dipping the cotton

swabs for 1–2 s in the prepared solutions. Behavior was recorded

for a total period of 60 min. Videos were subsequently analyzed for

cumulative time spent sniffing on the cotton swab (contact of the

nose with the applicator (< 2 cm). The starting point of each odor

presentation was when the lid was placed on top of the cage.

Spontaneous alternation in a symmetrical Y maze
To assess spatial working memory, Shank2+/+ and Shank2�/� mice

were tested for spontaneous alternation behavior (SAB) in the Y

maze (3 arms, 40 × 9 cm with 16 cm high walls). Mice were placed

in a symmetrical Y maze for 5 min, which was located in a sound-

proof chamber, and the numbers of arm choices (all four paws

entering one arm) were recorded. Overlapping triplets of visited

arms (A, B, C) were calculated by recording the order of visited

arms (A, B, or C). The SAB score was calculated using the following

formula: (number of spontaneous alternation)/(total number of arm

visits � 2). To avoid odor traces, between mice, the walls and

bottom of the Y maze were carefully cleaned with 70% ethanol.

Novel Object recognition test
To evaluate spatial short-term memory, Shank2+/+ and Shank2�/�

mice were tested in the novel object recognition test in an open field

arena (50 × 50 cm). The test was performed in three phases: habitu-

ation, acquisition, and retention. Mice were first habituated to the

open field arena (without any object inside) for 30 min and placed

back into the home cage for approximately 1–2 min. In the mean-

time, two identical copies of the same objects were placed in the

two corners of the open field arena, approximately 4 cm from the

sidewall. The mouse was placed back into the same arena facing the

wall on the opposite side of the objects and allowed to explore the

setting for 10 min freely. After this acquisition period, the mouse

was placed back into the home cage. Following a 10-min retention

interval, the subject mouse was transferred back to the arena where

a novel object replaced one of the identical objects. The mouse was

allowed to explore the setting for 10 min. Recorded videos were

scored manually with a stopwatch. Object exploration was defined

as a clear nose contact with the object. To measure recognition

memory, a preference index for the novel object was calculated as

the ratio of the time spent exploring the novel object over the total

time spent exploring both objects: (discrimination index

[DI] = novel object exploration × 100/(novel object explo-

ration + old object exploration).

Viral vectors and AAV production

Viruses pAAV-hSyn-DIO-hM3D(Gq)-mCherry (44361-AAV2) and

pENN.AAV.hSyn.HI.eGFP-Cre.WPRE.SV40 (105540-AAV9) were

purchased from Addgene. Plasmids were purified by iodixanol

gradient ultracentrifugation.

AAV vectors were injected with a titer of (1.5–3.3) × 1013 particles

per ml. All viral vectors were stored in aliquots at�80°C until use.

Stereotaxic surgery

Mice were anesthetized with isoflurane (Iso-Vet, La Zootecnica),

and their heads were placed in a stereotaxic injection frame (two

biological instruments). Under continuous anesthesia, skin scalp

was incised to expose the underlying bone and a hand-held micro

drill was used to drill a hole in the opportune location. All skull

measurements were made relative to Bregma. A total of 0.8 µl of

pAAV-hSyn-DIO-hM3D(Gq)-mCherry (Addgene, 44361-AAV2) and

pENN.AAV.hSyn.HI.eGFP-Cre.WPRE.SV40 (Addgene, 105540-

AAV9) in 1:1 ratio viral solution was delivered bilaterally into the

MPOA using the following coordinates: bregma: 0.0 mm; anterior-

posterior: 0.26 mm; dorsal-ventral: 4.60 mm; lateral: �0.35 mm.

Viral injection was carried out with an Hamilton syringe (needle

gauge 26S) at a speed of 0.1 ll/min, and the needle was kept in

place for an additional 5 min to prevent backflow of the virus. Scalp

skin was stitched together with silk suture (two biological instru-

ments, K890H). After surgery, mice were carefully transferred to

single cages for 5 days with access to water and food ad libitum.

Shank2+/+ and Shank2�/� naive female mice were allowed 4 weeks

of recovery after surgery.

Behavioral experiments after DREADD

Four weeks after AVV injection, Shank2+/+ and Shank2�/� naive

female mice were subjected to a pup exposure behavioral test

(20 min per day) for five consecutive days. For the tests, they

were injected intraperitoneally on each day with either vehicle
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(DMSO (Sigma-Aldrich, D5879) + (2-Hydroxypropyl)-b-cyclodextrin
20% (Sigma-Aldrich, 332607), in 1:9 ratio solution) or Clozapine-

N-oxide (CNO) (5 mg/kg of bodyweight in DMSO + (2-Hydrox-

ypropyl)-b-cyclodextrin 20%) 30 min before the beginning of pup

exposure. After habituation to the behavior room (approximately

20 min), 1–3 postnatal-day-old non-related C57BL/6J pups were

introduced in each corner of the recipient female’s home cage that

did not contain the nest. The pups were removed after a 20 min

test session per day. Maternal behavior was analyzed at the final

day of pup exposure (day 5). Maternal behavioral responses (re-

trieval, grooming, crouching, nest building, maternal interaction)

were scored for 20 min as described in detail in section “retrieval

experiments in postpartum females.” During the 5 days of behav-

ioral testing, the home cage was not cleaned and nesting material

was not removed to minimize disturbance of the female. Subject

mice were single-housed 2 days before the pup exposure test. After

behavioral experiments, mice were transcardially perfused and the

brain analyzed for the efficiency of viral infection.

Apomorphine injection

0.25 mg/kg apomorphine (Sigma-Aldrich) was prepared in 0.5%

Tween containing 0.02% ascorbic acid (Sato et al, 2010). Shank2+/+

and Shank2�/� received subcutaneous administration of 0.1 ml/

10 g of mouse body weight or as vehicle the same volume (0.5%

Tween, 0.02% ascorbic acid). The drug was administrated 15 min

before maternal behavior observation began. Rescue experiments

were performed in naive Shank2+/+ and Shank2�/� female mice.

Pup exposure was repeated for five consecutive days before testing

on day 5 as described above.

Statistics

Data are depicted as mean with the standard error of the mean

(SEM). Normal distribution was determined by Shapiro–Wilk test.

For normally distributed data, single comparisons were tested using

independent Student’s t-test. Nonparametric data were examined

using the Mann–Whitney U-test. Experiments with more than two

groups were subjected to a one-way ANOVA if normally distributed

and compared using Bonferroni’s post hoc test. Multiple compar-

isons of nonparametric data were made by a Kruskal–Wallis analy-

sis followed by Dunn’s post hoc test.

Experiments with two between factors (treatment, genotype)

were analyzed using a two-way ANOVA, to determine genotype and

treatment effect or interaction between both factors. Experiments

with one “between-subjects” factor (genotype) and one “within-

subjects” factor (trial) were analyzed using a two-way mixed

ANOVA. Statistical analysis was performed with SPSS version 22.

Statistical tests were two-tailed with a significance level of a ≤ 0.05.

Statistically significant differences are indicated in the figures by

*P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.

Data availability

This study includes no data deposition in external repositories.

Expanded View for this article is available online.
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