Skip to main content
. 2021 Feb 13;26(4):992. doi: 10.3390/molecules26040992

Table 1.

Summary of Polymer Blends.

Polymer Properties Study Type Degradation Clinical Application Reference
Poly-l/dl-Lactide [(P[L/DL]LA)] (70/30)
Copolymer
Sufficient to support fractures, bendable In vivo, human Consistent with bone healing Orbital fractures [11]
P(D(2%),L(98%))lactide
Copolymer
Sufficient to support fractures, bendable In vivo, human Consistent with bone healing Interference fixation screws for anterior cruciate ligament surgery [12]
PLGA (l-lactide 82: glycolide 18)
Copolymer
7 GPa Young’s modulus
50% by 12 weeks
In vitro 50% decline in mechanical properties by 12 weeks, peak retention at 8 weeks Choice of material in foot surgery [13]
PLGA/PLA
(100:0, 75:25, 50:50, 25:75, 0:100)
Copolymer
N/A In vivo, rodent 2 weeks–6 months Oral resorbable
implants
[14]
Poly(lactic acid)- b-poly(lactide- co-caprolactone) (PLA-b-PLCL)
30 wt% PLCL
Copolymer
173 MPa tensile strength
5.4 GPa Young’s modulus)
In vitro N/A Smart bone fixation material with shape memory effect [15]
PLLA/PHBV (40:60)
Blend
Improved elasticity compared to PLLA In vitro PLLA: 12 weeks, PHBV: 53 weeks Orthopaedics [16]
P(L/D,L)lactide/TMC (56:24:20 and 49:21:30)
Copolymer
Decrease in Young’s modulus and tensile strength compared to P(L/D,L)LA (0.9 GPa from 3.1, 27 MPa from 50 MPa) In vitro N/A Soft tissue engineering [17]
Poly-e-caprolactone-co-l-lactide
(100:0, 90:10, 80:20, 60:40) compatibilised with 2.0 phr Joncryl®
Blend
Young’s modulus/stress at break:
100:0—1.5 GPa/57.6 MPa
90:10—1.2 GPa/44.8 MPa
80:20—1.1 GPa/41.8 MPa
60:40—0.32 GPa/14.6 MPa
In vitro N/A Long term implantable devices, tissue engineering, drug delivery [18]
Poly(d,l-lactide-co-glycolide)/(l-lactide-co-ε-caprolactone) (PDLGA/PLCL)
PDLGA(dl-lactide/glycolide, 53/47 M ratio), 70/30 l-lactide/ɛ-caprolactone M ratio
PDLGA/PLCL (80:20, 60:40, 40:60, 20:80)
Blend
Young’s modulus/Yield strength
PDLGA—1.2 GPa/36 MPa
PDLGA:PLCL(80:20)—1.1 GPa/28 MPa
PDLGA:PLCL (60:40)—0.6 GPa/19 MPa
PDLGA:PLCL (40:60)—0.02 GPa/5.6 MPa
PDLGA:PLCL (20:80)—7.1 MPa/-
In vitro Degradation accelerated by larger amounts of PLDGA. PDLGA has a lower molecular weight compared with PLCL; therefore, favours an increased hydrolytic degradation rate Minimally invasive surgery, shape memory polymer [19]
PDLLA/P(TMC-CL)
(Poly(l/d-lactide) (85:15)/20% wt (50/50 trimethylene carbonate-co-e-caprolactone)
Blend
Decrease in tensile strength (50 MPa (PLDLA) in comparison to 30 MPa (PLDLA20%P(TMC)CL)), bending modulus increase (2.7 GPa to 4.9 GPa), elongation increase (7.5% to 130%), increase in impact strength In vitro and in vivo, canine No significant mass loss up to 45 weeks in vitro, in vivo healing within 12 weeks, screws and plates loosened after 18 weeks Single fractures of the mandible [20]