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Abstract: Alzheimer’s disease is the most prevalent dementia among the elderly population. Early
detection is critical because it can help with future planning for those potentially affected. This paper
uses a three-dimensional DenseNet architecture to detect Alzheimer’s disease in magnetic resonance
imaging. Our work is restricted to the use of freely available tools. We constructed a deep neural
network classifier with metrics of 0.86 mean accuracy, 0.86 mean sensitivity (micro-average), 0.86
mean specificity (micro-average), and 0.91 area under the receiver operating characteristic curve
(micro-average) for the task of discriminating between five different disease stages or classes. The
use of tools available for free ensures the reproducibility of the study and the applicability of the
classification system in developing countries.

Keywords: Alzheimer’s disease; magnetic resonance imaging; optical sensors; image processing;
deep learning; computer-aided detection; computer-aided diagnosis

1. Introduction

Alzheimer’s Disease (AD) is the most prevalent dementia among the elderly pop-
ulation [1]. AD is a neurodegenerative disease without a known cure. Therefore, early
detection strategies have become an important research focus in the absence of an effective
treatment for AD. The proper identification of AD patients allows for adequate planning
for the future and the necessary modifications to living accommodations and lifestyle [1].
Some dietary changes or medications have proven to slow disease progression [2]. Ad-
ditionally, knowing AD’s development can help families psychologically prepare for the
future and the necessary changes in the attention that needs to be given to their family
members [1].

The advancement of early AD detection has resulted in initiatives such as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). ADNI is a repository of images
and biomarkers of healthy and AD-affected individuals available through their website
(http://adni.loni.usc.edu). ADNI originated in 2003 as a public and private endeavor,
led by Dr. Michael W. Weiner. ADNI’s primary objective is to question whether medical
images, other biomarkers, and clinical or neuropsychological evaluation can be united to
scale AD’s progress. Using the corpus of ADNI clinical images, it is possible to develop
AD early detection software tools, commonly referred to as Computer-Aided Detection
(CAD) [3]. CAD assists the clinical workers by providing a support decision system to help
them detect diseases.

The potential of human error is a primary reason to develop software for the early
detection of AD. The process of image-based early detection by health care professionals
is affected by factors such as distractions, stress, fatigue, and inherent cognitive biases
regarding the disease’s specific conditions. Lee et al. [4] affirmed that about 75% of all
medical mistakes were due to radiologists’ diagnostic errors. Similarly, Graber et al. [5]
observed that cognitive determinants contribute to approximately 74% of diagnostic errors.
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Lee et al. [4] and Graber et al. [5] considered that the most common causes of diagnostic
mistakes are inadequate systems, cognitive bias, fatigue, stress, and a high workload.
Consequently, the development of CAD driven by artificial intelligence using Deep Neural
Networks (DNNs) is increasing. These tools show remarkable proficiency in recognizing
various diseases using clinical images. For example, the work by Rajpurkar et al. [6], where
DNNs classified pneumonia in chest X-rays, demonstrated their power by outperforming
radiologists.

The ability of DNNs for clinical image classification enables the development of
diverse DNN architectures. These can be combined into computer-aided detection systems
to identify disease progression and detection such as for AD. Hence, DNNs are relevant
and a staple in clinical image analysis and diagnostics. A type of DNN, the Convolutional
Neural Network (CNN), inspired by the inner workings of living organisms’ visual cortex,
is a recognized architecture for image analysis and is currently used in the field of computer
vision. The scope of use of CNNs involves self-driving cars, drones, robotics, sports and
recreation, intelligent surveillance and monitoring, and health and medicine [7].

In [8], we created a three-dimensional CNN architecture, specifically DenseNet-121,
trained using the ADNI MRI image dataset. We measured the accuracy of detecting
Alzheimer’s disease with the implemented DNN architecture. This manuscript extends our
previous work by further explaining our data preprocessing with the inclusion of figures.
Additionally, we reevaluate our classifier using 16 runs with randomized data partitions
instead of just one run. Finally, we include and discuss attention maps to convey what the
constructed neural network perceives. Attention maps provide an interpretation of neural
networks, often criticized for being black boxes that do not explain their output. Attention
maps also help to analyze the neural network developed.

As in [8], we kept our low-cost approach. Our goal is to provide a technological
artifact that can be used across many health care services to benefit people, particularly for
developing countries with difficulties accessing specialized computing platforms.

This paper first provides some background definitions in Section 2 to support our
work. In Section 3, we describe previous work in more detail. Then, in Section 4, we
provide the methodology employed to realize this work. We present in Section 5 the results
of the design choice. We discuss those results in Section 6. We finalize our discussion with
concluding remarks and future work in Section 7.

2. Background

We begin with a brief review of the medical glossary used to provide a context for our
research. We present distinct clinical grades of disease that we desire to classify. Later, we
report two types of medical imaging used in the discovery and diagnosis of AD.

2.1. Clinical Disease Stages

Cognitively normal, significant memory concern, and mild cognitive impairment are
the distinct stages before AD’s clinical diagnosis.

2.1.1. Cognitively Normal

In the ADNI study, the control subjects are Cognitively Normal (CN) patients. They
exhibit no symptoms of depression, mild cognitive impairment, or dementia. They are
aging in a healthy manner [9].

2.1.2. Significant Memory Concern

Significant Memory Concern (SMC) is reported by the patient. SMC is quantified
using the Cognitive Change Index and a Clinical Dementia Rating of zero. Subjective
memory concerns are correlated with a greater possibility of progression, thereby lessening
risk stratification amid normal controls and addressing the gap within healthy elderly
controls and mild cognitive impairment. Nevertheless, SMC patients score inside the
typical range for cognition [9].
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2.1.3. Mild Cognitive Impairment

Mild Cognitive Impairment (MCI) patients have a subjective memory concern, either
self-reported or through a clinician or informant. Nonetheless, everyday living activities
are essentially maintained; there are no meaningful impairment levels in different cognitive
domains, and no symptoms of dementia exist. Levels of MCI (early or late) are defined
using the Wechsler Memory Scale Logical Memory II [9].

2.1.4. Alzheimer’s Disease

AD is the most common form of dementia. Dementia is a generic name for memory
and other cognitive capabilities’ decline. Dementia is severe enough to affect everyday
life. AD is a gradual disease, where dementia signs progressively worsen beyond several
years. Individuals suffer the loss of the capacity to converse and react to their surroundings.
Current medicines cannot stop the disease from advancing. Medications can temporarily
delay the worsening of dementia signs and enhance life quality for those with AD and
their caregivers [1].

Because we intend to assess if those stages are identified from medical imaging,
expressly magnetic resonance imaging, we proceed to describe two medical imaging
methods.

2.2. Medical Imaging

Medical imaging is the procedure and technique of producing visual representations of
the human body’s inside for clinical examination and medical intervention. We present two
types of medical imaging, although we are particularly interested in Magnetic Resonance
Imaging (MRI) as input for DNNs. We also introduce Positron Emission Tomography (PET)
because it is sometimes a modality that accompanies MRI. Next, we explain what MRI and
PET are.

2.2.1. Magnetic Resonance Imaging

MRI is a non-invasive imaging technique that generates a detailed volumetric anatom-
ical visualization without harmful radiation of human tissues. It is applied frequently
for treatment monitoring and disease detection and diagnosis. It is based on advanced
technology that excites and detects the difference in the direction of the rotational axis of
protons located in the water that constitutes living tissues [10].

2.2.2. Positron Emission Tomography

PET scans employ radiopharmaceuticals to produce volumetric images. This type of
scan generates small particles named positrons. A positron is a particle with approximately
equal mass to an electron, but oppositely charged. Positrons respond to electrons in the
body, and when these two particles unite, they annihilate each other. This annihilation
briefly generates an amount of energy in the configuration of two photons that shoot off in
opposite directions. These photons are measured by the detectors in the PET scanner, and
this information is employed to produce images of internal organs [11].

3. Previous Work

Our literature review focuses on the current state of deep learning for AD detection
and how much further this field can be improved through convolutional neural networks.
We employed IEEE (https://ieeexplore.ieee.org/) as the reference for artificial neural
networks because, based on the journal rankings (https://www.scimagojr.com/) for the
subject of artificial intelligence, it is the highest-ranked in both the SCImago Journal Rank
(SJR) and H-Index. We used Google Scholar and Duck Duck Go for other publications.

In the IEEE Digital Library, we employed the search string “deep AND learning
AND alzheimer AND mri” to identify the amount of cases where the classification and
detection of AD used convolutional neural networks. We ran the query from the year 2016
to the year 2019. The search resulted in 81 documents recovered from the IEEE Digital
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Library, including early access articles, journals, and conferences. As of 2020, the query
result provided an additional 39 results. The new results indicate that the research field of
Alzheimer’s disease detection with CNNs remains relevant.

Previously, in [8], we selected by title, and if the title was cryptic, we also used the ab-
stract. We focused on the implementation of convolutional neural networks. The selection
resulted in 32 articles. We focused on literature that covered convolutional deep learning
classifiers’ study to identify AD in MRI and other modalities. We restricted the review
to supervised learning, thus omitting architectures such as convolutional autoencoders.
We also screened the 39 new articles and found 10 additional articles of interest. For the
collected studies that met our selection criteria, we extracted the following information:
(1) publication year, (2) architecture of the neural network, (3) if the MRI images were
processed, (4) the modalities (number of inputs), (5) the number of classes used in the
classifier, (6) accuracy, (7) sensitivity, (8) specificity, and finally, (9) the Area Under the
Receiver Operating Characteristic curve (AUROC).

As stated in [8], we identified a concern when analyzing the collected papers and
their data. Approximately 50% of papers report accuracy, but did not report sensitivity,
specificity, or AUROC. It appears that there is a competition to achieve higher accuracy,
although this measure is misleading. A classifier may report a high accuracy and still
possess a low capability of correct prediction.

We concluded that the various research efforts are too distinct for an adequate com-
parison and contrast based on the collected information. We noticed the avoidance of
multiclass classification. The most commonly reported classifier systems were binary,
which usually results in higher accuracy. By increasing the number of classes, it is not
uncommon to see the classifiers’ performance decrease. However, multiclass models are
more informative than binary classifiers. In our search, the multiclass classifiers identified
had a maximum of four classes.

When looking for specific architectures, we noticed that there were not many entries
that used the DenseNet architecture. We did encounter papers with other varieties of
residual neural networks: three-dimensional VoxResNet [12], ResNet [13–15], and three-
dimensional ResNet [16]. Only three documents used DenseNets, of which two [17,18]
were three-dimensional, but with depthless DenseNets, and one [19] used deep DenseNets,
but two-dimensional. The collected items’ quantitative analysis did not generate a great
contribution due to these defects. However, in the studies’ review, we found documents of
remarkable quality like [20]. We also judged that some of the manuscripts collected were
not easily repeatable, for example [13].

Finally, when looking at the 10 additional papers acquired from the IEEE Digital
Library, four used three-dimensional deep learning [21–24]. We believe that, as mentioned
by [21], three-dimensional architectures are being initiated. We consider that this kind of
architecture is growing in use. We also continued to find research efforts that only report
high accuracy, but not other metrics [24–28]. Thus, the paradigm of obtaining the highest
possible accuracy in classification remains. Last, we found it interesting that [21] reported
MRI as a better modality than PET.

In contrast to previous research, we explored the process of constructing a multiclass
neural network classifier system using tools available for free. Additionally, we report
multiple performance metrics such as sensitivity, specificity, AUROC, and the model’s
accuracy, in contrast to focusing on reporting only the classifier’s accuracy. Lastly, we are
committed to reproducibility, describing our methods and parameters used in the next
section.

4. Materials and Methods

This section describes how we collected the ADNI data and how we preprocessed
them. Next, we introduce our development and how we created, using the Google Colabo-
ratory tool, an Alzheimer’s prediction model to achieve the goal of estimating the accuracy
of the detection of Alzheimer’s disease employing a three-dimensional DenseNet-121.
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4.1. Data Retrieval

We used the beta advanced search functionality of ADNI with the following criteria:
In Projects, we checked ADNI. In Research Group, we checked MCI, EMCI, AD, SMC, and
CN. In Modality, we checked MRI. We only selected MRI and excluded PET based on an
economic constraint criterion. PET requires radiopharmaceuticals. Therefore, it is more
common to find MRI being used in economically restricted circumstances.

Regarding other search options, for Image Description, we used the string MPRAGE;
for Acquisition Plane, we selected SAGITTAL; and finally, in Weighting, we selected T1.
We kept the remaining search fields with default parameters. With these parameters, we
collected 5556 magnetic resonance images with the demographics in Table 1.

Table 1. Demographics of the images.

Subject Age Subject Cohort Subject Sex

50–75 years 2811 Cognitive Normal 1520 Male 2956
75–100 years 2745 Significant Memory Concern 186 Female 2599

Early Mild Cognitive Impairment 1222 Unknown 1
Mild Cognitive Impairment 1274

Late Mild Cognitive Impairment 636
Alzheimer’s Disease 718

The MRI acquired from ADNI is in the Digital Imaging and Communication On
Medicine (DICOM) format. The images are a zipped archive of 55.5 GB, and the uncom-
pressed files hold 138 GB. We decrease that quantity with image preprocessing, and we
describe how and why in the following section.

4.2. Data Transformation

MRI data comprise groups of slices. We present in Figure 1 an extract of the MRI slides
of a subject. The extract is not complete. We only show 42 slides out of 170. Each slice is an
image, and the combination of images forms the MRI. All images or slices are a pixel matrix.
Every slice has an associated spatial thickness because they reproduce reality. Furthermore,
all pixels in each slice have a spacing, that is the space they represent. Consequently, the
data are volumetric or rectangular cuboids.

Considering the volumetric nature of the data, we applied the next transformations to
it. First, we transformed all volumetric pixels (voxels) to a spacing of 1 × 1 × 1 millimeters.
This transformation may add or delete slices or slice voxels. Next, we turned each slice into
256× 256 voxels as follows. Some slices are not square. When they are not, we filled them in
with black voxels. After they were equilateral, if they were not 256× 256, we changed them
to that dimension employing interpolation. Likewise, we made the cuboids have 256 slices
utilizing interpolation. Cubes of 256 × 256 × 256 resulted from this. From these cubes, we
created a cut from Slice 40 to Slice 214, from Row 50 to Row 199, and from Column 40 to
Column 239, to keep only the area with brain tissue. This cut allowed discarding the black
voxels’ edges and preserving the useful internal information (the brain). Because we made
all the MRIs the same size, we assumed that the cut conserved to the brain. We did not
apply methods like segmentation (splitting the brain using pattern recognition). Of those
cuboids, we employed only half of the slices and half of every slice’s rows and columns by
dropping one in between for all. The latter diminished the dimensionality of the problem
and the volume of the images considerably. Finally, we normalized the voxels’ values to an
interval of −1.0 to 1.0.
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Figure 1. Volumetric data from a subject’s MRI (extracted slice).

In Figure 2, we show an extract of a subject’s processed slices to illustrate these
transforms. It is the same subject as in Figure 1. The transform was still volumetric data.
The extract is not complete because we only show 42 slices out of 87. As can be seen from
the slices, we cut rectangles from the original slices, and these rectangles are compressed,
but still show the brain patterns.

Data transformation can be done both previously or online. We implemented both.
Nevertheless, to sustain a low-cost goal, we employed a script to apply the transformation
previously to the job of neural network training. We used the already transformed MRI.
Preprocessing beforehand may be achieved on a laptop or desktop computer. Although that
would take hours, it is not a process that would demand more than a day on contemporary
hardware.

After data transformation, the images were only 13.5 GB. We decreased the size of
the images by approximately more than ten times. This compression helped minimize our
development’s neural network storage needs and training time. The next section explains
that development.
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Figure 2. Processed volumetric data from a subject’s MRI (extract of the processed slices).

4.3. Model Construction

We selected a convolutional DNN of the DenseNet Bottleneck-Compressed architec-
ture because this kind of neural network structure has an exemplary performance with
fewer training parameters [29], hence using fewer resources. We based our implementation
on Hara et al. [30]. They based their implementation on the two-dimensional programming
available in PyTorch. However, their implementation is not general purpose, but specific. It
implements video and incorporates sample_size and sample_duration as variables related
to video sample size and duration. We generalized their implementation, and now, it
operates with all types of cuboids. Additionally, we added a channel parameter because
the implementation only considered three channels (usually red, green, and blue colors),
yet the MRI is monochromatic.

With this new programming, we set the training process of the neural network with
the next parameters.

Training Of the data retrieved from ADNI, we used 75% as the training dataset. The
training dataset was taken randomly from the full data set.

Batch size We selected a batch size of 5 MRI images for training based on the experimen-
tal results of [20].

Testing The remaining 25% of the data was the testing dataset.

Channels The images were monochromatic; therefore, we set channels as 1 in the
constructor of the neural network.

Classes At first, we set the number of classes to 6 in the neural network. Nevertheless,
we chose to drop the SMC class because we believe it is a noisy subjective
class. We finally set the number of classes to 5.
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Dropout We used a dropout rate of 0.7 based on the investigation of [20] because it
reduces overfitting.

Loss For the loss function, we employed cross-entropy. It is useful in classification
problems with more than two classes.

Optimizer We used Stochastic Gradient Descent (SGD) as the optimizer. SGD is used in
the event of unbalanced data like in our dataset.

Learning We employed a learning rate parameter of 0.1 in the SGD optimizer. At Epoch
80, we dropped the learning rate by 0.1 (we started at Epoch 0). That drop
diminished the learning rate to a value of 0.01.

Momentum We used a standard momentum of 0.9 because an SGD optimizer with mo-
mentum typically attains flatter local minima.

Epochs We established the maximum number of epochs as 80 (in a run) because
we used the Google Colaboratory platform. Due to platform’s limitations,
it was impossible to exceed 90 and reach the desired 110 epochs because it
disconnected us. As a result, we saved the model at Epoch 80. Because of
Google Colaboratory’s constraints, explained next, we needed to wait 12 h
before continuing the training. Then, we restarted training from the 80th
epoch until Epoch 110.

According to other authors, the free-of-charge resources of Google Colaboratory
“are far from enough to solve demanding real-world problems and are not scalable” [31].
However, we used Google Colaboratory to access the Graphics Processing Unit (GPU) com-
puting. With the mentioned parameters, we pushed the Google Colaboratory platform’s
boundaries to deliver a state-of-the-art DNN. This choice has constraints and consequences.
As described in [31], the free GPU backend can be used for a maximum of 12 h. However,
we believe that we had less than the allocated 12 h on some occasions, with approximately
10 h of use. The subsequent disconnection from Google Colaboratory occurred, dropping
the virtual machine with its corresponding GPU. When the user immediately reconnects,
the platform provides a new machine. However, it grants only 3 h of GPU backend. After
the 3 h, it is impossible to use a GPU backend for a defined amount of time (12 h). To
overcome the 3 h restriction, the user has to wait 12 h after the first 12 h run, as we described
in the parameters. Such constraints limit the process of training and testing to a maximum
of 12 h, which depending on the task, might be unfeasible.

Google Colaboratory’s constraints have other consequences. For example, it is com-
mon to validate or test neural networks throughout training, thus analyzing the neural
network’s accuracy and loss across all epochs. Nonetheless, to decrease the computation
time, validation or testing of the DNN was only executed at the end of the training. We
decided this since a validation cycle of 25% of the data needed around 2 or 3 min, requiring
1 h or more every 30 epochs. We accepted this trade-off. It is possible to save intermediate
neural network states and evaluate those states after completing the training. However, this
decision also signifies that methods like early stopping can not be applied. Finally, Google
Colaboratory also has disk size limitations that we overcame with our data transformation.

Based on the specified configuration parameters and considering all the constraints
associated with Google Colaboratory, we were able to achieve the results discussed in the
following section.

5. Results

With the mentioned limitations, we progressively achieved our results by increasing
the epochs. We first trained with six classes to 50 epochs. Figure 3 shows that, after training
to 50 epochs, the SMC class is not properly discriminated. The column of the predicted
SMC class is filled with zeros. Remarkably, the rest of the classes have an adequate level of
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correct classification. We decided to remove the SMC class from the complete dataset. The
deletion of this class decreased the complete dataset from 5556 MRIs to 5370 MRIs.

Figure 3. Confusion matrix with the SMC class at 50 epochs.

After removing the SMC class and training to 80 epochs, the neural network for
the remaining classes showed good classification metrics. These results are shown in
Figure 4a,b. The confusion matrix (Figure 4a) shows how most values are in the diagonal,
with fewer incorrect predictions, especially compared to the confusion matrix that included
the SMC class (Figure 3). The classifier’s predictive power can be seen in Figure 4b, showing
its potential for each class and all classes together.

(a) Confusion matrix (b) Receiver operating characteristic curves

Figure 4. Evaluation plots of DenseNet-121 at 80 epochs.

The model was improved further, although it might be considered, based on Figure 4a,
that our classifier already had a good performance. To further improve our model, we
restarted the training from Epoch 80 to 110 epochs. The last predictive model had the
metrics in Table 2 (page 11).

To produce evaluation metrics, we divided the entire dataset into four parts: 1342,
1342, 1343, and 1343 images. We then undertook a test run with each of these partitions.
We did this four times, which resulted in 16 runs in total. We report the mean, minimum,
and maximum values for specificity, sensitivity, f1-score, and support. For support, we also
report the standard deviation because the classes were not balanced. Additionally, we show
sample confusion matrices and plot the area under the Receiver Operating Characteristic
(ROC) curves for the worse, median, and best accuracies. This is shown in Figure 5. The
reported accuracies are: 0.84, 0.86, and 0.88 (respectively). We discuss the predictive
performance and metrics in the next section.
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(a) Confusion matrix for a run with 0.84
accuracy

(b) Receiver Operating Characteristic
(ROC) curves for a run with 0.84 accuracy

(c) Confusion matrix for a run with 0.86
accuracy

(d) Receiver Operating Characteristic
(ROC) curves for a run with 0.86 accuracy

(e) Confusion matrix for a run with 0.88
accuracy

(f) Receiver Operating Characteristic
(ROC) curves for a run with 0.88 accuracy

Figure 5. Evaluation plots of DenseNet-121 at 110 epochs.
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Table 2. Evaluation metrics of the obtained DNN at 110 epochs.

Specificity
(Precision)

Sensitivity
(Recall) F1-Score Support

Cognitive Normal 0.92 [0.89, 0.94] 0.93 [0.89, 0.95] 0.92 [0.89, 0.94] 380 [350, 411] σ2 = 17.13
Early Mild Cognitive Impairment 0.94 [0.92, 0.95] 0.90 [0.87, 0.92] 0.92 [0.90, 0.93] 305.5 [290, 322] σ2 = 10.27

Mild Cognitive Impairment 0.98 [0.96, 1.00] 0.85 [0.80, 0.89] 0.91 [0.89, 0.93] 318.5 [301, 343] σ2 = 10.27
Late Mild Cognitive Impairment 0.94 [0.90, 0.99] 0.51 [0.42, 0.55] 0.66 [0.58, 0.69] 159 [145, 182] σ2 = 10.31

Alzheimer’s Disease 0.59 [0.52, 0.63] 0.99 [0.98, 0.99] 0.73 [0.68, 0.77] 179.5 [163, 201] σ2 = 9.87
Macro average 0.87 [0.85, 0.88] 0.83 [0.81, 0.85] 0.83 [0.80, 0.85] 1342.5 [1342, 1343] σ2 = 0.5

Weighted average 0.89 [0.88, 0.90] 0.86 [0.84, 0.88] 0.86 [0.84, 0.88] 1342.5 [1342, 1343] σ2 = 0.5

Accuracy 0.86 [0.84, 0.88]
Micro specificity (precision) 0.86 [0.84, 0.88]

Micro sensitivity (recall) 0.86 [0.84, 0.88]

6. Discussion

Our first finding was that significant memory concern was noisy for training. We
inferred this from the results in Figure 3. This property can be because the class is biased
and is likely formed of at least two classes: people who will not develop the disease
and people who will. Besides, people who will develop the disease may possess distinct
progression levels, being, in turn, a class formed of different classes. The size of the SMC
class may be another reason why it is problematic. It is the smallest cohort by far. These
may be the causes that make it difficult to classify. We decided to remove this class.

We obtained the confusion matrix in Figure 4a after dropping the SMC class and
training to 80 epochs. In the matrix, we may see that the incorrect predictions are prin-
cipally pessimistic. That is, there are more errors above the diagonal than under it. This
arrangement of errors above the diagonal means that the classifier makes errors that predict
the upper disease stages. This kind of error is clearly in favor of patients because a false
positive is better than a false negative in diagnosing diseases. Figure 4b also shows that the
area under each curve tends to 1.0; which demonstrates the classifier’s diagnostic ability.
Notwithstanding the faults of our classifier, it is a valuable classifier. Next, we still improve
this model.

As we introduced in Section 5, we trained our final model up to 110 epochs. We
extended what we previously undertook in [8]. We evaluated the training to 110 epochs
with more rigor. We carried out 16 test runs, as described in Section 5.

We also created new confusion matrices and ROC curve plots (Figure 5). When ana-
lyzing the newly obtained confusion matrices, we noticed a possible pattern (Figure 5a,c,e).
In the AD prediction column, we see an ascending number of false AD as there is more
disease progression. There is possibly a feature that is recognized as AD as the disease
progresses. Healthy people possess this feature. These false AD predictions require further
investigation. However, without investigation, we believe that the solution would be the
brain segmentation we propose in Section 6.1.

As mentioned in Section 3, accuracy can be a misleading metric. The confusion matrix
in Figure 5c has better accuracy than the confusion matrix in Figure 5a; however, it has more
elements under the diagonal. It is preferable to have more elements above the diagonal
in the confusion matrix in health care and clinical diagnostics. The opposite is optimistic,
and in diagnostic terms, that can be a risk. A false negative can be counterproductive, as a
healthy person is misdiagnosed, with deleterious consequences. It is common in health care
clinical diagnostics to prefer a pessimistic approach to an optimistic one. We commonly
opt for false positives over false negatives in that context.

As the ability to differentiate between most classes improved, we noticed a decrease
in the late mild cognitive impairment class’s performance metrics. We inferred that we
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advanced towards a local minimum solution that increased the other classes’ predictive
power, but departed from the LMCI class’s accurate prediction. We believe that the need for
class balance in the dataset is a possible cause of this observation. The LMCI is the class with
the lowest number of instances (after the removal of SMC). The pitfall of class imbalance
and the number of instances could potentially be addressed with data augmentation, as
proposed in [32]. However, data augmentation would introduce a performance constraint
and reduce the highest amount of epochs we can use during training. Data augmentation
is a trade-off we decided not to make. Additional inspection of the LMCI prediction
showed that many of the misclassified instances were labeled as AD. We can consider this
a pessimistic behavior, and therefore, it was tolerated. Consequently, we accepted the final
metrics and the compromise of not balancing the data through data augmentation because
of the limitations imposed by Google Colaboratory.

We present additional classification metrics of this final model in Table 2. In that table,
the lowest values are for AD specificity (precision) and LMCI sensitivity (recall). We could
also include the sensitivity (recall) of MCI in the low numbers. The MCI 85% sensitivity
(recall) will miss 25% of MCI patients; however, they will be classified pessimistically
in an advanced disease stage. The AD class’s low specificity is acceptable because it
reaches almost 100% sensitivity (recall). Therefore, our approach is a useful diagnostic
method for AD, although not suitable for screening. Screening methods must possess high
specificity metrics, whereas diagnostic approaches should have high sensitivity scores.
An explanation of why the specificity metric is low is the number of multiple instances
misclassified as AD. Nevertheless, false positives are prophylactic and reduce future risks
in a diagnostic task.

Our results also show that the AUROC and accuracy values do not contradict each
other. That consistency supports that our obtained results are consequent with each other.

We constructed our models considering compromises due to the use of freely available
tools. We developed methodologies that attempted to counter the limitations and achieve
the best possible classification for diagnosis (high sensitivity). Our model’s predictive
ability has values of 0.86 mean accuracy, 0.86 mean specificity (micro), and 0.86 mean
sensitivity (micro), which overall is considered acceptable. These metrics emphasize that
our classifier can satisfactorily achieve the corresponding task of discriminating between
the classes, even with our limitations. We decided to report final micro-average numbers
instead of the macro-average. In a multiclass classification structure, the micro-average
is preferred when there is a class imbalance. Still, the macro-average and the weighted
average are higher. Finally, we only report the variance for support because, for the other
columns, the variance is close to zero.

In the next section, we provide a study of what the neural network perceives.

6.1. Attention Maps

Attention maps are visual tools that explain deep convolutional neural networks [33].
We used the M3d-Cam tool [34] with the Guided Gradient-weighted Class Activation
Mapping (Grad-CAM) algorithm. We generated new images through M3d-CAM, and with
these images, we could interpret what the neural network was emphasizing to make a
decision. For example, in Figure 6a, we can see an image in the axial plane of a person with
Alzheimer’s disease. We extracted only one slice of the cuboid. To its right, in Figure 6b,
we can see that the neural network focuses its attention on brain atrophy. We extracted the
same slice number from the attention map cuboid. In Figure 6c,d, we see the same patient
and the same features in the sagittal plane. We also only extracted one slice of that plane.
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(a) Axial plane slice (b) Attention map of the slice at the left

(c) Slice of an input image in the sagittal
plane

(d) Attention map of the slice at the left

Figure 6. Input image slices and their attention maps from an MRI of a patient with AD.

In the images in Figure 6, we can see how brain atrophy areas appear more prominent.
We noticed this behavior in other images for which we produced attention maps. The
behavior of the network was as expected in terms of identifying the regions of importance.
However, we also noticed that sometimes the neural network gave importance to bony
areas of the skull or even to areas outside the skull. In other words, the attention maps
seemed to have a potential function as debugging tools. Besides, they allowed us to propose
solutions. We believe that we must improve the preprocessing of images by removing the
skull using a mask, as the skull is a potential source of noise. This background noise could
explain some of the classifier’s inaccurate results, as observed in the confusion matrices.
The neural network may be learning uninformative features or patterns as a result of excess
inputs. We could improve the results and reduce the inaccurate results by providing the
CNN with only brain images, thus removing potential artifacts associated with the skull.

Additionally, we include the attention map for a non-affected individual in Figure 7
on page 14. The difference from the image in Figure 6 is that this image seems to generate
less attention from the neural network. We observed the same behavior in other images of
healthy people.

The M3d-CAM tool allowed us to better study the resulting neural network and
generate new hypotheses to improve our current work. Furthermore, by incorporating the
attention maps, we added a layer to our work that widens what we can achieve with our
current and future classification systems. As an example, we now consider the use of brain
segmentation. It is essential to include more visualization tools for neural networks that
would allow debugging and understanding these architectures in depth.
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(a) Axial plane slice (b) Attention map of the slice at the left

(c) Slice of an input image in the sagittal
plane

(d) Attention map of the slice at the left

Figure 7. Image slices and their attention maps from an MRI of a healthy person.

7. Conclusions

We explored a low-cost way to create a deep artificial convolutional neural network
architecture for AD detection that proved its effective performance in this work. Our
classification system has performance metrics of 0.86 mean accuracy, 0.86 mean sensitivity
(micro-average), 0.86 mean specificity (micro-average), and 0.91 area under the receiver
operating characteristic curve (micro-average).

The constructed classifier is a valuable and potentially viable option for developing
countries’ diagnostic systems if we add a user interface and interpretation to the model.
The model presents high individual sensitivities (recall), a required staple for computer-
assisted diagnostic systems. We can use such a tool in remote medicine scenarios and
deployment for AD early detection. We may base a possible CAD on Chester’s open
implementation [35], a computerized disease prediction system for chest X-rays presented
through the web. With the advent of recent tools such as TensorFlow.js and ONNX, we
can transform models trained using PyTorch to work in a browser, and we can use WebGL
for display [35]. This interface would permit prediction and also add explanation or
interpretation through attention maps or heat maps. One hospital in Costa Rica has shown
interest in such a tool.

By implementing attention maps, we discerned a potential focus for future improve-
ment. We identified noisy features that could be the cause of inaccuracies. We could remove
the noise by employing image processing. Using a mask, we would cut non-brain pixels.
We do not attribute errors to the freely available tools used.
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Additionally, we want to improve our model without using supervised learning. We
will use reinforcement learning. We also will not use gradient methods for training, that
is to say gradient descent and backpropagation. We will combine reinforcement learning
with evolutionary computing.

We also want to perform a series of experiments. One possible experiment we could
carry is the comparison of different architectures as, for instance, DenseNet-169, DenseNet-
201, ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, and ResNeXt-101. We
could consider every architecture as a treatment for the data and perform an analysis of
the variances for comparison. In that same line, we also want to compare against human
professionals in the health sector. For instance, works such as [6] compared against humans.

Another possibility of experimentation consists of mixing different data sources. For
example, we could use the entire ADNI tagged data set for training only, and we could use
other data sources for validation. Among the possible data sources for validation are our
local health centers or Open Access Series of Imaging Studies (OASIS) [36].

Finally, regarding the transparency and reproducibility of academic work, we con-
tribute the source code of our DNN at [37]. The produced neural network is available for
download at [38].
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